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Abstract— Global thresholding methods fail to segment poor 

contrast unimodal food and agricultural images. Many local 

adaptive thresholding and multi-level thresholding methods are 

reported in image processing journals, but there are limited 

studies extending them to food and agricultural images. This 

article presents development of Reverse Water Flow, a new local 

adaptive thresholding method, and Twice Otsu, a new multi-level 

thresholding method, to segment food and agricultural images. 

Reverse Water Flow method was well suited for identification of 

smaller objects such as 2 mm diameter holes. It reduced 

computational time by 61.1% compared to the previous best 

method. Twice Otsu method was well suited to identify larger 

objects. Both thresholding methods successfully segmented food 

and agricultural images from different imaging sources and 

should be extendable to other unimodal and poor contrast images. 

The developed methods may also facilitate further development of 

segmentation methods for food and agricultural applications.  

 
Index Terms— agriculture, food, image processing, local 

adaptive thresholding, machine vision, multi-level thresholding, 

segmentation, thresholding, unimodal images. 

 

1. INTRODUCTION 

mage segmentation is one of the challenging operations in 

many machine vision applications. The task becomes much 

more challenging when it comes to food and agricultural 

images. These images are typically poor contrast and have 

unimodal histograms (Fig. 1). Most global thresholding 

methods fail to segment them [1] because these methods 

typically require a bi-modal histogram. An object of interest 

(defect) generally shows slightly different contrast (Fig. 1b) and 

many times it is hard to tell whether the difference is due to a 

natural variability or presence of a defect. In such a scenario, 

local adaptive thresholding methods can play a significant role 

because they take local image properties in consideration which 

generally results in better segmentation.  

The variance based Niblack method calculates image 

threshold value based on local mean and standard deviation [2]. 

In window partition methods, an image is divided into sub 

images based on a selected criterion: Lorentz information 

measure [3], equal sized image partition [4], and learned image 

partition rule [5]. Water flow analogy methods consider image 

surface as a three dimensional surface [6]. Other approaches  
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reported in literature are mean shift and clustering for 

multimodal feature space [7], gray level reduction [8], and gray 

level co-occurrence matrix [9]. A review and raking of 

thresholding methods can be found in [10]. 

Another approach to segment unimodal images is multi-level 

thresholding which segments a gray image into more than two 

segments. The multi-level thresholding method of Otsu [11] is 

probably the first and most well-known method. Thereafter, a 

variety of approaches have been proposed to determine multiple 

thresholds: mean and variance of pixel distribution [12], edge 

and intensity information [13], global valleys search and 

transformation [14], mini-max optimization [15], fuzzy and 

rough set theories [16], entropy [17], Gaussian distribution [18], 

and minimizing fuzziness [19]. 

To address segmentation of unimodal pecan x-ray images, 

Reverse Water Flow method, a local adaptive thresholding 

method, was proposed to segment smaller defects [1]. 

Similarly, Twice Otsu method, a multi-level thresholding 

method, was developed to segment larger pecan defects [20]. 

Both these methods improved pecan defect classification 

accuracy using computationally efficient classifier AdaBoost 

[21]. Both the segmentation methods can be extended to other 

segmentation tasks as well, and this article aims to provide 

detailed development of Reverse Water Flow method and 

Twice Otsu method. 

 

2. DEVELOPMENT OF REVERSE WATER FLOW METHOD 

Based on the reviewed studies, it was hypothesized that water 

flow analogy method of Oh et al. [22] could adapt well to the 

natural variations in shape and size of defects present in food 

and agricultural images. Oh method can be divided in two parts: 

water flow process and thresholding criterion determination. In 

the water flow process, water drops are poured at gradients 

points, and the water drops flow to regional minimum points 

and get deposited there. A stopping criterion is used to stop the 

iterative water flow process. A threshold is used to segment the 

amount of water deposited.  Fig. 2 shows the segmentation 

results at various stages of Oh method for a typical pecan image. 

In the Oh water flow process, water drops deposited in the 

central portion of nutmeat halves (Fig. 2c) traveled from far 
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distant water drop points (gradient points) mainly on the nut 

halves edges (Fig. 2b). These longer travels require lot of 

computational time. If these travel times could be reduced then 

considerable time can be saved. Complex and cumbersome 

determination of thresholds was another limitation of Oh 

method. Multiple optimizations, determination of empirical 

constants, and recalculations to achieve better segmentation 

were the other limitations of Oh method. Reverse Water Flow 

method aimed to overcome limitations of Oh method. The 

development of Reverse Water Flow method is also divided 

into two parts.

 
Fig. 1. Typical unimodal x-ray pecan images used in non-destructive testing: (a) good pecan, (b) pecan with small defect (2 mm 

diameter insect exit hole), and (c) pecan with a large defect (large portion of nutmeat eaten away by insects); (d), (e), and (f) 

histogram of image (a), (b), and (c). 

 

 

 

 

 
Fig. 2. Progression of water flow process for the Oh and Reverse Water Flow method: original images (a and g), gradient 

points (b),  local minima points (h), water flow progression when 10% gradient points are submerged (c and i), 20% submerged 
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(d and j), 30% submerged (e and k) and 80% submerged (f and l). 

2.1 Reverse Water Flow Process 

In the reverse water flow process, the image to be segmented 

is considered as a three dimensional space (Fig. 3). A pixel area 

is considered as a surface location and pixel intensity as 

elevation of that surface. After Gaussian smoothing with unit 

variance, the image is searched for local minima points. A water 

drop is poured at a local minima point. When a water drop is 

poured at the local minima point, a search for a regional 

minimum point at that moment is initiated. A typical travel path 

followed by a water drop is illustrated in Fig. 4. If a water drop 

is poured at location 1, mask ‘A’ (5x5 mask) finds the minimum 

intensity level (elevation) around location 1. If location 2 is the 

location with minimum elevation in mask ‘A’, the water drop 

flows to location 2. A new mask ‘B’ detects the new location 

with minimum elevation within mask ‘B’. If location 3 is the 

location with minimum elevation in mask ‘B’, the water drop 

flows to location 3. This process is continued until the center 

location of the mask is the minimum elevation within the mask. 

If location 3 is the minimum point at the center of mask ‘C’, 

then the search has reached the regional minimum elevation 

point. After completion of the search process, the water drop 

gets deposited at the regional minimum point. The water drop 

deposition raises elevations of the regional minimum point and 

its neighboring pixels (Fig.4). 

The Oh water flow process drops water at the higher 

magnitude gradient points (circular red dots in Fig. 5), mostly 

at higher elevations (Fig. 3). The water drops poured at the 

gradient points have to travel longer distances (shown by red 

dashed arrows in Fig. 5). In contrast, the developed reverse 

water flow process uses local minima points (shown by blue 

squares in Fig. 5) as water drop points. The situation ‘A’ in Fig. 

5 refers to the first iteration of the water flow process. The water 

drop poured at a local minima point gets deposited there itself 

and does not has to travel any distance.  Once the search has 

reached the regional minimum point, the pixel intensity values 

of the neighboring pixels are increased as follows:  
 

'( , ) ( , ) ( 1, 1) 1 , 1I x y I x y G j k j kM j M jM k M k
        

                             (1) 

 

Where,
'( , )I x yM M  represents the water filled image after 

(n+1)th water drop deposition, 
( , )I x yM M represents the 

water filled image after (n)th water drop deposition, 
,x yM M

represents regional minimum point, G(j, k) represents the 3x3 

Gaussian mask with unit variance and  controls the amount of 

water filled at local minimum point and eight surrounding 

pixels. Oh et al. [22] suggested = 2 for 8 bit images and 

Mathanker et al. [1] used  = 32 for 12 bit images.  

 After a few iterations, the elevations of local minima points 

get raised due to water drop depositions. Then water drops 

poured at the local minima points have to travel longer 

distances, for example to location ‘B’ (Fig. 5). At this stage the 

travel distance for the proposed water drop points (local minima 

points) are approximately equal to a few Oh water drop points 

(gradient points), but still shorter than other Oh water drop 

points (top row of three red dots in Fig. 5). It is expected that 

the new water flow process might result in considerable 

computational time saving. 

To compare the saving in computational time, progression of 

reverse water flow process was studied and is presented in 

lower row of Fig. 2. Compared to Oh method (upper row of Fig. 

2), the water drops points in the reverse water flow process are 

uniformly distributed. For the first iteration the drops get 

deposited on the local minima points itself with no travel 

distance. In the next iterations, the water drops get deposited 

nearby with minimum travel distance (Fig. 2i). This 

phenomenon becomes evident, when water drop point locations 

in Fig. 2h and water deposition locations in Fig. 2i are 

compared. Thus, one of the shortcomings of the Oh water flow 

process i.e. longer water drop travel distance is addressed by the 

proposed reverse water flow process. Further, this becomes 

more evident when Fig. 2k and 2e are compared with their 

corresponding Figs. 2h and 2b.  

The reduction in travel distance of the water drops was 

quantified by recording the processing (computational) time 

required. Reverse Water Flow method reduced the average 

computation time by 61.1% compared to Oh method [1]. The 

new concept of the proposed water flow process was probably 

the reason for savings in time. It reduced travel distance at 

initial stages which resulted in a faster algorithm.  The savings 

in computational time can be of great help for on-line machine 

vision inspection of food products. 

The iterative water flow process is terminated automatically 

by introducing a stopping criterion. The stopping criterion is 

defined as submergence of certain fraction of gradient points 

[22].  

 

GPt = C * GP0                            (2) 

 

Where, GPt = gradient points submerged at tth iteration; GP0 

= total gradient points; C = fraction of gradient points allowed 

to submerge (adjusted to get desired segmentation results). The 

amount of water deposited at each pixel location is calculated 

by subtracting the water filled image from the original image. 

The resulting image is hereafter referred to as water image. 
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Fig. 3. Three dimensional surface with possible locations of gradient points and local minima points. 

 

 
Fig. 4. Search process for regional minimum point (concept taken from Kim et al., [6]). 
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Fig. 5. Contour map of Fig. 3: illustrating possible flow paths from gradients points and local minima points (situation A: first 

iteration, and situation B: after a few iterations). 

  

 

2.2  Local Adaptive Thresholding Criterion 

The water image, obtained in previous sub-section 2.1, is 

segmented using a threshold. Very small water depths were 

considered as noise in Oh method and removed. After removing 

noise, Oh method [22] used two single Otsu thresholds to 

segment the water image. The determination of the two single 

Otsu thresholds involved empirical determination of 

separability factors three times, and adjustment of thresholds 

twice [22]. Further, analysis of revealed that the threshold 

determination is similar to Otsu [11] method of determining 

dual Otsu thresholds.  The analysis also revealed that the dual 

Otsu thresholds provide a much better way to optimize 

thresholds, and therefore adopted in Reverse Water Flow 

method. The adopted threshold determination criterion adapted 

from [11] was: 

 

2 * * 2* ( , ) ( , )max1 2 1 2
1 1 1

n k k k k
B B

k k L

  

  
          (3) 

 

Where, η is the between class variance, k1 and k2 are the 

thresholds separating intensity levels L into three classes (C1 

[1, …, k1], C2 [k1+1, …, k2] and C3 [k2+1, …,L]). The 

thresholds k*1 and k*2 maximize the between class variance 

η*. In the Reverse Water Flow thresholding criterion, water 

ponds based on pixel connectivity [22] were not delineated, and 

the lower level threshold was used to remove the noise. It 

simplified the cumbersome threshold determination process of 

Oh method [22]. However, to present flexibility in the noise 

level determination, the lower threshold can be adjusted as 

follows: 

 

        
' * *
1 1k k n 

                (4) 

 

Where,  = threshold adjustment parameter 

The image noise level is represented by the lower threshold 

k`1, and water depths below it are removed because they are 

considered as noise. Thus, the image noise level can be adjusted 

simply by changing the threshold adjustment parameter β. In 

contrast, Oh method requires recalculation of the thresholds to 

adjust for image noise levels. The developed method hereafter 

is referred to as Reverse Water Flow method. 

 

3. DEVELOPMENT OF TWICE OTSU METHOD 

Bi-level thresholding methods segment image pixels into two 

classes: background and object. Many images contain pixels 

belonging to more than two classes. To segment images with 

more than two classes, more thresholds are required. Otsu [11] 

proposed a method to determine multiple thresholds based on 

maximization of between class variance. However in the 

proposed Twice Otsu method, the single Otsu threshold method 

is used to divide a class in two sub-classes (Eq. 5). 

 

2 * * 2* ( , ) ( , )max1 2 1 2
1 1 1

n k k k k
B B

k k L

  

  
        (5) 

 

For example, the image in Fig. 6a is segmented into two 

classes: object pixels (black pixels in Fig. 6b) and background 

pixels (white in Fig. 6b) by applying the single Otsu threshold 

method. The pixels belonging to one class, say object pixels are 

extracted. Then, the single Otsu threshold method is applied 
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again to divide the extracted object pixels in two different object 

sub-classes. It causes some of the object pixels in Fig 6b to be 

classified as defective pixels (the white pixels inside pecan 

image, Fig. 6c). Similarly, instead of extracting the object 

pixels, the background pixels can be extracted and the single 

Otsu threshold method can be applied on them resulting in two 

different background sub-classes. Thus, if the single Otsu 

method is applied to both the object pixels and the background 

pixels separately then it would result in four pixel sub-classes. 

This simple and intuitive process can be continued further to 

divide the image into any number of classes based on class 

variance without increasing the complexity of calculation as 

required in more than three class determination for Otsu method 

[11]. It is expected that twice application of the single Otsu 

method either to a) the object pixels, or b) the background 

pixels, or c) both type of pixels would be sufficient to segment 

most non-destructive images. Therefore, this method is 

hereafter referred to as Twice Otsu method.

 

Fig. 6. Steps of Twice Otsu segmentation method: (a) Original image, (b) segmented image after first application of single 

Otsu threshold method on (a), (c) segmented image after second application of single Otsu segmentation on object (dark) pixels 

of image (b). 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

For comparison of the developed methods, images from 

variety of sources were used. Many studies examined insect 

damage in nuts and grains [23] and [24] and that’s why insect 

infected pecan images were chosen for comparison. Oh method 

was originally developed for text document segmentation, so 

text document images from [22] and [6] were also selected for 

comparison. Further, non-destructive images were also taken 

from [10]. Finally, Reverse Water Flow method was applied to 

improve pecan defect classification. 

4.1  Pecan Images 

The selected pecan images consisted of a good pecan (Fig. 

7a), a defective pecan with insect exit paths or a pecan with 

smaller defect (Fig. 7b), and a defective pecan with eaten 

nutmeat or a pecan with larger defect (Fig. 7c). Twice Otsu 

method was able to segment the eaten nutmeat (Fig. 7f), but it 

was unable to segment smaller defects such as insect exit paths 

(Fig. 7e). Similarly, Jiang method [4] and Kim method [6] were 

also not successful in segmenting these smaller defects [1]. 

When the insect exit path orientation (marked ‘x’ in Fig. 7b) 

was parallel to the x-ray beam direction then Oh method and 

Reverse Water Flow method were able to detect the presence of 

smaller defects: 2 mm diameter insect exit paths. Neither 

method was able to segment the insect exit path when the 

orientation was perpendicular (marked ‘y’ in Fig. 7b).  

However, the insect exit path marked ‘y’ in Fig. 7b was 

segmented by varying the threshold adjustment parameter β 

(Fig. 8). It is evident that increasing the β resulted in better 

segmentation of the insect exit paths. 

GSTF Journal on Agricultural Engineering(JAE) Vol.1 No.1, February 2014

17 © 2014 GSTF



 
Fig. 7. Segmentation results for pecan images by Oh and Reverse Water Flow methods. 

  

 
Fig. 8. Effect of threshold adjustment parameter on segmentation results: (a) original image, (b), (c) and (d) segmented image 

with = 1.0, 1.5 and 2.0. 

 

4.2  Text Document Images 

The text document image (Fig. 9a) was taken from [6], and 

the images in Figs. 9b and 9c were taken from [22].  

Segmentation results for the text document images are shown 

in Fig. 9. Both Oh method and Reverse Water Flow method 

could segment these images. Smearing of the top line characters 

in Fig. 9a by Oh method (Fig. 9g) and Reverse Water Flow 

method (Fig. 9j) may be attributed to deterioration in image 

quality as the images were taken from on-line journal sources. 

Reverse Water Flow method produced two good segmentation 

results out of the three images with same set of parameters, 

whereas Oh method produced only one good segmentation 

result. 

Fig. 10 demonstrates noise removal by adjusting the 

threshold adjustment parameter β of Eq. (4) for the text 

document image of Fig. 9c. It would be pertinent to mention 

that Oh method required recalculation of optimum thresholds 

using Eq. (3). The proposed thresholding criterion did not 

required recalculation of thresholds, but simple adjustment of 

the lower threshold value by Eq. (4).  Savings in computational 

time by the proposed method over Oh method were not 

significant for the text images. In these images the widths of 

characters were small and therefore resulted in shorter travel 

distances. 
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Fig. 9. Segmentation results for text document images; original Figs. (a-c), segmented results Kim method (d-f), Oh method 

(g-i) and Reverse Water Flow method (j-l). 

 
Fig. 10. Segmentation results by Reverse Water Flow method with varying β for noise removal, (a) original image, (b), (c), 

and (d) segmentation images with  values of 1.0, 2.0, and 2.5. 

 

4.3  Non Destructive Testing Images 

The Citrus image (Fig. 11a) was taken from [4], and the metal 

structure image (Fig. 11b) and the cell image (Fig. 11c) were 

taken from [10].  Both the metal and cell image were segmented  

 

 

successfully by Reverse Water Flow method and Oh method 

(Fig. 11).  However, the citrus image could not segmented 

properly by the Reverse Water Flow method and Oh method. 

Poor contrast between background and outer edge of the citrus 

may be one of the reasons.
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Fig. 11. Segmentation results for citrus image (a), material structure (b) and cell image (c), Oh method (d-f), and Reverse 

Water Flow method (g-i). 

 

4.4 Improving Classification Accuracy 

The threshold adjustment parameter () was adjusted to 

maximize classification accuracy [21]. The stopping criterion 

was assumed as 0.7 to get the water images. The image set 

consisted of 100 good pecan nuts and 100 defective pecan nuts. 

The data set was randomly divided into training and testing sets 

for each classification run. Different values were input in Eq. 

4 to determine the threshold values which were used to segment 

the resulting water images. Classifiers were trained using the 

extracted features. Table 1 shows the average of minimum 

testing error for 20 classification runs. It may be seen that the  

values affected classification accuracies.  

 

Table 1 Effect of threshold adjustment parameter on average minimum testing error of selected classifiers. 

 

Classifier  

0.5 2.0 3.5 5.0 7.5 

Bayesian 15.95 12.15 12.55 12.70 100.00 

Diverse AdaBoost 12.20 8.75 7.50 11.20 10.30 

Real AdaBoost 12.45 9.35 7.15 12.15 10.30 

Gentle AdaBoost 12.50 9.35 7.15 11.45 10.25 

 

5. CONCLUSIONS 

A new local adaptive thresholding method (Reverse Water 

Flow) and a new multi-level thresholding method (Twice Otsu) 

were developed for segmentation of unimodal and poor contrast 

images. The segmentation of the images taken from different 

sources showed that Reverse Water Flow method was simpler, 

faster, and more accurate compared to other selected local 

adaptive thresholding methods. Similarly, Twice Otsu method 

was a simple multi-level thresholding method suitable for 

segmentation of larger objects. It is expected that both methods 

would be able to segment most food and agricultural images. It 

is also expected that this study would facilitate further  

 

 

development of segmentation methods especially suited for 

food and agricultural applications. 
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