
Evaluation of Communication Induced Checkpointing Approaches for
Reconfiguration-Based Fault-Tolerance in Embedded Systems

Belal H. Sababha and Osamah A. Rawashdeh
Electrical and Computer Engineering Department

Oakland University
Rochester, Michigan, USA

{bhsababh, rawashd2}@oakland.edu

Abstract— Reconfiguration-Based Fault-Tolerance is an
approach to developing dependable safety-critical
embedded applications, where redundant active or standby
resources are used to cope with faults through a system
reconfiguration at run-time. Compared to traditional
hardware and software redundancy, it is a promising
technique that may achieve dependability with a significant
reduction in cost, size, weight, and power requirements.
Reconfiguration necessitates using proper checkpointing
protocols to support state reservation to ensure correct task
restarts after a system reconfiguration. Communication
Induced Checkpointing (CIC) protocols are well developed
and understood for large parallel and information systems,
but not much has been done for resource limited embedded
systems. This paper implements four common CIC
protocols in a resource constrained distributed embedded
system with a Controller Area Network (CAN) backbone.
An example feedback control system implementation is
used for a case study. The four implemented protocols are
described and performances are contrasted. The paper
compares the protocols in terms of network bandwidth
consumptions, CPU usages, checkpointing times, and
checkpoint sizes in additional to the traditional measures of
forced to local checkpoint rations and total number of
checkpoints.

Keywords- Distributed Embedded Systems; Fault-
Tolerance; Reconfiguration; Communication Induced
Checkpointing; CAN.

I. INTRODUCTION

Reconfiguration-based fault-tolerance is an
approach for developing dependable applications,
where a system is automatically reconfigured at run-
time to handle the event of a failed component. This
approach, compared to traditional hardware and
software redundancy, can achieve dependability at a
reduced cost [1]-[6]. Reconfiguration requires using
checkpointing protocols to support state preservation
to allow task restarting, replacement, and migration.

Communication Induced Checkpointing (CIC) is
one of three main categories of checkpointing
protocols [7]. The other two categories are
uncoordinated checkpointing, and coordinated
checkpointing [7]. Uncoordinated checkpointing
maximizes the autonomy of processes in deciding
when a checkpoint is taken locally. However, due to
the lack of coordination, many of these checkpoints
are likely useless because they would, not be part of

any consistent global checkpoint. A rollback process
to a global checkpoint containing useless checkpoints
may cause a cascaded series of rollbacks that may
lead to the well known Domino Effect Problem [8].
Because the last taken checkpoint is not guaranteed to
be useful, a process has to maintain more than a single
checkpoint; therefore, it is required to do garbage
collection periodically to free up some storage space
[8].

Coordinated checkpointing protocols do not suffer
from the Domino Effect. A process does not maintain
more than a single checkpoint, therefore less storage
overhead and no garbage collection is required.
However, protocols in this category, due to
coordination, suffer from large latency in committing
an output [7].

Processes applying CIC protocols overcome the
Domino Effect through piggybacking control
information over application messages. CIC protocols
give processes the autonomy of taking local
checkpoints. To prevent useless checkpoints,
processes take extra forced checkpoints. The decision
to take a forced checkpoint is based on the control
information carried with application messages.
Checkpointing in general and CIC in particular has
been the focus of researchers for some time [7]-[13].
However, available literature mostly target
information systems and parallel supercomputers.
Very little has been published in the field of resource
constrained distributed embedded systems, where
processor time, communication bandwidth, program
memory, and stable storage availability are limited
and valuable.

In this paper, several CIC protocols are
implemented and evaluated on a resource limited real-
time distributed embedded system for reconfiguration-
based fault-tolerance purposes. The system utilizes a
Controller Area Network (CAN) for communication
between processing elements (PEs). The PEs are16-bit
microcontroller units (MCUs). Each MCU features up
to 48 MHz clock frequency, 12 Kbyte of RAM, 4
Kbyte of EEPROM, and 256 Kbyte of flash memory.
CIC protocols were evaluated for two applications.
The first is a simulated application executing on the
PE test-bed, where tasks periods, message
destinations, and message frequencies are set
randomly. Secondly, the CIC protocols were applied

DOI: 10.5176_2010-2283_1.4.102

to a feedback-control system for an unmanned aerial
vehicle (UAV).

The findings of our work presented here agree
with what has been presented in the literature as
results of simulations in terms of the number of
checkpoints forced by each CIC protocol and the ratio
of forced to local checkpoint. The paper illustrates
more in depth results found from actual
implementations of these protocols on a resource
constraint embedded system environment. To the
authors’ knowledge, this work of implementing and
evaluating CIC protocols is a unique effort that
addressed resource constraint distributed embedded
systems. The authors were not able to find any related
work that implemented CIC protocols in similar
environments and applications.

This paper has the following main contributions.
(1) It confirms results from the available
checkpointing literature by implementing and
evaluating the CIC protocols on real embedded
systems. (2) The paper shows that some of the best
CIC protocols in terms of conventional metrics are not
appropriate for embedded systems in terms of network
bandwidth and CPU usage overhead. (3) Finally, the
paper reports real numbers concerning checkpoint
sizes, actual processing time overheads, and
bandwidth usage in addition to the traditional number
of checkpoints and forced to local checkpoint ratios.

The paper is organized as follows. Section II
highlights the main concerns of embedded systems in
the context of communication induced checkpointing
as opposed to conventional information systems.
Section III overviews the computation model, and
defines the concept of Z-Paths and Z-Cycles. Section
IV introduces communication induced checkpointing
and describes the four CIC protocols that were
implemented and evaluated. In section V, the
experimental setup is shown. Results are illustrated in
section VI. Findings are discussed in section VIII.
Finally, Section VII concludes the paper.

II. EMBEDDED SYSTEM CONSTRAINTS

Due to stringent cost, size, and power
requirements, distributed embedded systems are
typically very limited in resources compared to
conventional information systems and
supercomputers, for which checkpointing techniques
were originally developed. These limitations can be
summarized as follows:

i. Embedded systems have limited processing
power. Processing overhead required by a
checkpointing protocol has to therefore be
minimized. Application execution delays are
especially unacceptable in real-time and
safety-critical applications.

ii. Embedded systems usually have limited
amounts of local memory for the temporary
storage of local checkpoints and global
checkpointing state information. This

limitation necessitates optimization of
checkpointing protocols to reduce local
memory requirements.

iii. Embedded systems usually can only afford a
limited amount of non-volatile memory for
the purposes of checkpoint storage. Hence, it
is important to minimize the number of
checkpoints forced by a protocol.

iv. Distributed embedded systems using a
broadcast network (e.g., CAN) have limited
network bandwidth. As a result, the network
may be overwhelmed by messages induced by
some protocols, as some of the protocols
piggy-back more information than others.

v. Embedded system applications are often
periodic. This periodicity implies repeated
network patterns, which can be advantageous
in deciding when to take local checkpoints.
For example, Preißinger et. al. introduced an
approach that optimizes effective checkpoint-
intervals to reduce the overhead of
communication induced checkpointing
depending on the application and
communication patterns [14].

III. PRELIMINARIES

A. The Computation Model

The computation model for the distributed
environment consists of n processes {P1,P2, …, Pn}.
All processes synchronize by piggybacking control
information over application messages. Processes are
executed by processing elements that do not have any
shared memory in common. Communication between
every pair of processes occurs over a directed logical
channel. Communication is asynchronous and
reliable. It is also assumed that no messages will be
lost during communication.

Three different kinds of events are considered by
each individual process: internal, send, and receive
events. An internal event does not involve any kind of
access to the communication link. A send event
models the action of placing a message over one of
the output channels that connect the current process
(Pi) with the destination process (Pj). Moreover,
blocking until a message is received on one of the
input channels is modeled by the receive event.

A process (Pi) produces a sequence of events
during its execution. Every event of this sequence
moves Pi from its current state to the next state. A
recorded state of a process is called a local
checkpoint. Ci,x is the xth local checkpoint of process
Pi. The sequence of events occurring between Ci,x-1
and Ci,x is called a checkpoint interval (Ii,x). By
looking at all the events in the distributed system as a
whole, states of processes may become dependent on
each other due to inter-process communication.
Events produced by all the processes of the distributed

computation can be ordered by the well-known
Lamport’s happened-before () relation [15].

A global checkpoint is a set of local checkpoints,
one from each process of the distributed computation.
A global checkpoint is said to be consistent if and
only if there exists no happened-before relation
between any pair of local checkpoints in the set. A
checkpoint that is not part of any consistent global
checkpoint is a useless checkpoint [16]. Useless
checkpoints cost processor execution time overhead,
in addition to wasting of communication bandwidth
and storage space. Furthermore, the presence of
useless checkpoints may lead to what is called the
Domino Effect, where a process rollback may cause
the rollback of another process and so on until a
consistent global checkpoint is found (probably the
initial state). A checkpoint is useless if and only if it
appears within a Z-cycle [16]. Processes are forced by
checkpointing algorithms to take forced checkpoints
to break candidate Z-cycles before they occur. The
next subsection explains Z-path and Z-cycle notions
introduced by Netzer and Xu in [16] and how they
relate to useless checkpoints.

B. Z-Paths and Z-Cycles

A sequence of messages [m1, m2, … , mk], ,
from a checkpoint Ci,m to another checkpoint Cj,n is
called a z-path from Ci,m to Cj,n if all of the following
conditions are true [16]:

(a) Ci,m send(mi)

(b)

,

(c) receive(mi) Cj,n.

In other words, the first message in the sequence

has to be sent after Ci,m is taken, while the last
message has to be received before Cj,n is taken. In
addition, for any message, except the last one, the
reception of a message must occur in the same or the
preceding checkpoint interval in which the following
message is sent. In this case, we say that this message
sequence is a z-path from Ci,m to Cj,n. If and

, .then this z-path is called a z-cycle. In the case
of a z-cycle, the starting and ending checkpoints are
the same checkpoint (Ci,m). Hence, it is said that the z-
cycle includes Ci,m. In this case Ci,m is considered as a
useless checkpoint because it cannot be part of any
consistent global checkpoint.

Figure 1 is a distributed computation pattern that
we will use to clarify the notions and concepts
mentioned earlier in this section. The following sets of
message sequences: [m3, m4], [m6, m5], [m6, m7] and
[m3, m4, m2] are all z-paths. However, some of these z-
paths are causal and some of them are noncausal [16].

A z-path ([m1, m2, … , mk],) is causal if the
following is true:

.

If the previous condition is not true and the event
of sending a message (mi+1) at a process Pi happens
before receiving the previous message in the sequence
(mi), then the z-path is noncausal [16]. In Figure 1, z-
paths [m3,m4] and [m6,m7] are causal paths. On the
other hand, z-paths [m6, m5] and [m4, m2] are examples
of noncausal paths. The chain of messages [m3, m4,
m2] is an example of a z-cycle. Checkpoint Ck,1 is
included in the z-cycle, so it is considered as a useless
checkpoint. Note that the z-cycle shown in the Figure
and any z-cycle in general is noncausal.

IV. CIC PROTOCOLS

CIC protocols are classified into Model-Based
protocols and Index-Based protocols [7]. In both
kinds, every process has two types of checkpoints:
local checkpoints and forced checkpoints. A process
takes local checkpoints independently from other
processes depending on the application, while forced
checkpoints are taken depending on the
communication between processes to prevent useless
local checkpoints.

In model-based protocols, processes maintain
checkpointing and communication patterns to prevent
the occurrence of useless checkpoints [9]. All model-
based protocols focus on preventing communication
patterns that may lead to z-cycles. In these protocols,
processes are forced to take extra checkpoints to break
candidate z-cycles. However, more than one process
may take a forced checkpoint to break the same z-
cycle, which results in more checkpoints than actually
needed. Some of the most popular model-based
protocols are the ones part of the FDAS (Fixed-
Dependency-After-Send) family [9]: NRAS (No-
Receive-After-Send), CAS (Checkpoint-After-Send),
CBR (Checkpoint-Before-Receive), CASBR
(Checkpoint-After-Send-Before-Receive), and FDI
(Fixed-Dependency-Interval).

Index-based protocols, on the other hand, indices
or timestamps are assigned to all checkpoints. These
indices are piggybacked on application messages.
Some index-based protocols go further by
piggybacking more information than their own index,
additional information may include information about
other processes’ checkpoints and communication
pattern information that a process collected during its

Pi

Pj

Pk

m1

m2

m3

m4 m5

m6 m7

Ci,0

Cj,0

Ck,0 Ck,1 Ck,2

Cj,1

Ci,1

Cj,2

Figure 1. Distributed Computation Pattern

communication with other processes in the network
[10][11][17].

In this study, we evaluate two model-based
protocols, and two index-based protocols. The first
model-based protocol will be referred to as the CBS
(Checkpoint-Before-Send) protocol [12], while the
second model-based protocol is the MRS (Mark-
Receive-Send) protocol [13]. The two implemented
index-based protocols are: the BCS (Briatico,
Ciuffoletti and Simoncini) [10], and the FI (Fully
Informed) [17][18]. The protocols are popular in the
literature, and that is why they were chosen to be
evaluated here. The rest of the section will describe
these four protocols in more detail.

The first protocol, CBS, is model-based and
adapts at the extreme case by forcing a checkpoint
before every message sending event [7]. This model
was adapted by Bartlett in the implementation of the
Tandem NonStop kernel as part of a fault-tolerant
distributed computer system designed for online
transaction processing [12].

In MRS, which is also a model-based protocol, M
stands for Mark that means “to take a checkpoint,”
while R and S stand for “receive” and “send”
respectively. A process in MRS forces a checkpoint
before delivering a message that is not separated from
its previous message-send event by a checkpoint. This
will guarantee domino-effect free rollbacks [9][13].

The third protocol is an index-based approach
known as the BCS (Briatico, Ciuffoletti and
Simoncini) algorithm [10]. In this algorithm, each
process maintains an index that is incremented every
time a checkpoint is taken. The local index is
piggybacked over application messages. A process,
upon receiving a message, will compare its local
index with the received one. A checkpoint will be
forced if the received index is greater than the local
index. Furthermore, the local index value is updated
to equal the value received. A consistent global
checkpoint is the set of local checkpoints stamped
with the same index.

Finally, the forth protocol is an index-based
protocol and the literature refers to it as the FI (Fully
Informed) protocol [18]-[20]. The protocol which was
presented by Helary et. al. in [17] piggybacks more
than an integer index over application messages. In
this protocol, every application message piggybacks
one integer, one vector of integers, and two Boolean
vectors (i.e., n+1 integers and 2n booleans 4n+2
Bytes). The integer is the index value (cli) of the
sender process (Pi). The vector of integers (ckpti[n])
holds all the checkpoint sequence numbers of all other
processes in the network up to the sender’s (Pi)
knowledge. Therefore, this vector is of size n, where n
is the number of processes in the computation
network. In addition, the two Boolean vectors are also
of size n each. These two Boolean vectors are referred
to as: greateri[n] and takeni[n]. The previously
mentioned piggybacked information, as well as a
locally maintained vector (sent_toi[n]) are all used by

the FI algorithm to detect possible z-cycles and to
break them by forcing additional checkpoints [17]. A
greateri[k] vector element is true if the value of the
local sender’s (Pi) index is greater than Pk’s index upto
Pi’s knowledge. The takeni[k] vector element for all
k i is true if a checkpoint is included within a z-path
from the last checkpoint of Pk to the next checkpoint
of Pi up to Pi’s knowledge. The local and received
vector elements: ckpti[i] and received.ckpt[i],
respectively, will help a process to determine if there
was a Z-path from the last checkpoint of Pk upto Pi’s
knowledge to the next checkpoint of Pi. The locally
maintained vector sent_toi[k] keeps track of whether
Pi has sent a message to Pk since its last checkpoint or
not [17]. All this information is used in the following
condition by a process Pi to decide whether to force a
checkpoint or not:

 [17].

BCS, FI and index-based protocols, in general,

guarantee that all checkpoints with the same index
will form a consistent global checkpoint. In all CIC
protocols, the goal is to minimize the number of
forced checkpoints while maintaining a consistent
global checkpoint.

V. EXPERIMENTAL SETUP

In this study, two experiments were conducted. In
the first, checkpointing of a simulated application was
conducted where tasks periods, message destinations,
and message frequencies are set randomly. The test
was performed on CAN networked PEs using four
CIC protocols to compare and confirm results in the
available literature. A test-bed was used to carry out
this experiment. The test-bed is built from a number
of microcontrollers communicating with each other
through CAN (Controller Area Network) [21].

Figure 2. Test-Bed Hardware and User Interface.

The number of microcontroller units used in the test-
bed is variable. The user can easily add or remove
microcontrollers to the test-bed. The microcontrollers,
which serve as processing elements (PEs), carry out
user tasks execution. A real-time operating system
(OS), µC/OS-IITM, running on each microcontroller
manages hardware resources, provide inter-task
communication, as well as providing other basic and
necessary services. The test-bed provides electively
the user with a system manager processor that may be
used for managing the distributed application. The
test-bed also provides the user with monitoring, data
acquisition, and fault-injection tools.

The hardware, pictured in Figure 2, used to build
the test-bed is composed of a group of Freescale
HCS12 microcontroller units (MCUs) [22].
Specifically, the MC9S12DP256B model is used. An
MC9S12DP256B microcontroller is a 16-bit device
composed of a 16-bit central processing unit (HCS12
CPU) and many I/O options. The MCUs used in the
test-bed are connected through a CAN network.
Physically CAN is a twisted pair multidrop cable
ranging from 1,000 meters to 40 meters in length
operating at 40 Kbps to 1 Mbps data rates
respectively. CAN is a message based protocol, where
each message has an identifier, which can be treated
differently depending on the application. Every node
on the network receives all messages and is typically

set up to process messages of interest as identified by
their message IDs.

 CAN has been selected to connect the
microcontrollers due to its popularity (more than 2
billion nodes have been sold since the protocol’s
development in the early 1980s [23]), high data rates
(1Mbps at 40m bus length), fault-tolerance
capabilities (e.g., acknowledgment bits, differential
signaling, and the ability to communicate through one
of the two lines at lower data rates in case of damage
[24]). The number of nodes could be any number up
to 110 nodes.

For the CIC protocols evaluation, the number of
networked processes was varied between 5 and 30
tasks, executed by 1 to 6 MCUs, and up to 5 processes
(tasks) per MCU. All on-chip and off-chip task
communication occurs over the CAN bus. A network
interface layer was implemented on every MCU to
make the inter-task communication transparent to the
application. A process sends all checkpoints and
application messages to this software layer through
OS provided mailboxes. The software layer
disassembles the incoming messages, forms CAN-
compatible frames, and writes these frames to the
CAN bus. On the other hand, the network interface
layer on a certain MCU monitors the CAN bus and
reads all CAN frames who’s destination is one of the
tasks executed by the same MCU. The software layer
then assembles all related frames into a single

CAN BUS

Task1

Network Interface layer

Task2 Task3 Task4 Task5

MCU 1

Task26

Network Interface layer

Task27 Task28 Task29 Task30

MCU 6

Task6

Network Interface layer

Task7 Task8 Task9 Task10

MCU 2

Network Interface layer

Write to Stable
Storage Task

Checkpointing MCU

Mailbox

Application Message or Checkpoint

CAN Frames

Figure 3. Software Communication Model – First Experiment

message and forwards it to its destination through OS
provided mailboxes. A dedicated MCU monitors the
CAN bus, and reads all frames carrying process status
checkpoints. In this paper, the dedicated MCU will be
referred to as the checkpointing MCU. Figure 3 shows
the software communication model. In all
experiments, the MCUs were operating at 48MHz
clock rate. The CAN network baud rate is set to
94.117 kbaud.

In the second test, the same four CIC protocols
were applied on the tasks of an avionics feed-back
control system of a Quadrotor unmanned aerial
vehicle (UAV) being developed at Oakland
University [25]. In this test, three HCS12 MCUs
execute different UAV tasks. The main tasks running
are: T_Comm, T_Roll, T_Pitch, T_Yaw. The T_Comm task
forwards the current and desired attitude angles to the
other three tasks through OS provided Mailboxes.
T_Roll, T_Pitch, and T_Yaw implement the roll, pitch, and
yaw stability PID controllers respectively. The real-
time OS executes the tasks on each of the three MCUs
at the proper rates. All MCUs are connected to a CAN
bus. A forth dedicated MCU collects checkpoints
written by other MCUs from the CAN bus and stores
them to stable storage. Figure 4 shows the block
diagram of the system. MCUs in this test were also
operating at 48MHz clock frequency, and
communicating over a 94.117 Kbaud CAN bus speed.

As discussed above, local checkpoints in CIC
protocols are taken depending on the application.
Often, it may be beneficial to take a checkpoint when
the process status size is minimal. Nevertheless, for
other applications periodic checkpointing may be
required. In this work, the focus is on evaluating CIC

protocols in embedded systems, where executing the
same software task in a periodic manner is usually the
case. Hence, for both experiments, local checkpoints
were taken periodically every fixed number of
execution cycles.

VI. RESULTS

This section shows the results observed from the
two experiments. Figure 5, shows the results from the
simulated application experiment described in the
previous section. It shows the total number of
checkpoints as a function of process count for each of
the four evaluated protocols. As observed from the
figure, the total number of checkpoints for the two
model-based protocols (CBS and MRS) are much
higher than the two index-based ones (BCS and FI).
Hence, the model-based protocols force more
checkpoints than required. And the gap between the
two kinds of protocols increases as more processes are
added to the network.

In order to get a better picture of the number of
checkpoints forced by each protocol, Figure 6 plots
the forced to local checkpoint (F/L) ratio as a function
of the number of processes in the network. The F/L
ration is plotted for the four protocols evaluated in the
first experiment with the simulated application.

Both Figure 5 and Figure 6 illustrate that the
index-based protocols (BCS and FI) perform better
than the other two model-based protocols in terms of
total number of checkpoints and forced to local
checkpoint ratio. The performance of BCS and FI is
further studied below. FI show better performance in
terms of the number of forced checkpoints. Figure 5
shows the sum of local and forced checkpoints, and

TIMU TMotors Control

CAN_Tx CAN_RxTtranslate

TRoll TPitch

TComm Interface

CAN_TxCAN_Rx

TYawl

CAN BUS

Sensor – Actuator Interface Processor

Control Processor

TPWM

CAN_Tx

Ttranslate

Telemetry Processor

Network Interface Layer

Network Interface Layer

Network Interface Layer

Figure 4. UAV Avionics system block diagram

the two sums may look close enough because the
number of local checkpoints taken periodically is
relatively much higher than the forced checkpoints in
both protocols. Therefore, this observation is
highlighted in Figure 6 better than Figure 5.

For a better evaluation of the two index-based
protocols on the embedded test-bed, the CAN bus
traffic load is illustrated in Figure 7. The figure plots
the average and peak bus load percentages for BCS
and FI. FI out performed BCS in terms of forcing less
number of checkpoints, but this comes with the
expense of piggybacking more information. The
relatively high amount of piggybacked information
(compared to BCS) overwhelmed the network, and
caused it to almost saturate as the number of processes
got close to 30 nodes.

CAN frame messages do not carry more than 8
bytes of data. The network interface layer in the case
of FI will need more clock cycles to convert
application messages into CAN frames compared to
BCS. This is because FI needs to piggyback much
more information than BCS.

The increased amount of required clock cycles is
considered as processing overhead, and may affect
original software tasks by competing with it on
processing resources.

Figure 8 and Figure 9 compare the four CIC
protocols in terms of total number of checkpoints and
Forced/Local (F/L) checkpoint ratio for the four main
tasks running on the attitude control processor in the
UAV control system experiment. Figure 10 shows the
CPU usage (µS) during a 60 second interval for the
T_Comm task. The execution time is shown without
applying checkpointing and with applying the four
different protocols.

Table 1 shows the worst case execution times for

the tasks of the attitude control processor after
applying the two index-based checkpointing protocols
(BCS and FI). The second column is the number of
times a task was executed by the OS over a period of
60 seconds. Third and fourth columns show the time
(µS) needed for a single time execution of a task
without checkpointing and the time for taking a

Figure 8. Attitude control application experimental results
(Total # of Checkpoints)

Figure 7. Simulated application experimental results
(CAN Bus Load)

Figure 6. Simulated application experimental results
(Forced/Local Checkpoint Ratio)

Figure 5. Simulated application experimental results (Total #
of Checkpoints)

Table 1: Attitude control tasks execution times for BCS and FI

Task ID # of Executions No checkpointing
(µS)

Checkpoint Time
(µS)

CPU Usage With
Chekpointing (µS)

Checkkpoint
Size (B)

 BCS FI BCS FI BCS FI

T_Comm 15613 9522 312260 500 1345 1093760 1470880 40
T_Roll 4147 2510 352495 88 145 390071 250035 8
T_Pitch 3437 2315 292145 88 145 323385 230560 8
T_Yaw 1061 541 90185 88 145 100305 53960 8

Idle 58952915 58092479 57994565

Figure 10. One Task CPU Usage with and without checkpointing

Figure 9. Attitude control application experimental results (Forced/Local Checkpoint Ratio)

complete checkpoint respectively. Column five
illustrate the processor time (µS) allocated to a task
after applying checkpointing. The last column is the
size (Bytes) of a single checkpoint. The next section
will discuss all these results and explain the findings.

VII. DISCUSSION

The simulated application results agree with
results from simulations reported for information and
parallel processing systems found in the literature, in
terms of the number of forced checkpoints and F/L
checkpoint ration. The results show that the two
index-based protocols outperformed the other two
model-based protocols. However, the FI protocol had
a much better F/L checkpoint ratio.

On the other hand, results from the first
experiment show that the CAN bus load in the case of
the FI protocol was the heaviest between all other
protocols. This is a manifestation of the large amount
of information the protocol had to piggyback over
application messages.

Moreover, for the attitude control application, it is
found that there was not much difference in terms of
number of checkpoints between CBS and MRS
protocols. It is believed that these close results found
for the two model-based protocols are due to the fact
that this attitude control is a periodic system, as is the
case with many embedded systems. Furthermore, the
BCS index-based protocol showed a significant
amount of improvement in terms of the number of
checkpoints and execution times as expected.
However, the FI protocol had the fewest amount of
checkpoints and it required more CPU resources than
the BCS protocol (Figure 10). This is due to the
additional time required to piggyback the information
required by processes, as well as to process all this
information. This means that the execution frequency
of a task in the case of the FI protocol is less than the
frequency in the case of any other protocol. The
results in Figure 10 show that the two model-based
protocols had a higher CPU usage than the FI
protocol. This is because the two model-based
protocols had a higher execution cycle rate and thus
got the opportunity to use the CPU more frequently in
the 60 seconds time period.

Table 1, column 1 show that the BCS protocol
roughly executed two times more than the FI protocol.
This relatively high amount of execution time
overhead in the FI protocol caused it lower execution
frequency. However, in real-time embedded system
applications, lowering the execution frequency has a
critical impact on the overall performance of the
application. In the quadrotor UAV attitude control
application, for example, the execution frequency of
the PID control loops was not enough to keep the
UAV stable and respond to commands correctly.

From the findings, the authors believe that a
simple index-based CIC protocol such as the BCS
protocol fits better in embedded system applications

than other protocols that piggyback more information
to reduce the amount of forced checkpoints. Meeting
deadlines in this case is critical and is at least as
important as saving checkpoints.

VIII. CONCLUSION

This paper overviews the work of implementing
and evaluating CIC checkpointing protocols to
support reconfiguration-based fault-tolerance in
CAN-based distributed embedded systems. Four
popular CIC protocols were evaluated on a resource
constrained embedded system. Two experiments
were conducted over CAN networked 16-bit
microcontrollers serving as PEs. The first experiment
evaluated the four protocols on a simulated
application with random task periods, message
destinations, and message frequencies. The second
experiment evaluated the same protocols on the tasks
of an avionics feed-back control system of a
Quadrotor UAV. The findings in this research agree
with available literature for large information systems
and parallel computing in the context of number of
checkpoints and forced to local checkpoint ratios.
The findings also showed that reducing the number
of forced checkpoints comes with the expense of
overwhelming the network bandwidth as well as
increased processing overhead, which is not suitable
for embedded systems that have to meet certain
deadlines. The main contributions of this paper are:
confirmation of simulation results form available
information system literature on distributed
embedded systems, illustrating the inappropriateness
of the FI protocol for resource constrained systems
due to the required bandwidth and CPU overhead,
and, finally, reporting real measures of checkpoint
sizes, processing time overheads, and network
bandwidth usage, in addition to the conventional
metrics in realistic embedded system applications. It
is believed that the reported information may be
beneficial to embedded system designers considering
checkpointing approaches.

REFERENCES
[1] Strunk, Elisabeth A., John C. Knight, and M. Anthony

Aiello, "Distributed Reconfigurable Avionics Architectures,"
23rd Digital Avionics Systems Conference, Salt Lake City,
UT, October 2004.

[2] R. P. Dick, N. K. Jha. “CORDS: Hardware-Software Co-
Synthesis of Reconfigurable Real-Time Distributed
Embedded Systems.” IEEWACM International Conference
on Computer Aided Design, pages 62-68, San Jose,
California, November, 1998.

[3] R. Feldmann, C. Haubelt, B. Monien, and J. Teich. “Fault
Tolerance Analysis of Distributed Reconfigurable Systems
Using SAT-Based Techniques,” In P. Y. K. Cheung, G. A.
Constantinides, and J. T. de Sousa, editors, Field-
Programmable Logic and Applications, Lecture Notes in

Computer Science (LNCS), volume 2778, pages 478–487,
Berlin, Heidelberg, Sept. 2003. Springer.

[4] Rawashdeh, O., and Lumpp, J., “Run-Time Behavior of
Ardea: A Dynamically Reconfiguring Distributed Embedded
Control Architecture,” IEEE Aerospace Conference,
IEEEAC Paper# 1516, March 2006.

[5] M.Eisenring, M.Platzner, “A framework for run-time
reconfigurable systems”, The Journal of Supercomputing,
v.21, pp.145–159, 2002

[6] Thilo Streichert, Dirk Koch, Christian Haubelt, and Jrgen
Teich, “Modeling and design of fault-tolerant and self-
adaptive reconfigurable networked embedded systems,”
EURASIP Journal on Embedded Systems, Special Issue on
Field-Programmable Gate Arrays in Embedded Systems.,
2006.

[7] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-min Wang and
David B. Johnson, “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” ACM Computing
Surveys, vol. 34, No. 3, pp. 375–408, September 2002.

[8] B. Randell, “System Structure for Software Fault Tolerance,”
IEEE Trans. Software Eng., vol. 1, no. 2, pp. 220-232, June
1975.

[9] Y.M Wang, “Consistent global checkpoints that contain a
given set of local checkpoints,” IEEE Trans. Computers, vol.
46, no. 4, pp. 456-468, Apr. 1997.

[10] D.Briatico, A. Ciuffoletti, and L. Simoncini, “A Distributed
Domino-Effect Free Recovery Algorithm,” In Proc. Of the
IEEE International Symposium on Reliability in Distributed
Software and Database Systems, pp.207-215, October 1984.

[11] J. M. Helary, A. Mostefaoui, R.H.B. Netzer, and M. Raynal,
“Preventing Useless Checkpoints in Distributed
Computations,” In Proc. Of IEEE International Symposium
on Reliable Distributed Systems, pp. 183-190, 1997.

[12] J. F. Barltlett, “A Non Stop Kernel,” In P r o c . of the
Eighth ACM Symposium on Operating Systems Principles,
pp. 22–29, 1981.

[13] D. L. Russell, “State restoration in systems of communicating
processes,” IEEE Transactions Software Engineering, Vol. 6,
No. 2, pp. 183–194, 1980.

[14] J¨org Preißinger and Mark Pfl¨uger, “Compiler supported
interval optimisation for communication induced
checkpointing,” Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications, PDPTA’07, volume II, pages 550–556, Las
Vegas, NV, June 2007. CSREA Press.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558-
565, 1978.

[16] R.H.B. Netzer and J. Xu, “Necessary and Sufficient
Conditions for Consistent Global Snapshots,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 2, pp. 165–169,
Feb. 1995.

[17] J.-M. Helary, A. Mostefaoui, R.H.B. Netzer, M. Raynal,
“Communication-based prevention of useless checkpoints in
distributed computations,” Distributed Computing, 13:29-43,
2000.

[18] Jichiang Tsai, “An Efficient Index-Based Checkpointing
Protocol with Constant-Size Control Information on
Messages,” IEEE Transactions on Dependable and Secure
Computing, Vol. 2, No. 4, pp. 287-296, 2005.

[19] Y. Luo and D. Manivannan. “FINE: A Fully Informed aNd
Efficient communication-induced checkpointing protocol,” In
IEEE Proceedings of the 3rd International Conference on
Systems (ICONS’08), pages 16–22, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[20] Yi Luo and D.Manivannan. “Theoretical and Experimental
Evaluation of Communication-Induced Checkpointing

Protocols in FE Family,” In Proceedings of the 27th IEEE
International Performance Computing and Communications
Conference (IPCCC 2008)), December 7-9, 2008, Austin,
Texas, USA pages:217 - 224.

[21] 20 Belal H. Sababha, Osamah A. Rawashdeh, and Guangzhi
Qu, “A Test-Bed for Reconfiguration-Based Fault-Tolerance
in Distributed Embedded Systems,” The International
Conference on Information and Communications Systems
(ICICS2009), Paper # 500, Amman, Jordan, Dec 20, 2009.

[22] Freescale’s website, Available: http://www.freescale.com/

[23] CAN in Automation Organisation website, Available:
http://www.can-cia.org/

[24] The Official site of the Embedded Development Community,
Available:
http://www.embedded.com/columns/murphyslaw/13000304?
_requestid=142578

[25] O. A. Rawashdeh, H.C. Yang, R. AbouSleiman, and B. H.
Sababha, "Microraptor: A Low-Cost Autonomous Quadrotor
System," Proc. of the 2009 ASME/IEEE International
Conference on Mechatronic and Embedded Systems and
Applications (MESA09), DETC2009-86490, San Diego,
CA, Sep 1, 2009.

Belal H. Sababha, Ph.D. is a Powertrain
Controls Senior Engineer at Chrysler Group
LLC. He received his Ph.D. degree in Electrical
and Computer Engineering – Embedded
Systems from Oakland University in 2011. His
B.Sc. and M.Sc in Computer Engineering were
received from Yarmouk University and Jordan
University of Science and Technology in the
years 2000 and 2006 respectively. He has taught
electrical and computer engineering undergrad
and grad courses at Oakland
University/Michigan/USA and at Yarmouk
University/Jordan. His research concentration
areas are UAV development, Biomedical
instrumentation, sensor communication, routing
in wireless ad hoc networks, embedded RTOS,
CAN networks, distributed embedded systems,
graceful degradation in embedded systems,
rapid prototyping, machine vision, and
automotive onboard diagnostics. Belal has
several years of experience in IT related
engineering and management careers. He is a
member of AIAA, ASME and IEEE.

Osamah A. Rawashdeh, Ph.D., P.E. is an
Assistant Professor in the Department of
Electrical and Computer Engineering at
Oakland University. He received his BS with
honors, MS, and PhD in Electrical Engineering
from the University of Kentucky in 2000, 2003,
2005 respectively. He absolved internships at
Daimler Benz AG and at SIEMENS AG and is
a member of ACM, AIAA, AUVSI, ARRL, and
a senior member of IEEE. His research interests
include embedded systems design, fault-
tolerance, and reconfigurable computing. Before
joining Oakland University in the fall of 2007,
he served as a Lecturer the Department
Electrical and Computer Engineering at the
University of Kentucky. Dr. Rawashdeh is a
licensed Professional Engineer in the State of
Michigan.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4712735&conhome=1000548
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4712735&conhome=1000548
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4712735&conhome=1000548
http://www.freescale.com/
http://www.embedded.com/columns/murphyslaw/13000304?_requestid=142578
http://www.embedded.com/columns/murphyslaw/13000304?_requestid=142578

