
Efficient Computation of Group Skyline Queries on
MapReduce

Basketball requires five people to form a team; therefore, our
aim was to compile a team of the five best players, referred to
as the 5-group. These five players are selected from among
four hundred players, whereupon statistical data for the team
is compiled by summing the values associated with the five
players. To ensure a competitive team the user aims to select a
team that cannot be dominated by any other teams. Fantasy
baseball operates similarly except that nine players are
selected instead of five. Any increase in the number of people
participating in a game will produce exponential growth in
computing costs.

Group skyline queries have not attracted as much
attention from researchers as have traditional skyline queries
[7, 9, 23]. The intuitive approach would be to find skyline
points in dataset D for the generation of a group skyline.
However in practice this approach is generally not feasible. In
the following, we provide examples to illustrate the
contradictions inherent in this approach. Consider the six
players listed in Fig. 1.1 from which we need to select three
players to make up a team. Table 1.1 lists the statistics
associated with the six players. As shown in Fig. 1.1, three of
these points (P1, P2, P5) are skyline points. An intuitive
approach would result in the selection of the group (P1, P2,
P5). The brute-force method leads to enumeration of all
groups from C (6, 3), as shown in Table 1.2. The attributes of
each combination are generated using the sum operation. In
Fig. 1.2, we can see that g3, g6, and g13 form the group
skyline. Only g3 includes a skyline point; therefore, the other
groups are incompatible with the intuitive solution.

Obtaining the group skyline is a computationally heavy
task, the complexity of which increases exponentially with the
amount of data. For example, there are approximately 500
active NBA players and each is generally represented by the
following five attributes: points, rebounds, steals, assists, and
blocks. This leads to a total of possible combinations.
Each group has five players; therefore, we need to sum the
statistics to generate new group statistics. Only after generating
all possible groups can we find all group skylines; however,
this incurs high computational costs. Any increase in the
number of tuples leads to exponential growth in computing
costs. Selecting five people from among 50 produces

=2,118,760 possible combinations. Doubling the number of

Abstract—Skyline query is one of the important issues in
database research and has been applied in diverse applications
including multi-criteria decision support systems and so on. The
response of a skyline query eliminates unnecessary tuples and
returns only the user-interested result. Traditional skyline query
picks out the outstanding tuples, based on one-to-one record
comparisons. Some modern applications request, beyond the
singular ones, for superior combinations of records. For example,
fantasy basketball is composed of 5 players, fantasy baseball of 9
players, and a hackathon of several programmers. Group skyline
aims at considering all the groups comprising several records,
and finding out the non-dominated ones. Because of the high
complexity, few studies have been conducted and none has been
presented in either distributed or parallel computing. This paper
is the first study that solves the group skyline in the distributed
MapReduce framework. We propose the MRGS algorithm to
generate all the combinations, compute the winners at each local
node, and find out the answer globally. We further propose the
MRIGS algorithm to release the bottleneck of MRGS on
unbalanced computing load of nodes. Finally, we propose the
MRIGS-P algorithm to prune the impossible combinations and
produce indexed and balanced MapReduce computation.
Extensive experiments with NBA datasets show that MRIGS-P is
6 times faster than the MRGS algorithm.

Keywords-skyline query, group skyline, combinatorial skyline
query, MapReduce

I. INTRODUCTION

Modern databases and information systems have
evolved support mechanisms to satisfy vague or imprecise
user requirements [1, 2]. One such mechanism is the skyline
query, which is widely used in commercial applications, such
as multi-criteria decision analysis, data mining, and navigation.
Many real-world scenarios require a combination of two or
more tuples in order to find the best option. The use of k
points to organize a group results in a k-group, the most
famous of which is online fantasy sports games in which users
select their favorite team from an active database of player
statistics. Around the world, the fantasy sports industry is
bringing in billions of dollars.

To further illustrate application of a k-group, let us
consider two types of fantasy sports: basketball and baseball.

GSTF Journal on Computing (JOC)
DOI: 10.5176/2251-3043_4.4.356
ISSN:2251 - 3043 ; Volume 5, Issue 1; 2016 pp. 69 - 76
© The Author(s) 2016. This article is published with open access by the GSTF.

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

Ming-Yen Lin
Dept. of IECS

Feng Chia University
Taichung, Taiwan

linmy@mail.fcu.edu.tw

Chao-Wen Yang
Dept. of IECS

Feng Chia University
Taichung, Taiwan

m0260836@mail.fcu.edu.tw

Sue-Chen Hsueh
Dept. of IM

ChaoYang Univ. of Technology
Taichung, Taiwan

schsueh@cyut.edu.tw
*Corresponding author

people increases this to to =75,287,520 possible
combinations. In this sample, doubling the number of people
increases the calculation by approximately 35 times. Thus,
determining an effective means to solve these queries is a
pressing challenge.

The group skyline approach has two main problems:
considerable computational overhead, C (m, n) and high levels
of memory required to store all candidate sets.

Thus far, researchers have failed to provide a distributed
solution for the group skyline problem facing the immense
computational costs of massive candidate sets. The purpose of
this paper was to develop an efficient group skyline algorithm
based on MapReduce and then conduct experiments to assess
the validity and effectiveness of the proposed method.

Table 1 lists the symbols used in this paper. A given
dataset D contains many points P; i.e., D = {P1, P2 …, Pn}.
Each point P has m attributes; i.e., P = [A1, A2 …, Am]. We
assume that the value of each attribute is a positive integer. In
the following discussion, we operate under the assumption that
a larger value is always a better target.

In the following we use an example to introduce the
concepts of group domination and aggregate functions. Figure
1.4 presents two three-member combinations: teams G and G'.
The use of the SUM function results in <10, 9> and <8, 9>.
According to Definition 5, G dominates G '. However, using
the MAX function, we obtain <4, 5> and <5, 5>. According to
Definition 5, G’ dominates G. This example clearly illustrates
that the domination relationship between these two groups
differs according to Aggregate function F.

TABLE I. PLAYER DATASET

Player Points Rebounds

P
1 6 5

P
2 10 0

P
3 3 6

P
4 3 3

P
5 4 6

P
6 2 2

TABLE II. TABLE 1.2 AL GROUP OF C (6, 3)

Fig. 1.1 Example of a skyline point

Fig. 1.2 Example of a group skyline

II. RELATED WORK

The previous research most relevant to this study on
skyline groups can be found in [6], [8], and [22]. The main
bottleneck in a skyline group is memory, as an unfeasibly
large amount of memory space is commonly required to store
all of the candidate sets. An incremental approach is proposed
in [8] to overcome this problem. That method is based on the
following equation:

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

. This method aims to find . This is accomplished by first
finding and . is equal
to , as shown in Fig. 2.1.

In [22], search space pruning and input pruning are
proposed to filter the number of input tuples. This approach
enables the algorithm to reduce the number of combinations in
subsequent generations. The aim of input pruning is to find the
points dominated by k or more points. Points can then be safely
removed without affecting the final results. If point P is
dominated by h points (h ≥ k) and G contains point P, we
generate another group G' by replacing P in G with h. Then G
'always dominates G. Thus, G containing point P is not a group
skyline.

Search space pruning (SSP) and incremental pruning (IP)
are based on the same concept; however, SSP is implemented
using dynamic programming to reduce computational cost, as
shown in Fig. 2.2.

Single tuples can be combined to generate new
(combinatorial) tuples. Combinatorial skylines [6] and skyline
groups pose similar problems. In [6], Aggregate function f is
defined by Combinatorial functions f. A plurality of tuples
produce combination gp using Combinatorial functions f.
This paper presents two methods to deal with combinatorial
skyline problems.

 Fig. 2.1 Incremental method

 Fig. 2.2 Search space pruning

III. PROPOSED ALGORITHMS

In this section, we present three MapReduce algorithms.
First, we propose the MR-Group Skyline (MRGS) method on
which two-stage MapReduce is used to address the group
skyline. This method is described in Section 3.1. Second, we
use an index to ameliorate the problem of workload imbalance
in the MRGS. This method is described in Section 3.2. Third,
we propose the theorem Cascaded-pruning, which is used to
reduce the number of candidate sets, this method is described
in Section 3.3.

A. MR-Group Skyline (MRGS) method

This algorithm employs MapReduce in two phases.
Figure 3.1 illustrates the overall structure of the algorithm.
The left half represents the first phase, which is responsible for
generating all possible k point groups. The right half
represents the second phase, which is responsible for detecting
group skylines. Dataset D is input into the first phase to
generate all combinations Dk. Then Dk is input into the
second phase to generate the group skyline.

In the first phase, to calculate all possible combinations,
dataset D is partitioned into three blocks, as shown in Fig. 3.2.
Each mapper produces a number of keys according to the
number of reducers. In the following example, num is used to
represent the number of reducers. In Fig. 3.2, num is equal to
2; therefore, the mapper produces two key-value pairs, with
the values of 1 and 2, respectively. Each point is duplicated
num times before being sent to the reducer based on a key.
After receiving the intermediate results, the reducer begins
generating combinations. We assume that dataset D includes
[P1, P2, P3, P4, P5, P6] and that there are two reducers. This
method generates a combination of all Pn prefixes, which
undergo round-robin distribution. In Fig 3.2, r1 is used to
illustrate the meaning of the prefix. Our aim is to find the 2-
group. In the round robin stage, r1 obtains P1, P3 and P5 to
generate [(P1, P2), (P1, P3), (P1, P4), (P1, P5), (P1, P6), (P3, P4),
(P3, P5), (P3, P6), (P5, P6)]. Following completion of this phase,
all possible combinations are output.

Figure 3.2 illustrates the process of the Map phase in
which each point is duplicated twice. The mapper generates
key-value pairs and the reducer generates groups according to
the Pin prefix. In the following, we use r1 to illustrate this
process.

Figure 3.2 illustrates the process of the Reduce phase.
Reducers are used to generate combinations according to in
prefix. For example, reducer r1 calculates the prefixes i1, i2,
and i3. Prefix i4 is equal to 7, which is greater than |D|;
therefore, it is not processed. The reducer r1 utilizes points P1,
P3, and P5 as prefixes for the generation of output
combinations. There is no particular need to specify the key
value at the output. Reducers r1 and r2 are set to 1, as shown
in Fig. 3.2. When the first phase ends, we obtain obtain Dk.

In the second phase, the group skyline is calculated. The
Map function uses the output Dk of the first phase as input for
the second. Each map receives a portion of Dk with which to
calculate the local group skyline. The mapper generates 1-
value pairs. Because only one reducer is used to process the
global group skyline, all of the key values are 1. After the
reducer receives the map output, it detects the global group
skyline and outputs the results , as shown in the Fig.
3.3.

The output from the first phase is received by the
mapper of the second phase, as shown in Fig. 3.4. Each map
calculates a local group skyline. Mapper m1 receives 5 groups
and outputs 3 group skylines. The reducer collects all of the
local group skylines from the mapper in order to calculate the
global group skyline. Reducer r1 receives local skyline groups
from mapper m1, m2, and m3 with which to calculate the final

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

results, as shown in Fig. 3.4. In this paper, the skyline
algorithms use the BNL method.

Fig. 3.1 Overview of proposed method

Fig. 3.2 Phase One: Group Generation

Fig. 3.3 Second phase of MapReduce

Fig. 3.4 Example of Phase Two

B. MR-Index Group Skyline (MRIGS) method

The MRGS is able to process group skyline problems;
however, this method can lead to computational load
imbalance. Suppose that the dataset holds data associated with
300 players. MRGS uses four reducers to generate the 3-group.
In the results of the first phase, the r1 produces 1.4 million
groups, r2 and r3 produce 1.1 million groups, and r4 produce
0.8 million groups. Obviously the workload of r1 is larger than
that of the other reducers. In this study, we propose a new
method, referred to as the MapReduce Index Group Skyline
(MRIGS), which uses C (n, k) group average distribution to
achieve load balancing.

 This algorithm implements MapReduce in two
phases. It differs from the MRGS only in the first phase. The
relevant modifications are illustrated in Fig. 3.5.

Our aim is to find all k-groups in D in order to
determine the number of groups generated by C (m, k). S
represents the number of generated groups, denoted as G [G1,
G2, G3..., Gs]. We can identify the members of Gx (1≤ x ≤s) by
implementing the combination formula. For example, r1
generates G5. The members of G5 obtained using the
combination formula are P1, P2, P3, P4, P8. These points are
then used to calculate the value of G5. Therefore, when we
know that will generate S group. Our aim is to distribute these
groups evenly to every reducer.

In the Map phase, the number of reducers is used to
generate key-value pairs to be sent to each reducer. In the
Reduce phase, the reducer receives the data after calculating
SD (i.e. SD=S/num). Then it based its ID to generate the
combination. For example, the six points of D are used to
obtain the 2-groups. This results in the generation of 15 groups
(S= =15). As shown in Fig. 3.6, this method is first builds an
index of the dataset using two reducers, such that SD = 7.
Reducer r1 then generates 7(SD) combinations: G1 ~ G7.
Reducer r2 generates the remainder of the combinations: G8 ~
G15 (Fig. 3.6).

Fig. 3.5 Overview of proposed method

Fig. 3.6 Example of Reduce-Index used in first phase

C. MR-Index Group Skyline Pruning (MRIGS-P) method

MRGS and the MRIGS are able to process group
skyline problems; however, the computational complexity of
these two methods is still high. To ameliorate this, certain
unnecessary points can be pruned before the algorithm is
tasked with producing all of the combinations.

In this study, we propose a new method based on input
pruning. The proposed method uses two tests to achieve
pruning and reveal new features in MapReduce. The proposed
method is referred to as Cascaded-pruning.

Given dataset D and point Pi ∈ D, let Pi.C denote the
number of points that dominate Pi, and Pi.DL denote the set of
points that are dominated by Pi. Theorem 1 below is used to
prune the points that cannot be included in the combination.
Lemma 1. Point Pi can be safely pruned if Pi.C ≥ k.
Lemma 2. If point Pi can be pruned, then all of the points in
Pi.DL can be pruned.

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

Lemma 1 is based on the supposition that if the number
of points dominating Pi is greater than or equal to k, then any
combination with Pi will be dominated by the combination of
the points selected from the set dominating Pi. Lemma 2 is
also obvious because Pi dominates any single point in Pi.DL;
therefore, when Pi is pruned, all of the points in Pi.DL can be
pruned.

Theorem 1 (Cascaded-pruning). Given dataset D and
point Pi ∈ D, Pi, set Pi.DL can be safely pruned if Pi.C ≥ k.
Proof. Let Pi.C = k and Px ∈ Pi.DL, then Px.C is at least k+1
since Px is dominated by Pi. Consequently, Px can be safely
pruned because Px.C ≥ k. Therefore, all the points in Pi.DL
can be safely pruned if Pi is pruned. �

First, each point increase two attributes Pi.C and Pi.DL.
In the Map phase, the algorithm performs input pruning and
records Pi.C and Pi.DL from the surviving points. Map sends
out the point when Pi.C is less than k. The remaining points
are pruned to prevent unnecessary points being sent to the
reducer. After the reducer receives all of the points, it
performs Cascaded-pruning. As it receives points from
different maps, they must be checked at least once. The points
received by the reducer are not compared with other points
from the same map. In Cascaded-pruning, if there is a Pi.C
larger than or equal to k, then this point and the set Pi.DL will
be pruned. This feature can save the cost of pruning.

For the example, consider the sixteen players listed in
Table 3.1, in which the points that will eventually be pruned
are marked in boldface. In this example, as long as Pi.C is
greater than or equal to 2, then Pi will be pruned. P2, P7, P8,
P9, P11, P12, and P14 are surviving points. An input pruning
method was proposed in [24]; this method accesses every
point and records the count of these points. This count is then
used to determine which points need to be pruned. The method
proposed in this paper does not need to access every point in
order to prune unnecessary points.

TABLE III. T ABLE 3.1 INPUT DATASET

TABLE IV. TABLE 3.2 INPUT DATASET M1 IN MAPREDUCE

In the MapReduce environment, D is partitioned into
multiple sub-blocks. In this example, D is partitioned into two
sub-blocks (M1 and M2), as shown in Tables 3.2 and 3.3. In
the Map phase, the algorithm detects two blocks using the
above method. Map sends out the point when Pi.C less than 2.
In the Reduce phase, the reducer receives data from all of the
blocks, as shown in Table 3.4. In this table, the mapper
column lists the points that belong to each mapper, which are
used to perform Cascaded-pruning. These points are not
compared with other points from the same map. The reducer
checks the result of P5 in Table 3.5. Pi.DL (N) represents the
point newly added in the reducer phase. This column is
established for the convenience of explanation; the actual
algorithm is the same Pi.DL. After the Cascaded-pruning is
complete, P10 is recorded in the P5.DL. P5 is pruned because
P5.C is equal to 2. According to Theorem 1, when P is pruned,
the point at P5.DL is also pruned; therefore, P10 can be pruned.
When P7 is checked by the reducer, P7 is not compared with
P10.

Table 3.6 presents the final results. Table 3.6 and Table
3.1 contain the same results, which demonstrates that
unnecessary points can indeed be safely pruned.

TABLE V. TABLE 3.3 INPUT DATASET M2 IN MAPREDUCE

TABLE VI. TABLE 3.4 INPUT DATA USED BY REDUCER

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

| GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

TABLE VII. T ABLE 3.6 DATA OUTPUT BY REDUCER

IV. EXPERIMENT RESULTS

The algorithms were implemented in Java 1.6. All
experiments were executed on Hadoop 1.2.1 using a cluster of
five commodity machines. Four of the machines use an Intel
Core2 Duo E8400 3GHz processor with 4GB RAM. The last
machine uses an Intel Core2 Duo E8400 3GHz processor and
2GB RAM. The machines were connected by a 100Mbps
LAN.

For dataset D, we produced synthetic datasets and changed
various sizes and attributes. The types of data distribution
included independent data distribution, the correlated data
distribution, and anti-correlated data distribution, all of which
are commonly used in skyline queries. The parameters and
ranges are summarized in Table 4.1.

Table 4.1 Configuration parameters

The performance of the three algorithms is compared in
Section 3. We executed these methods use the SUM function.
In most of the experiments, we measured the runtime of the
algorithm, the number of groups, and the number of group
skylines.

1) Scalability with respect to K
In this experiment we studied the effect of the

number of points per group. Figures 4.1, 4.2 and 4.3 are used
to plot the execution time against the number of points per
group, from 3 to 5 for anti-correlated, independent and

correlated datasets. The size of the dataset was fixed at 200
(i.e., the number of candidate sets is between 1.3*106 and
2.5*109). Note that the execution time of this experiment is in
logarithmic scale for independent and correlated datasets.

Fig. 4.1 Scalability with respect to k: anti-correlated

Fig. 4.2 Scalability with respect to k: correlated

Fig. 4.2 Scalability with respect to k: independent

In all three data distributions, we found that MRIGS
and MRIGS-P outperform MRGS, even when K is high. When
K is 3, MRGS and MRIGS exhibit similar performance.
Because the number of generated candidates is not very large,
the execution times of the two algorithms are similar. When K
is greater than 4, the number of candidates in each set was
shown to grow exponentially. Both algorithms produce the
same number of candidates; however, the execution time of
MRIGS is significantly lower than that of MRGS, due to the
effect of load imbalance in MRGS. MRIGS-P produced fewer
candidates than either methods due to its use of pruning. In
every case, MRIGS-P outperformed MRIGS and MRGS.

Figures 4.4, 4.5, and Fig. 4.6 plot the number of
candidate sets against the points per group from 3 to 5 for anti-
correlated, independent, and correlated datasets. Candidate-O
represents MRGS and MRIGS generated candidate sets and
Candidate-P represents MRIGS-P generated candidate sets.
Figures 4.4, 4.5, and Fig. 4.6 clearly shows that MRIGS-P
generates fewer candidates than does MRIGS. The number of
candidate sets generated is proportional to the execution time.
Similar results can be seen in the other two figures.

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

Fig. 4.4 Number of generated groups with respect to k: anti-

correlated

Fig. 4.4 Number of generated groups with respect to k:

correlated

Fig. 4.4 Number of generated groups with respect to k:

independent

2) Scalability with respect to size of dataset (|D|)
In this experiment, we examined the effects of the size of the
dataset. k was fixed at 3 for the independent and correlated
datasets. In the anti-correlated dataset, k was set at 2. Figures
4.7, 4.8, and 4.9 plot the execution time against the size of the
dataset from 100 to 500 for anti-correlated, independent, and
correlated datasets, respectively. Note that the results of
MRGS is not shown in this or the following experiments
because its performance does not exceed that of MRIGS.

Fig. 4.7 Scalability with respect to dataset size: anti-correlated

Fig. 4.8 Scalability with respect to dataset size: correlated

Fig. 4.9 Scalability with respect to dataset size: independent

In all cases, the performance of MRIGS-P was
superior to that of MRIGS, except D, when it was equal to 100
and produced a smaller number of candidate sets, thereby
reducing execution time. MRIGS-P needs to pre-process the
dataset (i.e., run k-prune). In cases without a great deal of data,
the effects of k-pruning are not obvious.

3) Scalability with respect to number of attributes (m)
In this experiment we studied the effect of the

number of attributes. k was fixed at 4 and data size was fixed
at 400. Figures 4.10, 4.11 and 4.12 plot the execution time
against the number of attributes from 2 to 5 for anti-correlated,
independent and correlated datasets.

Fig. 4.10 Scalability with respect to number of attributes: anti-

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

correlated

Fig. 4.11 Scalability with respect to number of

attributes: correlated

Fig. 4.12 Scalability with respect to number of attributes:

independent

Basically, the time required to process queries increases
with an increase in dimensionality. As a result, the increase in
execution time displayed in these figures, particularly in the
anti-correlated dataset, was more pronounced. This can be
attributed to the fact that any increase in the dimensionality of
data requires that the algorithm spend more time on the group
skyline process.

I. CONCLUSIONS

In this paper, we propose three novel algorithms, namely
MRGS, MRIGS, and MRIGS-P, for parallelizing group
skyline computation using a MapReduce framework. Our aim
was to enhance input-pruning in the MapReduce environment.
Cascaded-pruning enables the removal of a large number of
unnecessary points in order to reduce the number of candidate
sets that are generated. Our experiment results show that
MRIGS-P outperforms MRIGS and MRGS in all performance
metrics.

In the future, we plan to further improve the
performance by improving the second phase, which at present
is limited to a single reducer. Constrained group skylines are
another interesting topic worthy of further study.

REFERENCES

[1] Bartolini, I., P. Ciaccia, and M. Patella. “SaLSa: computing the skyline
without scanning the whole sky,” Proceedings of the 15th ACM

international conference on Information and knowledge management.
pp. 405-414, November 2006.

[2] Borzsony, S., D. Kossmann, and K. Stocker. “The skyline operator,”
Proceedings of 17th International Conference on Data Engineering, pp.
421–430, April 2001.

[3] Chaudhuri, S., N. Dalvi, and R. Kaushik. “Robust Cardinality and Cost
Estimation for Skyline Operator,” Proceedings of the 22nd International
Conference on Data Engineering, pp. 1-10, April 2006.

[4] Chen, L., K. Hwang, and J. Wu. “MapReduce skyline query processing
with a new angular partitioning approach,” Proceedings of 26th IEEE
International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, pp.2262-2270, May 2012

[5] Chomicki, J., et al. “Skyline with presorting,” Proceedings of the 19th
International Conference on Data Engineering, pp.717-719, March
2003.

[6] Chung, Y.-C., I.-F. Su, and C. Lee, “Efficient computation of
combinatorial skyline queries,” Information Systems, Vol. 38, NO. 3, pp.
369-387, May 2013.

[7] Dean, J. and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, Vol. 51, NO. 1, pp. 107-
113, January 2008.

[8] Im, H. and S. Park, “Group skyline computation,” Information Sciences,
Vol. 188, pp. 151-169, April 2012.

[9] Kim, Y. and K. Shim. “Parallel top-k similarity join algorithms using
MapReduce,” IEEE 28th International Conference on Data Engineering,
pp. 510-521, April, 2012.

[10] Kolb, L., Z. Sehili, and E. Rahm, “Iterative Computation of Connected
Graph Components with MapReduce,” Datenbank-Spektrum, Vol. 14,
NO. 2, pp. 107-117, july 2014.

[11] Kolb, L., A. Thor, and E. Rahm, “Parallel sorted neighborhood blocking
with mapreduce,” Datenbanken und Informationssysteme (DBIS), pp.45-
64, 2011

[12] Kolb, L., A. Thor, and E. Rahm. “Load balancing for mapreduce-based
entity resolution,” IEEE 28th International Conference on Data
Engineering,.pp. 618-629, April 2012.

[13] Kossmann, D., F. Ramsak, and S. Rost. “Shooting stars in the sky: An
online algorithm for skyline queries,” Proceedings of the 28th
international conference on Very Large Data Bases. pp. 275-286,
August 2002.

[14] Li, F., et al., “Distributed data management using MapReduce,” ACM
Computing Surveys, Vol. 46, No.3, pp. 1-42, January 2014.

[15] Mullesgaard, K., et al. “Efficient Skyline Computation in MapReduce,”
Proceedings of the 17th International Conference on Extending
Database Technology, pp. 37-48, March 2014.

[16] Papadias, D., et al. “An optimal and progressive algorithm for skyline
queries,” Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pp.467-478, june 2003.

[17] Papadias, D., et al., “Progressive skyline computation in database
systems,” ACM Transactions on Database Systems, Vol. 30, NO. 1,
pp.41-82, March 2005.

[18] Siddique, M.A., H. Tian, and Y. Morimoto. “Distributed Skyline
Computation of Vertically Splitted Databases by Using MapReduce,”
Proceedings of 19th International Conference on Database Systems for
Advanced Applications, pp. 33-45, April 2014.

[19] Tan, K.-L., P.-K. Eng, and B.C. Ooi. “Efficient progressive skyline
computation,” Proceedings of 27th International Conference on Very
Large Data Bases, pp. 301-310, September 2001.

[20] Thusoo, A., et al. “Hive - a petabyte scale data warehouse using
hadoop,” Proceedings of the 26th International Conference on Data
Engineering, pp. 996-1005, March 2010.

[21] Zhang, B., S. Zhou, and J. Guan, “Adapting skyline computation to the
mapreduce framework: Algorithms and experiments,” Proceedings of
the 16th International Conference on Database Systems for Adanced
Applications, pp. 403-414, April 2011.

[22] Zhang, N., et al., “On skyline groups,” IEEE Transactions on
Knowledge and Data Engineering, Vol.26, NO. 4, pp. 942-956, January
2014.

Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh

 | GSTF Journal on Computing (JOC) Vol.5 No.1, August 2016

