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Abstract— The algorithm used for the segmentation of an image, 
and scheme used for the representation of the segmentation 
result are mostly selected based on the final image analysis or 
interpretation objective.  The boundary based image 
segmentation and representation system developed by Nabors 
segments and stores the result as a graph-tree hierarchical 
structure that is capable of supporting diverse applications.  This 
paper shows that Nabors’ hierarchical representation of curves is 

not invariant to rotation, and proposes an enhanced 
representation which retains its structure and remains invariant 
under rotation.  The curve matching algorithm which matches 
two curves based on their hierarchical representation makes it 
easy to determine if a curve is a section of a larger curve.  The 
potential of the representation is illustrated by developing image 
registration and image stitching methods based on the new 
representation. 
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I. INTRODUCTION 

The selection of an algorithm for the segmentation of an image, 
representation scheme used to store the segmentation result, and 
algorithms used for the extraction of features is almost always done 
with the prior knowledge of the final image interpretation objective. 
Often, it is desirable to segment, represent and store the segmented 
image for later use without any kind of prior knowledge on how the 
segmentation results will be used by multiple users at different times.    
As an example, consider Hough Transform based representation.  If 
the goal is to find all straight lines present in an image then the edge 
image may be stored as a Hough array in the slope-intercept 
parameter space.   If the goal is to find circles in the same image, 
then the edge image must be mapped to a 3-dimensional parameter 
space (coordinates of the center, and radius).  In other words, final 
analysis objective determines the representation. 

Sensors on NASA satellites generate many terra bytes of image 
data of Earth and space each year which is archived in NASA data 
centers.  Space and Earth scientists, with diverse analysis and 
interpretation objectives, access and process these images.   In this 
situation, it is highly desirable to segment and store the segmentation 

result in a compact manner using an appropriate representation that is 
suitable for many diverse applications. In 2000, Nabors has 
developed one such representation scheme [1].  He argued that an 
image, a two dimensional projection of a three dimensional scene, 
consists of lines, curves and regions.  An image region is defined as a 
set of spatially connected pixels with similar spatial property.  It may 
be represented by its boundary and spatial property.  If the input 
image is transformed into a binary edge image then the resulting 
edge image consists of lines, open curves and closed curves.  These 
features are captured and stored in a hierarchical representation 
which utilizes weighted graph as well as tree data structures defined 
on the same set of nodes [1].  An object is stored as a related set of 
open and closed curves and an image is stored as a spatially related 
set of objects.  Each curve is represented by a node in the weighted 
graph, and this node serves as the root node for the tree data structure 
which describes the curve in terms of smaller curve segments and 
each curve segment is represented by a node in level-1.  Further, each 
curve segment is partitioned into straight line segments, and each line 
is represented by a node in level-2.  The weighted edges of the graph 
encode the broad spatial relationship that exists among various 
curves of the object.   

Nabors defined four types of primitive curve segments based on 
the slope along the curve as shown in Table I.  If a curve segment is 
traced from top to bottom, at each pixel, the option is to move to one 
of its two possible neighbours.  Therefore, a curve segment can be 
encoded by a binary string (1-bit chain code) in which 0 represents 
horizontal or vertical neighbour depending on the segment type, and 
1 represents the diagonal neighbour.  Based on the properties of 
straight lines, it is easy to partition the binary string of a curve 
segment into sub-strings where each sub-string represents a straight 
line [1]. 
    The curve extraction and representation system developed by 
Nabors receives the thinned edge image as input and outputs Nabors’ 

hierarchical representation of the input image.  The system consists 
of four curve segment extraction networks (N1, N2, N3 and N4), and a 
line detector as shown in Fig. 1.  The curve extraction network Ni 

scans the image in the raster scan order finds all Type-i curve 
segments in the input image.  It consists of an array of processing 
nodes, one processing node for each image pixel. Each processing 
node receives input from its eight neighbours, and is capable of doing 
the following: 
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TABLE I 
TYPES OF CURVE SEGMENTS 

Curve Segment Slope Range 
Type-1 Less than -1 
Type-2 [-1, 0] 
Type-3 [ 0, 1] 
Type-4 Greater than 1 

 

 
Fig. 1 Curve extraction and representation system 

 
1) Initiate the tracing of a new curve segment of Type-i, if 

new curve initiation conditions are met.   In this case, this 
pixel becomes the starting point of the curve segment.   

2)  Continue growing the curve segment that is being traced 
by appending a bit to the 1-bit chain code received from its 
neighbour.  A 1 is appended if the data packet of the curve 
segment is received from its diagonal neighbour.  
Otherwise, 0 is appended to the binary chain code.  The 
data packet is sent to the next node. 

3) If curve segment termination condition is satisfied, the 
curve segment is terminated.  The data packet consisting 
of the coordinates of the starting point and 1-bit chain code 
is sent to the line detector. 

4) After terminating a curve segment, Ni sends signals to the 
other three networks to begin tracing the next curve 
segment of the curve starting from the termination point. 

5) The line detector which consists of two state machines 
partitions each curve segment into straight lines. 

6) The representation unit generates the hierarchical 
representation.   

II. AN ALALYSIS OF NABORS’ REPRESENTATION 

Nabors’ boundary based hierarchical representation scheme has 
many merits.  The structure of the weighted graph is invariant to 
rotation, translation and scale. Each curve, irrespective of its type, is 
represented by a tree. The tree leaf nodes represent an open curve as 
a poly-line, and closed curve as a polygon.  Therefore, one may view 
this representation as a unified representation scheme which handles 
all types of curves uniformly. It has been demonstrated that 
computationally efficient algorithms can be developed for  the 
determination of several geometric attributes (concave up, concave 
down, number of inflection points, convex hull, minimum bounding 
rectangle, number of concavities, etc.) of a curve directly from the 
representation [2,3].  Its potential in several practical problems such 
as object recognition, scene matching, content based image retrieval, 
and the generation of the union of images with overlapping fields of 
view has been demonstrated [4].   

However, careful analysis of the representation reveals that there 
are a few critical issues which must be resolved.  The number of 
nodes in the first level of the tree data structure that represents a 
curve is not invariant to rotation.  The line detector is not always able 
to partition a curve segment and its rotated version into the same 
number of line segments.  Minor irregularities in boundary due to 
noise and artefacts of the thinning algorithm used for thinning edge 

images contribute to this problem.  Therefore, the task of matching 
two instances of an object or a curve, where one instance is a rotated 
version of the other, is not straight forward.  Also, the task of finding 
if a curve in one representation is a part of larger curve in another 
representation is not an easy problem when there is rotation (In other 
words, smaller curve is a part of its rotated version).  

Nabors correctly identified that the structures of trees in the 
hierarchical representation are not invariant to rotation.  Accordingly, 
he developed a two step approach for matching two representations 
based on the two theorems he stated and proved in his dissertation 
[1].  These theorems are given below. 
Theorem 1: If a curve is detected by a single curve extraction 
network, then one or two networks are required for the detection of 
the rotated version of the curve. 
Theorem 2: If a curve is detected by k curve extraction networks, 
then, k-1, k, or k+1 curve extraction networks are needed to detect a 
rotated version of the curve. 
 
    Step 1, ensures that the graph structures of the two representation 
match based on broad features such as slope differential sequence, 
number of curve segments, and edge weights associated with the 
nodes in the two representations. If successful, the difference in 
rotation and scale are estimated based on the pairs of matching nodes 
of the two representations determined in Step 1.  Then curves of one 
representation are rotated and scaled before the final matching in 
Step 2.  Finally, pairs of curves represented by matching nodes of the 
two graphs are matched by comparing the coordinates of the starting 
points of their line segments.   
     The above approach to handle rotation during curve matching has 
major disadvantages.  Theorem 2 states that the number of curve 
segments into which a curve gets partitioned changes by at most one 
when the curve is rotated.  This is not always true.  Theorem 2 may 
not hold if the curve is not smooth or have inflection points (points at 
which curvature changes sign). For example, if the curve in Fig. 2(a) 
is rotated by 30 degrees in the counter clockwise direction, the 
number of curve segments changes from 7 to 9 as shown in Fig. 2(b). 
  

 
Fig. 2 Segments of a curve and its rotated version. 

 
Also, if a curve consisting of segments of type 4, 3 and 1 (not a 
smooth curve as segment type 2 is missing) with no inflection points 
is rotated, the resulting curve may consist of segment types 4, 3, 2, 1, 
and 4. Once again the number of curve segments may change by two. 
Therefore, it is not accurate to use the number of curve segments in 
the manner to Nabors used to determine initial match between two 
curves. As a result, the rotation angle and the scale factor estimated 
in Step 1 may not be accurate.  Finally, the ability to determine if a 
curve is a part of another larger curve is important to many 
applications. It is not possible to develop an efficient algorithm to 
accomplish the task based on Nabors’ hierarchical representation.      

 

III. ROTATION INDEPENDENT HIERARCHICAL 

REPRESENTATION 

In this section, an enhanced hierarchical representation which is 
completely independent of rotation is presented.  The new 
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representation retains the graph portion of the Nabors’ representation 
without any modification.  However, the trees which represent the 
curves of the object are obtained using a different approach.  Instead 
of partitioning an open curve into segments based on the slope along 
the curve, it is partitioned into curve segments by breaking the curve 
at inflection points.  An inflection is the point at which the second 
derivative changes sign.  This partitioning method is not sensitive to 
rotation, as the relative position of the inflection point on the curve 
does not change with rotation. The number of curve segments 
(number of nodes in Level-1) into which an open curve gets 
partitioned is one more than the number of inflection points.   The 
line detector, because of the rounding errors, may break a curve 
segment and its rotated version into different numbers of line 
segments.  To keep the number of child nodes in Level-2 and beyond 
consistent, a different method is proposed to partition the curve 
segments into line segments. Each curve segment is recursively 
partitioned at its mid point, until each partition can be approximated 
by a straight line with the desired degree of accuracy. This 
partitioning is not affected by rotation. The structure of the sub-tree 
which represents a curve segment is a binary tree. However, the 
number of levels in the tree is not fixed.  
    The above enhanced hierarchical representation can easily be 
obtained from Nabors’ representation or the 3-bit chain code.  It has 
been shown that general shape features of curves such as concave-up 
segment, concave-down segment, local maximum, local minimum, 
and infection points can be determined by examining the network 
sequence and slope differential sequence which are stored at the root 
node of each curve[4].   For the purpose of illustration, consider the 
curve in Fig. 2(a). Its network sequence, network differential 
sequence (first difference of network sequence) and slope differential 
sequence (obtained by adding contiguous numbers of the same sign 
in network differential sequence) are [4, 3, 2, 1, 2, 3, 4], [-1, -1, -1, 
+1, +1, +1] and [–3 +3], respectively.  The number of inflection 
points on a smooth curve is equal to the number of sign changes in 
the slope differential sequence.  The change in sign from –3 to +3 
indicates the presence of one inflection point.  Each negative number 
in the slope differential sequence represents a concave down (left) 
section, and each positive number represents a concave up (right) 
segment of the curve. Concave down and concave up segments of a 
smooth curve meet at an infection point.    
    In order to determine the locations of the inflection points, the 
network sub-sequences corresponding to each value in the slope 
differential sequence are determined.  Adjacent network sub-
sequences will have a common curve segment.  Each curve segment 
that is common to a pair of adjacent network sub-sequences has an 
inflection point on it.  For example, the network sub-sequences 
corresponding to -3 and +3 in the slope differential sequence of the 
curve in Fig. 2(a) are [4 3 2 1] and [1 2 3 4], respectively.  Therefore, 
the curve has one inflection point which is located on the Type1 
curve segment that is common to the two network sub-sequences.  It 
is easy to see that there is one inflection point on each curve segment 
which connects to the same type of curve segments at both ends.   
Note that theType1 curve segment in Fig. 2 (a) connects to Type2 
curve segments at both ends.  The actual location of the inflection 
point may be obtained by examining the 1-bit chain code of the curve 
segment.  The number of zeros (ones) between successive ones 
(zeros)  will be non- decreasing on one side of the inflection point 
and non-increasing on the other side as the curve is traversed from 
one end to the other end, or vice versa.   
    In the enhanced representation, the curve in Fig. 2(a) and its 
rotated version in Fig. 2(b) are both partitioned consistently into two 
segments at the inflection point, and each curve segment is 
represented by a Level-1 node of the tree data structure. At each 
Level-1 node, the end points and the 3-bit chain code of the curve 

segment, which can be obtained from Nabors’ hierarchical 
representation, are stored.  The next step is to recursively split each 
curve segment at the mid point, until all sections of the curve 
represented by the leaf nodes can be approximated as straight lines 
with the desired degree of accuracy. One of the following methods 
can be used to check if a curve may be approximated by a straight 
line or not.  

1) Calculate the ratio of the length of the curve and the length 
of the line joining the end points of the curve. For a 
straight line, this ratio is equal to 1. All curves for which 
this ratio is less than a threshold may be considered as a 
straight line.  The value of the threshold depends on the 
accuracy required. 

2) If all points on the curve are within a specified distance 
from the line joining the curve’s end points, then the curve 

is taken as a straight line.   In order to keep computation 
reasonable, this measure is computed for a few points 
fairly uniformly spaced along the curve. 

Each curve segment in Fig. 2 partitions into 8 straight line segments 
if it is recursively partitioned until all pixels on each of the resulting 
partition are within a distance less than 12% of the length of the line 
joining the endpoints of the partition.  
    The Closed curves which may or may not have concavities pose a 
different challenge. Since a closed curve does not have definite start 
and end points, Nabors selects the top most point as the starting as 
well as ending point. Obviously, the starting point selected in this 
manner is not invariant to rotation.  If the starting point changes, the 
partitioning also changes.  Therefore, the new approach partitions a 
closed convex curve into segments by breaking the curve at points 
where the minimum bounding rectangle touches the boundary of the 
curve.  If the closed curve has concavities, then it is partitioned at the 
inflection points, similar to the way an open curve is partitioned.  If 
desired, a closed curve with concavities may be partitioned at 
infection points as well as the points at which the minimum bounding 
rectangle touches the curve.  All these partitions are invariant to 
rotation.   

 
IV. CURVE MATCHING ALGORITHM  

    This section presents a new and elegant algorithm to match and 
determine the similarity between two curve segments, Curve-Seg1 
and Curve-Seg2, by matching their binary-tree representations.  First, 
a few properties or observations about the binary tree are given 
below: 

1) The section of the curve represented by a leaf node is 
linear or almost linear. 

2) The root node represents the entire curve.  Each Level-1 
node represents ½ of the curve.  In general, each Level-h 
node represents one of the 2h sections of the curve. 

3) The jth node from left in level h, represents the jth section 
of the curve from the left. 

4) The flatness of the section of the curve represented by 
node k can be inferred by the depth of the sub tree for 
which node k is the root.     

    Therefore, the binary tree representation of a curve allows one to 
describe the shape of the curve in a non-quantitative manner like 
human beings do.  For example, consider the binary tree 
representation of a curve in which the leaf nodes, in the order of 
inorder traversal, are [4 5 12 13 48 98 99 50 51 30 31].  An ordered 
list of the levels in which these leaf nodes appear in the tree is [2 2 3 
3 5 6 6 5 5 4 4].   From the list of levels, the following statements can 
be made.  

1) The left quarter of the curve is linear.  
2) The second left quarter of the curve is linear. 
3) The left half of the curve is likely flat. 
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4) The curve starts bending roughly at the center and then 
turns sharply. 

5) The curve is relatively flat at the right end (1/8 of the 
curve).   

    Now, a method for the determination of the dissimilarity between 
two curve segments based on the location of the leaf nodes in their 
respective binary tree representation is presented.  Let A = [2 2 3 3 5 
6 6 5 5 4 4] and B = [2 3 4 5 6 6 5 5 4 3 2] be the lists of the levels in 
which leaf nodes of Curve-A and Curve-B appear in their binary tree 
representations.  Since A[0] = B[0] = 2, it is clear that the first 
quarter of both curves are linear and have roughly the same shape.  
Therefore, the error for this section is taken as zero.  The next quarter 
of the first curve is linear (A[1] = [2]).  However, the corresponding 
quarter of the second curve is not linear. It is represented by a binary 
sub-tree of depth 4 with 5 leaf nodes (B[1..5] = [3 4 5 6 6]).  The 
error or dissimilarity between these curve sections is taken as 4, the 
height of the sub-tree in B that corresponds to the section of the 
curve represented by the leaf node corresponding to A[1] = 2.  Next 
A[2] = 3 the next one eighth of the first curve, and B[6..8] = [5 5 4] 
represents the corresponding eighth of the second curve.  The error 
between these two sections is 2.  The shape of the next eighth in the 
first and second curves match (A[3] = A[9] =3), and contribute no 
error.  Finally, the last fourth of the second curve (B[10] = 2) do not 
match in shape to the last fourth of the first curve (A[4..10] = [5 6 6 5 
5 4 4]), and contribute 4 units to the error.  The overall measure of 
dissimilarity between the two curves is obtained by adding individual 
errors, and in this case, is 10. The algorithm which implements the 
above method is given below. The asymptotic order of computation 
is O(m+n), where n and m are the number of leaf nodes in the two 
binary trees being matched. 

BinMatch(A[0..n-1], B[0..m-1]) 
{// A contains levels of leaf nodes of  Curve-Seg1 in  
     the order of inorder  traversal 
 // B contains levels of leaf nodes of  Curve-Seg2 in      
     the order of inorder  traversal 

error ← 0;  i ← 0;  j ← 0; 
while((i < n) and (j < m)) 
{ 
       if (A[i] == B[j]) 
      { 
 i← i + 1;  j←j + 1;  
       } 

                     else if (A[i] < B[j]) 
      { 
              p ← 1 / 2A[i];  q ← 0; 
              d ← B[j]; 
              while ( q != p) 
             { 
                       q ← q + 1 / 2B[j]; 
                       if (d < B[j] ) 
                              d ← B[j]; 
         j←j + 1; 
             } 
error ← error + (d – A[i]) 
i← i + 1; 

        } 
                      else 
                      { 

p ← 1 / 2B[j];  q ←0; 
d ← A[i]; 
while ( q != p) 

                            { 
         q ← q + 1 / 2A[i]; 
         if (d < A[i] ) 

                                            d ← A[i]; 
         i← i + 1; 
} 
error ← error + (d – B[j]) 
j← j + 1; 

                       } 
                 } 
                 return error; 
         }          

V. APPLICATIONS 
The enhanced hierarchical representation and the curve matching 

algorithm presented in this paper support many practical applications 
including object recognition, scene matching, contents based image 
retrieval, image registration and image stitching.  In this section, 
image registration and image stitching methods based on the 
enhanced hierarchical representation are described.  Assuming that 
the field of view of a given reference image is completely contained 
within the field of view of a larger image (known as search area), the 
task of the registering the reference image within the search area is 
the process of finding the subimage of the search area whose field of 
view is same as that of the reference image. In general, the two 
images differ in rotation and scale. Image stitching is defined as the 
process of determining the image that represents the union of the 
fields of view of several images. It is assumed that the fields of view 
of images to be stitched have sufficient overlap to allow the 
construction of the image corresponding to their union.  

A. Image registration 
    The search area shown in Fig. 3(a) is a synthetic edge image of 

size 600x800. It consists of nine curves, and therefore, its graph 
representation has nine nodes. The reference image (300x400) to be 
registered, Ref-1, is shown in Fig. 3(b).  Ref-1 is required to include 
at least two points at which three of more curves meet. Ref-1 
contains eight curves labeled a through h and its field of view is 
completely contained within the field of view of the search area. 
However, the reference image differs from the search image in 
rotation by 45 degrees. A four step registration method based on the 
enhanced hierarchical representation is given below. 

    
                                (a)                                               (b) 
Fig. 3 Illustration of Image registration. (a) Search Area.   
(b) Reference image. 

 
TABLE II 

CONNECTIVITY OF CURVES IN THE SEARCH AREA 
End Point Connected Curves Number of Curves 

     X1 I 1 

     X2 A, F, G, I 4 

     X3 B, E, F 3 

     X4 A, B, C, D 4 

     X5 D 1 

     X6 C, E, G, H 4 

     X7 H 1 
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Step 1: The co-ordinates of curve end points in the search area at 
which three or more curves meet are determined by examining the 
end points of all curves in the hierarchical representation, one curve 
at a time, and then by grouping the curves which share a common 
and point. The seven curve end points (X1 through X7) and the curves 
meeting at each end point are shown in Table II.  

Step 2:  The co-ordinates of curve end points in Ref-1 at which 
three or more curves meet are also determined and the results are 
summarized in Table III. 

 
TABLE III 

CONNECTIVITY OF CURVES IN THE REFERENCE 
End Point Connected Curves Number of Curves 

     x1 f 1 
     x2 b, e, f 3 

     x3 a, b, c, d 4 

     x4 a 1 
     x5 d 1 
     x6 c, e, g, h 4 
     x7 g 1 

 
Step 3: Based on the information obtained in Step 1 and Step 2, all 

mappings of the end points of Ref-1 to those of the search area are 
determined. The six possible mappings are shown in Table IV. 

 
TABLE IV 

MAPPINGS OF ENDPOINTS OF REF-1 AND SEARCH AREA 
Mapping Pairs of intersection points 

Mapping1 (x3,X2), (x6,X4), (x2,X3) 
Mapping2 (x3,X4), (x6,X2), (x2,X3) 
Mapping3 (x3,X6), (x6,X2), (x2,X3) 
Mapping4 (x3,X2), (x6,X6), (x2,X3) 
Mapping5 (x3, X4), (x6,X6), (x2,X3) 
Mapping6 (x3,X6), (x6,X4), (x2,X3) 

 
Step 4: The validity of mapping (xi,, Xj) in Table IV is determined 

by matching each curve meeting at Xj in search area with each curve 
meeting at xi in Ref-1. For example, matching results for curves 
associated with the mapping (x3, X2 ) is given in Table V. The 
numbers in the ―angle‖ column are the angle between the chords of 
the two curve segments being matched.  The number of curve 
segments of each curve is also shown.  For example, G consists of 3 
curve segments which is shown as G(3).  Note that curves b and c of 
Ref-1 do not match with any of the curves in the search area meeting 
at X2. Therefore it is concluded that X2 does not map to x3 and 
options Mapping 1 and Mapping 4 are eliminated from further 
consideration. Similarly mappings 2, 3 and 6 also get eliminated. 
Results in Table VI indicate that x3 of Ref-1 matches X4 of search 
area. This is because the curve pairs (a, A), (b, B), (c, C) and (d, D) 
cluster tightly in the two-dimensional error-angle space.  Similarly, 
x6 matches with X6, and x2matches with X3.  Therefore, Mapping 5 
becomes the only valid mapping, and it identifies the subimage of the 
search area that matches Ref-1.  

 
B. Image synthesis 
    The image synthesis method based on the enhanced hierarchical 

representation is illustrated by the union of 2 edge images, IMG1 and 
IMG2, shown in Fig. 4 and Fig. 5, respectively. The two images have 
the same spatial resolution and differ in rotation by 45 degrees. There 
is considerable overlap in the two fields of view. The procedure for 
the construction of the union is given in the step below.  

TABLE V 
CURVE MATCHING RESULTS FOR MAPPING (x3,  X2) 

 
 

TABLE V1 
CURVE MATCHING RESULTS FOR MAPPING (x3,  X4) 

 
 
Step 1: From the hierarchical representation of IMG1 and IMG2, 

the co-ordinates of X2, X4, and X5, the points at which three or more 
curves meet, are determined.  

Step 2: From the representation of IMG2, co-ordinates of x2, x4, 
and x6, the point at which three or more curves meet, are determined.  

Step 3: All pairs of points (xi and Xj) for which the group of 
curves at xi match the group of curves meeting at Xj are determined 
using the curve matching algorithm. For the current example, it is 
found that x4 matches X4, x6 matches X5 and IMG2 must be rotated 
by 45 degrees before merging with IMG1. 

Step 4: The hierarchical representation of IMG2 is modified to 
account for the rotation of IMG2 by 45 degrees. A detailed algorithm 
for modifying the representation is given in [3].  

Step 5: End points of all lines are changed to account for the 
translation required to make the matching curve meeting points of 
IMG1 and IMG2 coincide.  

Step 6: In this step, the two representations are merged to obtain 
the representation of the union based on the following rules. 

Rule 1 – Pairs of curves, one from IMG1 and another from IMG2, 
that match must be represented by the longer curve in the union. 

Rule 2 – If a curve is outside the region in which IMG1 and IMG2 
overlap then its corresponding node along with its edges is included 
in the graph of the union. 

Rule 3 – If the free end point of a curve of one image is in the 
region of overlap, then it must be examined for merging with its 
other part (if present) in the second image. 

As x4 matches with X4, and x6 matches X5, the curve connecting 
x4 and X6 can be taken from either of the representation. Curves B 
and f match and is longer than F. Therefore, the node that represents 
B in the hierarchical representation of IMG1 is used in the 
representation of the union (Rule 1). Similarly, the application of 
Rule 1 includes the nodes corresponding to curves C, H, c and D into 
the unions representation. Application of Rule 2 includes nodes 
corresponding to D and b. As the free end point of A and a are in the 
overlapping region and their overlapping sections are close, they are 
merged and represented by a single node. The union of IMG1 and 
IMG2 is same as the one in Fig. 6, and its graph is shown in Fig. 7.  

 
VI CONCLUSION 

A rotation independent representation of edge or boundary image 
is described in this paper.  The curve matching algorithm described 
elegantly matches two curves based on rough shape of corresponding 
sections.  The representation with the help of curve matching 
algorithm has made the task of determining if a curve is a section of a 
larger curve an easy task even under rotation.  The new rotation 
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independent representation may be obtained directly from Nabors 
hierarchical representation or from 3-bit chain code.  The suitability  

  
                         (a)                                                   (b) 

Fig. 4 (a) IMG1 (b) Graph of IMG1 
 

   
                        (a)                                             (b) 

Fig. 5 (a) IMG2 (b) Graph of IMG2 
 

 
 

Fig. 6 Union of IMG1 and IMG2 
 

     
 

Fig. 7 Graph of the union of IMG1 and IMG2 
 

of the representation for many practical applications in image 
interpretation area is illustrated by developing computationally 
efficient methods stitching based on the enhanced hierarchical 
representation for image registration and image.  
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