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Abstract—In this paper, the adaptive cancellation structure is first 

developed based on the LMS algorithm and FIR adaptive 

filtering. Then the novel practical noise and echo cancellation 

systems are built using the proposed adaptive technique and 

implemented using TX320TMS67C13 DSKs, which are Texas 

Instruments’ Digital Signal Processing (TI DSP) boards. 

Although adaptive filtering is an exciting topic in which many 

real-life applications can be explored [1]-[6], [9], building such a 

real-time system is often challenging due to the use of theoretical 

math, advanced DSP knowledge and practical industrial hands-on 

experience [1],[4]-[6],[9]. Therefore, this paper indicates that it is 

possible to apply traditional mathematics in adaptive filtering 

theory to real-time practical DSP systems.  With the MATLAB 

software tool, we can simulate and verify various adaptive 

filtering designs first. Then, development and implementation of 

different noise or echo cancellation systems with adaptive filtering 

techniques can be successfully performed using the floating-point 

digital signal processor, TX320TMS67C13 DSK. Furthermore, it 

can be shown that TX320TMS67C13 DSKs with their stereo 

channels offer more effective and flexible tools for various noise 

cancellation applications.  

 
Index Terms—Adaptive finite impulse response filter, DSP board, 

echo cancellation, LMS algorithm, noise cancellation. 

 

I. INTRODUCTION 

he adaptive filter techniques play an important role in 

modern digital processing (DSP) products in areas such as 

noise cancellation, telephone echo cancellation, equalization of 

communications channels, biomedical signal enhancement, 

active noise control, and adaptive control systems.[1]-[3],[9]. 

Adaptive filters work generally for the adaptation of signal-

changing environments, for spectral overlap between noise and 

the signal, and for unknown or time-varying noise. Adaptive 

filtering has existed for more than two decades in the research 

community and is still active.  Although great progress has 

been made, there are still some limits for practical application. 

One challenging problem is applying theoretical math and 

advanced DSP knowledge to a practical system using a 

floating-point TI DSP board so that a more accurate iterated 

and adaptive solution can be obtained in real-time. 

  In this paper, Section II gives the derivations of the 

proposed least mean square (LMS) algorithm and finite 

impulse response (FIR) adaptive filtering, and verifies them 

using a real speech waveform. In Section III, the real-time  

 

 

 

system set-up is presented first using a TI DSP board and 

applications of noise cancellation and echo cancellation are 

demonstrated using the adaptive technique and TI DSP boards. 

Finally, conclusions are given in Section IV. 

 

II. WIENER FILTERS AND ADAPTIVE FILTERS  

 An adaptive filter is a digital filter that has self-adjusting 

characteristics.  It is capable of adjusting its filter coefficients 

automatically to adapt to the input signal via an adaptive 

algorithm.  Therefore, adaptive filters have many real 

applications in system modeling, noise cancellation, adaptive 

differential PCM (ADPCM), echo cancellation and so on. Let 

us start from a Wiener filter solution with the steepest descent 

algorithm, then develop the least mean square (LMS) 

algorithm, and finally extend a single coefficient LMS 

adaptive FIR filter to the standard LMS adaptive FIR filter.  In 

addition, MATLAB simulations can be performed to verify the 

theoretical development. 

     Fig. 1 shows a Wiener filter for noise cancellation, where a 

single coefficient filter is used for illustration; that 

is, ( ) ( )y n wx n . w  is the adaptive coefficient and ( )y n  is 

the Wiener filter output, which approximates noise ( )n n  in the 

corrupted signal. 
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Fig. 1 Wiener filter for noise cancellation. 

 

 The enhanced (restored) signal ( )e n is given by   

 ( ) ( ) ( )e n d n wx n   (1) 

Taking statistical expectation of the square of error leads to a 

quadratic function  

 
2 22J wP w R    (2)                                                                                

where 
1

R


 is the mean square error (MSE) function or output 

power. When it is minimized, the noise power is maximally 

reduced. Since 
2 2

( )E d n      (auto-correlation or power of 
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the corrupted signal),  ( ) ( )P E d n x n  (cross-correlation), 

and 
2
( )R E x n     are constants, J  is a quadratic function of 

w  which may be shown in Fig. 2: 

 

J

w
w*

Jmin

 
 

Fig. 2  MSE quadratic function. 

 

The best coefficient (optimal) *w  is unique and at the location 

corresponding to the minimum MSE error 
minJ .  By taking 

derivative of J  and setting it to zero leads the solution as 

 * 1w R P  (3) 

 

Our goal is to develop an adaptive filter that seeks to 

minimize the MSE function (i.e. objective function) by 

iteratively adjusting its parameters (such as its impulse 

response coefficients) to achieve the design specifications. 

However, solving the Wiener solution requires a lot of 

computations, including matrix inversion (R-1) for a multiple-

tap FIR structure.      

Next, the steepest descent algorithm that is capable of 

minimizing the MSE sample by sample to locate the filter 

coefficient(s) is introduced as follows:  

 
1n n

dJ

dw
w w 


   (4) 

constant controlling speed of convergence   or convergence 

factor and /dJ dw  is the gradient of the MSE function. The 

steepest descent method is effective since it can be used to 

avoid taking the matrix inverse of R (for N filter coefficients), 

which may become to be ill-conditioned. Again, it can be 

proven [1] that the optimal coefficient can be approached 

using iterations. To develop the LMS (Least Mean Square) 

algorithm [1] in terms of the data samples in processing, the 

gradient /dJ dw  can be approximated by its instantaneous 

value, that is, 

 

   
 ( ) ( )

2 ( ) ( ) 2 ( ) ( )
d d n wx ndJ

d n wx n e n x n
dw dw


         (5)   

 

Substituting the instantaneous gradient /dJ dw  to the steepest 

descent algorithm, the LMS algorithm for updating a single 

coefficient is achieved as 

 1 2 ( ) ( )n nw w e n x n    (6) 

Finally, by omitting iteration time index n  and extending one 

coefficient filter to an- N coefficient filter, the standard LMS 

algorithm is obtained and listed in Table I. 

 

 Table I.  LMS adaptive FIR filter with N  filter coefficients. 

 
 

             (1)  Initialize (0)w , (1)w , … ( 1)w N   to arbitrary 

values 

             (2)  Read ( )d n , ( )x n ,  and perform digital 

filtering

( ) (0) ( ) (1) ( 1) ( 1) ( 1)y n w x n w x n w N x n N         

             (3)  Compute the output error 

  ( ) ( ) ( )e n d n y n   

             (4) Update each filter coefficient using the LMS algorithm 

          for 0, , 1i N   

  ( ) ( ) 2 ( ) ( )w i w i e n x n i    

 

 To illustrate functionality of the developed adaptive filter, a 

MATLAB implementation for noise cancellation is provided. 

The principle of noise cancellation is shown in Fig. 3, in which 

ADC and DAC stand for Analog-to-Digital Converter and 

Digital-to-Analog Converter, respectively. 
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Fig. 3  Noise canceller using an adaptive filter. 

 

    The noise cancellation system in Fig. 3 is assumed to have 

the following specifications: the sampling rate is 8,000 Hz and 

the speech is corrupted by Gaussian noise with a power of 1 

and delayed by 5 samples from the noise reference. The noise 

reference contains Gaussian noise with a power of 1; an 

adaptive finite impulse response (FIR) filter is used to remove 

the noise; the number of FIR filter coefficients is 21, and the 

convergence factor for the LMS algorithm is chosen to be 

0.01. The speech waveforms and speech spectral plots for 

original speech, corrupted speech, reference noise, and clean 

speech are plotted in Figure 4, respectively.  It is observed that 

the enhanced speech waveform and spectrum are very close to 

the original ones. The LMS algorithm converges after 

approximately 400 iterations.  Particularly, in time domain, the 

waveforms of the original speech s(n) and the clean speech 

(error signal e(n)) are almost identical after 400 samples when 

the LMS algorithm converges. The corrupted signal d(n) and 

the noise x(n) are also plotted to show the speech signal has 

been severely polluted. However, the speech has been well 

GSTF International Journal of Engineering Technology (JET) Vol.2 No.4, April 2014

29 © 2014 GSTF



 

restored and the mixed noise has been successfully removed 

after adaptive filtering.  The same conclusion can be reached 

in the frequency domain, where the original speech spectrum 

and the recovered (clean) spectrum are almost identical.  In 

summary, the adaptive method is a very effective approach for 

noise canceling.   
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Fig. 4 (a) Original speech, corrupted speech, reference noise 

and clean speech. 
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Fig. 4(b) Spectra of Original, corrupted, and clean speech. 

 

III. REAL-TIME ADAPTIVE SYSTEMS  

A. System Set-up 

  For real-time adaptive realizations, a TI TMS320C6713 

floating-point processor [8]-[9] is selected instead of a fixed-

point digital signal processor (DSP) to avoid the 

implementation challenges, so that the adaptive filtering  

solutions can be easily and accurately obtained using C.  A 

single DSP board setup and program segment for verifying 

input and output signals are shown in Fig. 5a and 5b, 

respectively, where the sampling rate used is 8,000 samples 

per second. 

 

TI TMS320C6713
DSP Board

Computer

Left Line In

Right Line In

Left Line Out

Right Line Out

Mic Input
Signal

Generator

Oscilloscope

Speaker

  

Fig. 5(a) Real-time DSP system setup. 

 
float xL[1]={0.0}; 

float xR[1]={0}; 

float yL[1]={0.0}; 

float yR[1]={0,0}; 

interrupt void c_int11() 

{ 

      float lc; /*left channel input */ 

      float rc; /*right channel input */ 

  float lcnew; /*left channel output */ 

  float rcnew; /*right channel output */ 

  int i; 

//Left channel and right channel inputs 

AIC23_data.combo=input_sample(); 

     lc=(float) (AIC23_data.channel[LEFT]); 

     rc= (float) (AIC23_data.channel[RIGHT]); 

// Insert DSP algorithm below  

 xL[0]=lc; /* Input from the left channel */ 

 xR[0]=rc; /* Input from the right channel */ 

     yL[0]=xL[0];  /* simplest DSP equation for the left 

channel*/ 

     yR[0]=xR[0];  /* simplest DSP equation for the 

right channel*/ 

// End of the DSP algorithm 

      lcnew=yL[0]; 

      rcnew=yR[0]; 

      AIC23_data.channel[LEFT]=(short) lcnew; 

      AIC23_data.channel[RIGHT]=(short) rcnew; 

      output_sample(AIC23_data.combo); 

} 

 

Fig. 5(b) Program segment for verifying input and output. 

 

B. Real-time Applications 

A configuration for adaptive noise cancellation is shown in 

Fig. 6, where the primary signal is a generated sinusoid and 

corrupted internally by the sensed reference noise from the 

ADC. The reference noise can be set as a tonal noise fed via a 

function generator or another noise source using the 

microphone and amplifier. The output signal e(n) (difference 

between the corrupted signal and the adaptive filter output) 

retains a desired frequency as the one from the internal digital 

oscillator; i.e. the output signal is the recovered sine wave 

when compared with the original sinusoid and verified from 

oscilloscope display. 
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Fig. 6(a)  Block diagram of Noise canceller using the adaptive 

FIR filtering. 
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Fig. 6(b) Real-time noise canceller using the adaptive 

technique  and DSP board. 

 

   Another interesting and challenging application is the 

acoustic echo cancellation. The basic telephone echo 

cancellation is described in Fig. 7.  As depicted in Fig. 7, the 

incoming signal is ( )Bx n  from speaker B, which maybe leaked 

to the outgoing signal ( )
A

x n   from speaker A; that is, 

( ) ( ) ( )A A Bd n x n x n  .  If the leakage ( )Bx n  returns back to the 

speaker B, it becomes an annoying echo.  To prevent the echo, 

the adaptive filter at speaker A site uses the incoming signal 

from speaker B as inputs and makes its output approximate to 

the leaked speaker B signal by adjusting its filter coefficients; 

the estimated echo ( ) ( )A By n x n  is then subtracted from the 

outgoing signal, thus producing a signal that only represents 

speech A; that is, ( ) ( )A Ae n x n . As a result, the echo from 

speaker B is removed.   
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Fig. 7 Adaptive echo cancellers. 

The system implementation is shown in Fig. 8, where the 

objective is to cancel the acoustic feedback instead of a 

telephone echo. The principle of using adaptive filters remains 

the same. For comparative purposes, an adaptive filter at the 

speaker A site (DSP board 1) is used, which cancels the 

acoustic feedback from speaker B. The second DSP board 

does not use an adaptive filter in order to show the existence of 

the acoustic feedback (echo), which can be monitored from 

Left Line Out (LCO2) via an oscilloscope. The acoustic 

feedback cancellation effect can be verified at the speaker B 

site from Right Line Out (RCO1), and the cancellation result is 

satisfactory.  Notice that two additional audio sources 

(speakers) for microphone A and microphone B are required. 
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Fig. 8 Acoustic feedback noise cancellation. 

 

IV. CONCLUSION 

In this paper, the novel adaptive real-time noise canceller 

and echo canceller are presented and implemented, where the 

proposed adaptive cancellation structure is developed based on 

the LMS algorithm and FIR adaptive filtering and tested via a 

real speech waveform.  The noise cancellation results are very 

satisfactory.  The challenging adaptive cancellers are also 

realized in real-time implementations with TI TMS320C6713 

DSP boards, in which the floating-point DSP boards 

demonstrate the accurate iterated and adaptive solutions using 

C.  
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