
 DOI: 10.5176_2010-2283_1.2.38

Rotation independent hierarchical representation for
Open and Closed Curves and its Applications

Siddharth Shivapuja1, Vineetha Bettaiah2, Thejaswi Raya3 and Heggere Ranganath4

1Honeywell Scanning and Mobility

Blackwood, NJ 08012, USA

sshivapuja@gmail.com
2The University of Alabama in Huntsville

Huntsville, AL 35899, USA

vb0003@cs.uah.edu
3The University of Alabama in Huntsville

Huntsville, AL 35899, USA

thr0001@cs.uah.edu
4The University of Alabama in Huntsville

Huntsville, AL 35899, USA

ranganat@cs.uah.edu

Abstract— The algorithm used for the segmentation of an image,
and scheme used for the representation of the segmentation
result are mostly selected based on the final image analysis or
interpretation objective. The boundary based image
segmentation and representation system developed by Nabors
segments and stores the result as a graph-tree hierarchical
structure that is capable of supporting diverse applications. This
paper shows that Nabors’ hierarchical representation of curves is

not invariant to rotation, and proposes an enhanced
representation which retains its structure and remains invariant
under rotation. The curve matching algorithm which matches
two curves based on their hierarchical representation makes it
easy to determine if a curve is a section of a larger curve. The
potential of the representation is illustrated by developing image
registration and image stitching methods based on the new
representation.

Keywords— Image Segmentation, Curve Matching, Rotation
Independent Hierarchical Representation, Image Registration,
Image stitching, Boundary Representation

I. INTRODUCTION

The selection of an algorithm for the segmentation of an image,
representation scheme used to store the segmentation result, and
algorithms used for the extraction of features is almost always done
with the prior knowledge of the final image interpretation objective.
Often, it is desirable to segment, represent and store the segmented
image for later use without any kind of prior knowledge on how the
segmentation results will be used by multiple users at different times.
As an example, consider Hough Transform based representation. If
the goal is to find all straight lines present in an image then the edge
image may be stored as a Hough array in the slope-intercept
parameter space. If the goal is to find circles in the same image,
then the edge image must be mapped to a 3-dimensional parameter
space (coordinates of the center, and radius). In other words, final
analysis objective determines the representation.

Sensors on NASA satellites generate many terra bytes of image
data of Earth and space each year which is archived in NASA data
centers. Space and Earth scientists, with diverse analysis and
interpretation objectives, access and process these images. In this
situation, it is highly desirable to segment and store the segmentation

result in a compact manner using an appropriate representation that is
suitable for many diverse applications. In 2000, Nabors has
developed one such representation scheme [1]. He argued that an
image, a two dimensional projection of a three dimensional scene,
consists of lines, curves and regions. An image region is defined as a
set of spatially connected pixels with similar spatial property. It may
be represented by its boundary and spatial property. If the input
image is transformed into a binary edge image then the resulting
edge image consists of lines, open curves and closed curves. These
features are captured and stored in a hierarchical representation
which utilizes weighted graph as well as tree data structures defined
on the same set of nodes [1]. An object is stored as a related set of
open and closed curves and an image is stored as a spatially related
set of objects. Each curve is represented by a node in the weighted
graph, and this node serves as the root node for the tree data structure
which describes the curve in terms of smaller curve segments and
each curve segment is represented by a node in level-1. Further, each
curve segment is partitioned into straight line segments, and each line
is represented by a node in level-2. The weighted edges of the graph
encode the broad spatial relationship that exists among various
curves of the object.

Nabors defined four types of primitive curve segments based on
the slope along the curve as shown in Table I. If a curve segment is
traced from top to bottom, at each pixel, the option is to move to one
of its two possible neighbours. Therefore, a curve segment can be
encoded by a binary string (1-bit chain code) in which 0 represents
horizontal or vertical neighbour depending on the segment type, and
1 represents the diagonal neighbour. Based on the properties of
straight lines, it is easy to partition the binary string of a curve
segment into sub-strings where each sub-string represents a straight
line [1].
 The curve extraction and representation system developed by
Nabors receives the thinned edge image as input and outputs Nabors’

hierarchical representation of the input image. The system consists
of four curve segment extraction networks (N1, N2, N3 and N4), and a
line detector as shown in Fig. 1. The curve extraction network Ni

scans the image in the raster scan order finds all Type-i curve
segments in the input image. It consists of an array of processing
nodes, one processing node for each image pixel. Each processing
node receives input from its eight neighbours, and is capable of doing
the following:

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

46

TABLE I
TYPES OF CURVE SEGMENTS

Curve Segment Slope Range
Type-1 Less than -1
Type-2 [-1, 0]
Type-3 [0, 1]
Type-4 Greater than 1

Fig. 1 Curve extraction and representation system

1) Initiate the tracing of a new curve segment of Type-i, if

new curve initiation conditions are met. In this case, this
pixel becomes the starting point of the curve segment.

2) Continue growing the curve segment that is being traced
by appending a bit to the 1-bit chain code received from its
neighbour. A 1 is appended if the data packet of the curve
segment is received from its diagonal neighbour.
Otherwise, 0 is appended to the binary chain code. The
data packet is sent to the next node.

3) If curve segment termination condition is satisfied, the
curve segment is terminated. The data packet consisting
of the coordinates of the starting point and 1-bit chain code
is sent to the line detector.

4) After terminating a curve segment, Ni sends signals to the
other three networks to begin tracing the next curve
segment of the curve starting from the termination point.

5) The line detector which consists of two state machines
partitions each curve segment into straight lines.

6) The representation unit generates the hierarchical
representation.

II. AN ALALYSIS OF NABORS’ REPRESENTATION

Nabors’ boundary based hierarchical representation scheme has
many merits. The structure of the weighted graph is invariant to
rotation, translation and scale. Each curve, irrespective of its type, is
represented by a tree. The tree leaf nodes represent an open curve as
a poly-line, and closed curve as a polygon. Therefore, one may view
this representation as a unified representation scheme which handles
all types of curves uniformly. It has been demonstrated that
computationally efficient algorithms can be developed for the
determination of several geometric attributes (concave up, concave
down, number of inflection points, convex hull, minimum bounding
rectangle, number of concavities, etc.) of a curve directly from the
representation [2,3]. Its potential in several practical problems such
as object recognition, scene matching, content based image retrieval,
and the generation of the union of images with overlapping fields of
view has been demonstrated [4].

However, careful analysis of the representation reveals that there
are a few critical issues which must be resolved. The number of
nodes in the first level of the tree data structure that represents a
curve is not invariant to rotation. The line detector is not always able
to partition a curve segment and its rotated version into the same
number of line segments. Minor irregularities in boundary due to
noise and artefacts of the thinning algorithm used for thinning edge

images contribute to this problem. Therefore, the task of matching
two instances of an object or a curve, where one instance is a rotated
version of the other, is not straight forward. Also, the task of finding
if a curve in one representation is a part of larger curve in another
representation is not an easy problem when there is rotation (In other
words, smaller curve is a part of its rotated version).

Nabors correctly identified that the structures of trees in the
hierarchical representation are not invariant to rotation. Accordingly,
he developed a two step approach for matching two representations
based on the two theorems he stated and proved in his dissertation
[1]. These theorems are given below.
Theorem 1: If a curve is detected by a single curve extraction
network, then one or two networks are required for the detection of
the rotated version of the curve.
Theorem 2: If a curve is detected by k curve extraction networks,
then, k-1, k, or k+1 curve extraction networks are needed to detect a
rotated version of the curve.

 Step 1, ensures that the graph structures of the two representation
match based on broad features such as slope differential sequence,
number of curve segments, and edge weights associated with the
nodes in the two representations. If successful, the difference in
rotation and scale are estimated based on the pairs of matching nodes
of the two representations determined in Step 1. Then curves of one
representation are rotated and scaled before the final matching in
Step 2. Finally, pairs of curves represented by matching nodes of the
two graphs are matched by comparing the coordinates of the starting
points of their line segments.
 The above approach to handle rotation during curve matching has
major disadvantages. Theorem 2 states that the number of curve
segments into which a curve gets partitioned changes by at most one
when the curve is rotated. This is not always true. Theorem 2 may
not hold if the curve is not smooth or have inflection points (points at
which curvature changes sign). For example, if the curve in Fig. 2(a)
is rotated by 30 degrees in the counter clockwise direction, the
number of curve segments changes from 7 to 9 as shown in Fig. 2(b).

Fig. 2 Segments of a curve and its rotated version.

Also, if a curve consisting of segments of type 4, 3 and 1 (not a
smooth curve as segment type 2 is missing) with no inflection points
is rotated, the resulting curve may consist of segment types 4, 3, 2, 1,
and 4. Once again the number of curve segments may change by two.
Therefore, it is not accurate to use the number of curve segments in
the manner to Nabors used to determine initial match between two
curves. As a result, the rotation angle and the scale factor estimated
in Step 1 may not be accurate. Finally, the ability to determine if a
curve is a part of another larger curve is important to many
applications. It is not possible to develop an efficient algorithm to
accomplish the task based on Nabors’ hierarchical representation.

III. ROTATION INDEPENDENT HIERARCHICAL

REPRESENTATION

In this section, an enhanced hierarchical representation which is
completely independent of rotation is presented. The new

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

47

representation retains the graph portion of the Nabors’ representation
without any modification. However, the trees which represent the
curves of the object are obtained using a different approach. Instead
of partitioning an open curve into segments based on the slope along
the curve, it is partitioned into curve segments by breaking the curve
at inflection points. An inflection is the point at which the second
derivative changes sign. This partitioning method is not sensitive to
rotation, as the relative position of the inflection point on the curve
does not change with rotation. The number of curve segments
(number of nodes in Level-1) into which an open curve gets
partitioned is one more than the number of inflection points. The
line detector, because of the rounding errors, may break a curve
segment and its rotated version into different numbers of line
segments. To keep the number of child nodes in Level-2 and beyond
consistent, a different method is proposed to partition the curve
segments into line segments. Each curve segment is recursively
partitioned at its mid point, until each partition can be approximated
by a straight line with the desired degree of accuracy. This
partitioning is not affected by rotation. The structure of the sub-tree
which represents a curve segment is a binary tree. However, the
number of levels in the tree is not fixed.
 The above enhanced hierarchical representation can easily be
obtained from Nabors’ representation or the 3-bit chain code. It has
been shown that general shape features of curves such as concave-up
segment, concave-down segment, local maximum, local minimum,
and infection points can be determined by examining the network
sequence and slope differential sequence which are stored at the root
node of each curve[4]. For the purpose of illustration, consider the
curve in Fig. 2(a). Its network sequence, network differential
sequence (first difference of network sequence) and slope differential
sequence (obtained by adding contiguous numbers of the same sign
in network differential sequence) are [4, 3, 2, 1, 2, 3, 4], [-1, -1, -1,
+1, +1, +1] and [–3 +3], respectively. The number of inflection
points on a smooth curve is equal to the number of sign changes in
the slope differential sequence. The change in sign from –3 to +3
indicates the presence of one inflection point. Each negative number
in the slope differential sequence represents a concave down (left)
section, and each positive number represents a concave up (right)
segment of the curve. Concave down and concave up segments of a
smooth curve meet at an infection point.
 In order to determine the locations of the inflection points, the
network sub-sequences corresponding to each value in the slope
differential sequence are determined. Adjacent network sub-
sequences will have a common curve segment. Each curve segment
that is common to a pair of adjacent network sub-sequences has an
inflection point on it. For example, the network sub-sequences
corresponding to -3 and +3 in the slope differential sequence of the
curve in Fig. 2(a) are [4 3 2 1] and [1 2 3 4], respectively. Therefore,
the curve has one inflection point which is located on the Type1
curve segment that is common to the two network sub-sequences. It
is easy to see that there is one inflection point on each curve segment
which connects to the same type of curve segments at both ends.
Note that theType1 curve segment in Fig. 2 (a) connects to Type2
curve segments at both ends. The actual location of the inflection
point may be obtained by examining the 1-bit chain code of the curve
segment. The number of zeros (ones) between successive ones
(zeros) will be non- decreasing on one side of the inflection point
and non-increasing on the other side as the curve is traversed from
one end to the other end, or vice versa.
 In the enhanced representation, the curve in Fig. 2(a) and its
rotated version in Fig. 2(b) are both partitioned consistently into two
segments at the inflection point, and each curve segment is
represented by a Level-1 node of the tree data structure. At each
Level-1 node, the end points and the 3-bit chain code of the curve

segment, which can be obtained from Nabors’ hierarchical
representation, are stored. The next step is to recursively split each
curve segment at the mid point, until all sections of the curve
represented by the leaf nodes can be approximated as straight lines
with the desired degree of accuracy. One of the following methods
can be used to check if a curve may be approximated by a straight
line or not.

1) Calculate the ratio of the length of the curve and the length
of the line joining the end points of the curve. For a
straight line, this ratio is equal to 1. All curves for which
this ratio is less than a threshold may be considered as a
straight line. The value of the threshold depends on the
accuracy required.

2) If all points on the curve are within a specified distance
from the line joining the curve’s end points, then the curve

is taken as a straight line. In order to keep computation
reasonable, this measure is computed for a few points
fairly uniformly spaced along the curve.

Each curve segment in Fig. 2 partitions into 8 straight line segments
if it is recursively partitioned until all pixels on each of the resulting
partition are within a distance less than 12% of the length of the line
joining the endpoints of the partition.
 The Closed curves which may or may not have concavities pose a
different challenge. Since a closed curve does not have definite start
and end points, Nabors selects the top most point as the starting as
well as ending point. Obviously, the starting point selected in this
manner is not invariant to rotation. If the starting point changes, the
partitioning also changes. Therefore, the new approach partitions a
closed convex curve into segments by breaking the curve at points
where the minimum bounding rectangle touches the boundary of the
curve. If the closed curve has concavities, then it is partitioned at the
inflection points, similar to the way an open curve is partitioned. If
desired, a closed curve with concavities may be partitioned at
infection points as well as the points at which the minimum bounding
rectangle touches the curve. All these partitions are invariant to
rotation.

IV. CURVE MATCHING ALGORITHM

 This section presents a new and elegant algorithm to match and
determine the similarity between two curve segments, Curve-Seg1
and Curve-Seg2, by matching their binary-tree representations. First,
a few properties or observations about the binary tree are given
below:

1) The section of the curve represented by a leaf node is
linear or almost linear.

2) The root node represents the entire curve. Each Level-1
node represents ½ of the curve. In general, each Level-h
node represents one of the 2h sections of the curve.

3) The jth node from left in level h, represents the jth section
of the curve from the left.

4) The flatness of the section of the curve represented by
node k can be inferred by the depth of the sub tree for
which node k is the root.

 Therefore, the binary tree representation of a curve allows one to
describe the shape of the curve in a non-quantitative manner like
human beings do. For example, consider the binary tree
representation of a curve in which the leaf nodes, in the order of
inorder traversal, are [4 5 12 13 48 98 99 50 51 30 31]. An ordered
list of the levels in which these leaf nodes appear in the tree is [2 2 3
3 5 6 6 5 5 4 4]. From the list of levels, the following statements can
be made.

1) The left quarter of the curve is linear.
2) The second left quarter of the curve is linear.
3) The left half of the curve is likely flat.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

48

4) The curve starts bending roughly at the center and then
turns sharply.

5) The curve is relatively flat at the right end (1/8 of the
curve).

 Now, a method for the determination of the dissimilarity between
two curve segments based on the location of the leaf nodes in their
respective binary tree representation is presented. Let A = [2 2 3 3 5
6 6 5 5 4 4] and B = [2 3 4 5 6 6 5 5 4 3 2] be the lists of the levels in
which leaf nodes of Curve-A and Curve-B appear in their binary tree
representations. Since A[0] = B[0] = 2, it is clear that the first
quarter of both curves are linear and have roughly the same shape.
Therefore, the error for this section is taken as zero. The next quarter
of the first curve is linear (A[1] = [2]). However, the corresponding
quarter of the second curve is not linear. It is represented by a binary
sub-tree of depth 4 with 5 leaf nodes (B[1..5] = [3 4 5 6 6]). The
error or dissimilarity between these curve sections is taken as 4, the
height of the sub-tree in B that corresponds to the section of the
curve represented by the leaf node corresponding to A[1] = 2. Next
A[2] = 3 the next one eighth of the first curve, and B[6..8] = [5 5 4]
represents the corresponding eighth of the second curve. The error
between these two sections is 2. The shape of the next eighth in the
first and second curves match (A[3] = A[9] =3), and contribute no
error. Finally, the last fourth of the second curve (B[10] = 2) do not
match in shape to the last fourth of the first curve (A[4..10] = [5 6 6 5
5 4 4]), and contribute 4 units to the error. The overall measure of
dissimilarity between the two curves is obtained by adding individual
errors, and in this case, is 10. The algorithm which implements the
above method is given below. The asymptotic order of computation
is O(m+n), where n and m are the number of leaf nodes in the two
binary trees being matched.

BinMatch(A[0..n-1], B[0..m-1])
{// A contains levels of leaf nodes of Curve-Seg1 in
 the order of inorder traversal
 // B contains levels of leaf nodes of Curve-Seg2 in
 the order of inorder traversal

error ← 0; i ← 0; j ← 0;
while((i < n) and (j < m))
{
 if (A[i] == B[j])
 {
 i← i + 1; j←j + 1;
 }

 else if (A[i] < B[j])
 {
 p ← 1 / 2A[i]; q ← 0;
 d ← B[j];
 while (q != p)
 {
 q ← q + 1 / 2B[j];
 if (d < B[j])
 d ← B[j];
 j←j + 1;
 }
error ← error + (d – A[i])
i← i + 1;

 }
 else
 {

p ← 1 / 2B[j]; q ←0;
d ← A[i];
while (q != p)

 {
 q ← q + 1 / 2A[i];
 if (d < A[i])

 d ← A[i];
 i← i + 1;
}
error ← error + (d – B[j])
j← j + 1;

 }
 }
 return error;
 }

V. APPLICATIONS
The enhanced hierarchical representation and the curve matching

algorithm presented in this paper support many practical applications
including object recognition, scene matching, contents based image
retrieval, image registration and image stitching. In this section,
image registration and image stitching methods based on the
enhanced hierarchical representation are described. Assuming that
the field of view of a given reference image is completely contained
within the field of view of a larger image (known as search area), the
task of the registering the reference image within the search area is
the process of finding the subimage of the search area whose field of
view is same as that of the reference image. In general, the two
images differ in rotation and scale. Image stitching is defined as the
process of determining the image that represents the union of the
fields of view of several images. It is assumed that the fields of view
of images to be stitched have sufficient overlap to allow the
construction of the image corresponding to their union.

A. Image registration
 The search area shown in Fig. 3(a) is a synthetic edge image of

size 600x800. It consists of nine curves, and therefore, its graph
representation has nine nodes. The reference image (300x400) to be
registered, Ref-1, is shown in Fig. 3(b). Ref-1 is required to include
at least two points at which three of more curves meet. Ref-1
contains eight curves labeled a through h and its field of view is
completely contained within the field of view of the search area.
However, the reference image differs from the search image in
rotation by 45 degrees. A four step registration method based on the
enhanced hierarchical representation is given below.

 (a) (b)
Fig. 3 Illustration of Image registration. (a) Search Area.
(b) Reference image.

TABLE II

CONNECTIVITY OF CURVES IN THE SEARCH AREA
End Point Connected Curves Number of Curves

 X1 I 1

 X2 A, F, G, I 4

 X3 B, E, F 3

 X4 A, B, C, D 4

 X5 D 1

 X6 C, E, G, H 4

 X7 H 1

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

49

Step 1: The co-ordinates of curve end points in the search area at
which three or more curves meet are determined by examining the
end points of all curves in the hierarchical representation, one curve
at a time, and then by grouping the curves which share a common
and point. The seven curve end points (X1 through X7) and the curves
meeting at each end point are shown in Table II.

Step 2: The co-ordinates of curve end points in Ref-1 at which
three or more curves meet are also determined and the results are
summarized in Table III.

TABLE III

CONNECTIVITY OF CURVES IN THE REFERENCE
End Point Connected Curves Number of Curves

 x1 f 1
 x2 b, e, f 3

 x3 a, b, c, d 4

 x4 a 1
 x5 d 1
 x6 c, e, g, h 4
 x7 g 1

Step 3: Based on the information obtained in Step 1 and Step 2, all

mappings of the end points of Ref-1 to those of the search area are
determined. The six possible mappings are shown in Table IV.

TABLE IV

MAPPINGS OF ENDPOINTS OF REF-1 AND SEARCH AREA
Mapping Pairs of intersection points

Mapping1 (x3,X2), (x6,X4), (x2,X3)
Mapping2 (x3,X4), (x6,X2), (x2,X3)
Mapping3 (x3,X6), (x6,X2), (x2,X3)
Mapping4 (x3,X2), (x6,X6), (x2,X3)
Mapping5 (x3, X4), (x6,X6), (x2,X3)
Mapping6 (x3,X6), (x6,X4), (x2,X3)

Step 4: The validity of mapping (xi,, Xj) in Table IV is determined

by matching each curve meeting at Xj in search area with each curve
meeting at xi in Ref-1. For example, matching results for curves
associated with the mapping (x3, X2) is given in Table V. The
numbers in the ―angle‖ column are the angle between the chords of
the two curve segments being matched. The number of curve
segments of each curve is also shown. For example, G consists of 3
curve segments which is shown as G(3). Note that curves b and c of
Ref-1 do not match with any of the curves in the search area meeting
at X2. Therefore it is concluded that X2 does not map to x3 and
options Mapping 1 and Mapping 4 are eliminated from further
consideration. Similarly mappings 2, 3 and 6 also get eliminated.
Results in Table VI indicate that x3 of Ref-1 matches X4 of search
area. This is because the curve pairs (a, A), (b, B), (c, C) and (d, D)
cluster tightly in the two-dimensional error-angle space. Similarly,
x6 matches with X6, and x2matches with X3. Therefore, Mapping 5
becomes the only valid mapping, and it identifies the subimage of the
search area that matches Ref-1.

B. Image synthesis
 The image synthesis method based on the enhanced hierarchical

representation is illustrated by the union of 2 edge images, IMG1 and
IMG2, shown in Fig. 4 and Fig. 5, respectively. The two images have
the same spatial resolution and differ in rotation by 45 degrees. There
is considerable overlap in the two fields of view. The procedure for
the construction of the union is given in the step below.

TABLE V
CURVE MATCHING RESULTS FOR MAPPING (x3, X2)

TABLE V1
CURVE MATCHING RESULTS FOR MAPPING (x3, X4)

Step 1: From the hierarchical representation of IMG1 and IMG2,

the co-ordinates of X2, X4, and X5, the points at which three or more
curves meet, are determined.

Step 2: From the representation of IMG2, co-ordinates of x2, x4,
and x6, the point at which three or more curves meet, are determined.

Step 3: All pairs of points (xi and Xj) for which the group of
curves at xi match the group of curves meeting at Xj are determined
using the curve matching algorithm. For the current example, it is
found that x4 matches X4, x6 matches X5 and IMG2 must be rotated
by 45 degrees before merging with IMG1.

Step 4: The hierarchical representation of IMG2 is modified to
account for the rotation of IMG2 by 45 degrees. A detailed algorithm
for modifying the representation is given in [3].

Step 5: End points of all lines are changed to account for the
translation required to make the matching curve meeting points of
IMG1 and IMG2 coincide.

Step 6: In this step, the two representations are merged to obtain
the representation of the union based on the following rules.

Rule 1 – Pairs of curves, one from IMG1 and another from IMG2,
that match must be represented by the longer curve in the union.

Rule 2 – If a curve is outside the region in which IMG1 and IMG2
overlap then its corresponding node along with its edges is included
in the graph of the union.

Rule 3 – If the free end point of a curve of one image is in the
region of overlap, then it must be examined for merging with its
other part (if present) in the second image.

As x4 matches with X4, and x6 matches X5, the curve connecting
x4 and X6 can be taken from either of the representation. Curves B
and f match and is longer than F. Therefore, the node that represents
B in the hierarchical representation of IMG1 is used in the
representation of the union (Rule 1). Similarly, the application of
Rule 1 includes the nodes corresponding to curves C, H, c and D into
the unions representation. Application of Rule 2 includes nodes
corresponding to D and b. As the free end point of A and a are in the
overlapping region and their overlapping sections are close, they are
merged and represented by a single node. The union of IMG1 and
IMG2 is same as the one in Fig. 6, and its graph is shown in Fig. 7.

VI CONCLUSION

A rotation independent representation of edge or boundary image
is described in this paper. The curve matching algorithm described
elegantly matches two curves based on rough shape of corresponding
sections. The representation with the help of curve matching
algorithm has made the task of determining if a curve is a section of a
larger curve an easy task even under rotation. The new rotation

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

50

independent representation may be obtained directly from Nabors
hierarchical representation or from 3-bit chain code. The suitability

 (a) (b)

Fig. 4 (a) IMG1 (b) Graph of IMG1

 (a) (b)

Fig. 5 (a) IMG2 (b) Graph of IMG2

Fig. 6 Union of IMG1 and IMG2

Fig. 7 Graph of the union of IMG1 and IMG2

of the representation for many practical applications in image
interpretation area is illustrated by developing computationally
efficient methods stitching based on the enhanced hierarchical
representation for image registration and image.

REFERENCES

[1] D. H. Nabors, ―A boundary based image segmentation and
representation method for binary edge images,‖ Ph.D.

Dissertation, The university of Alabama in Huntsville, 2000.
[2] S. K. Kim and H. S. Ranganath, ―Solving discontinuity and

distortion problems in boundary based image segmentation and
representation,‖ Proceedings of ACM Southeast Conference,
pp.431-436, 2007.

[3] S. K. Kim and H. S. Ranganath, ―Efficient algorithms to

extract geometric features of edge images,‖ The 2010
International Conference on Image Processing, Computer
Vision, & Pattern Recognition, Las Vegas, USA, July 12-15,
2010.

[4] S. K. Kim,‖ Hierarchical Representation of Edge Images for
Geometric Feature Based Image Interpretation, Ph.D.
Dissertation, The University of Alabama in Huntsville, 2007.

Siddharth Shivapuja received his Bachelor of
Engineering degree in Telecommunication from
Vishveshwaraiah Technological University, India,
in 2003. He then worked for Infosys Technologies
for a year as a Software Engineer. Later he moved
to the United States and got his Master’s degree in

Computer Science from the University of Alabama in Huntsville,
Huntsville, Alabama, in 2007. He is currently working at Honeywell
Scanning and Mobility as a Software Engineer where he is using
Image Processing techniques to decode barcodes.

Vineetha Bettaiah received her Bachelor of
Engineering degree in Computer Science from M.S
Ramaiah Institute of Technology, Bangalore, India,
in 2008. She is currently pursuing her Master of
Science degree in Computer Science at the
University of Alabama in Huntsville, Huntsville,

Alabama. She is employed by the computer science department as a
Graduate Teaching and Research Assistant. Her areas of research
interest include Multimedia Systems, Artificial Neural Networks,
Image Processing and Spatio-temporal Databases.

Thejaswi H Raya received his Bachelor of
Engineering degree in Computer Science from
B.M.S College of Engineering, Bangalore.
Immediately after completion he joined
SpikeSource, Inc based in Redwood City, CA,
where he worked as a Software Engineer

developing Opensource applications for enterprises. Currently he is
pursuing his Master of Science degree in Computer Science at the
University of Alabama in Huntsville, Huntsville, Alabama. As a
teaching assistant, he teaches entry-level programming classes.
Areas of his research interests include Multimedia Systems, Pattern
Recognition and Artificial Neural Networks.

Heggere Ranganath received his Ph.D. degree in
Electrical Engineering from Auburn University in
1980. Since 2002 he is serving as the chair of the
Computer Science Department at the University of
Alabama in Huntsville, Huntsville, Alabama.
During his 30-year career as a professor, Dr.

Ranganath has served as a technical advisor to many private
technology companies and Government agencies, received over
$4,000,000 in research funding, and published over 100 technical
papers. His areas of research include Image Processing, Pattern
Recognition, and Artificial Neural Networks.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

51

