
Automatic Sequential to Parallel Code Conversion

The S2P Tool and Performance Analysis

Aditi Athavale, Priti Ranadive, M. N. Babu, Prasad Pawar, Sudhakar Sah, Vinay Vaidya, Chaitanya Rajguru

CREST, KPIT Cummins Infosystems Ltd.,

Pune, India

{Aditi.Athavale,Priti.Ranadive,M.babu,Prasad.Pawar,Sudhakar.Sah,Vinay.Vaidya,Chaitanya.Rajguru}@kpitcummins.com

Abstract— The way software programs are being written has

been redefined since the introduction of multicore processors.

Software developers have started writing parallel programs

that are robust and scalable. This would ensure use of

processor power being made available in the form of multiple

cores. Though this trend is increasing, there are legacy

applications that have been developed over the past few

decades. Most of these applications are inherently sequential

making no use of multithreading or parallel programming. If

such applications are ported to execute on the multicore

hardware as they are then optimal usage of all cores is not

guaranteed. Such applications would ideally utilize only one

core and the other cores would remain idle, unless the

operating system supports some parallelism while scheduling.

Hence there is a need to convert such legacy sequential codes to

their parallel versions so that multicore hardware is exploited

to the fullest. In this paper we present a tool that we have

developed to automatically convert a sequential C code to

parallel code. This Sequential to Parallel (S2P) tool is still in

the development phase. We also discuss other parallelization

tools available today, compare such tools with S2P tool and

present our performance analysis results on different kind of

multicore hardware.

Keywords-automatic parallelization; sequential to parallel

code conversion; S2P tool; multicore programming

I. INTRODUCTION

Parallel computing has been around for a few decades
now but its applications were mainly found in the scientific
computing domain. This is mainly because such applications
involve mathematical computations and require huge
computing power. Since individual computers are unable to
provide such high computing power multiple computers
were connected together to form clusters and grids. Scientific
applications used these grids to perform computations that
were independent of each other and later collate the results.
This kind of computing is known as distributed computing.

As the demand for computing power for desktop
applications increased, the desktop computers also became
faster. The increase in clock frequencies results in increased
heat dissipation and increased power consumption. To limit
the heat dissipation and power consumption multicore
processors were invented. It would not be an exaggeration to
say that multicores processors give the power of distributed
computing on a single chip. This paradigm shift in the

hardware architecture has forced the software industry to
reconsider the way software is written.

It has become increasingly important to write parallel
programs so as to exploit available multicore hardware.
Future processors will see increasing number of cores per
chip and hence writing scalable programs is also a must
along with error free parallel programs. There is also a need
to convert legacy sequential programs to parallel programs
so that they can exploit multiple cores after porting.

Parallelizing a sequential application demands for a huge
investment of time and money since it involves
understanding the application domain, understanding the
application, identifying data and control dependencies and
then actually writing and synchronizing various sections that
would execute in parallel. There are various options like
OpenMP, MPI, and CUDA that can be used to write parallel
code. These tools would help in „how-to‟ part of
parallelization but do not help in „what-to‟ parallelize
decisions. Parallelization also needs expertise in parallel
programming domain, to choose appropriate tool for the
application in hand. Doing all this manually for a huge
application is a humungous task. We started developing an
automated parallelizing tool to address the problem of
porting legacy applications to multicore hardware.

Automatic parallelization ensures that the programmer
does not need to identify sections of code that are possible
candidates for parallel execution. Programmer does not need
to perform data dependency analysis to keep the program
correctness intact. The programmer also does not need to
insert parallel code or directives manually at relevant places.
In addition to all these reduction of efforts automatic
parallelization can sometimes result in shorter execution
times on SMP and HT-enabled systems. Not all application
parallelization result in shorter execution time or better
performance. This depends on the inherit nature of the
applications, how much parallelization it offers and the
amount of overhead we are creating by parallelization. Our
experimental results show different kinds of parallelization
strategies used and the performance analysis results for
different applications on SMPs and HT enabled machines.

Additionally, even after investing huge time and money
for manual parallelization efforts the performance results are
not guaranteed. Hence an automatic parallelization tool
would be useful in such cases to know quick performance
results for a given applications.

The rest of the paper is organized as follows: Section II
gives a brief literature survey of the various tools available

DOI: 10.5176_2010-2283_1.4.113

mailto:Aditi.Athavale@kpitcummins.com

for parallelization and compares them with the S2P tool.
Section III gives details about the implementation of the S2P
tool. In section IV we discuss the performance analysis
results of the parallelized code generated by the S2P tool and
also compare our results with results obtained using other
tools.

II. LITERATURE SURVEY

There are several tools available for parallelization. In
this paper we only mention tools that are automatic
parallelization tools. To the best of our knowledge, following
fully automated parallelization tools are available: Cetus,
par4all, Intel C++ compiler and SUIF. There are several
other tools, frameworks, and language extensions that are
available but cannot be classified as fully automated and
hence are not mentioned in this paper.

A. The SUIF compiler

The SUIF compiler [1] was the first of its kind. It was
developed to automatically convert sequential dense matrix
computations, written in C or FORTRAN, to parallel code
for machines with shared memory. The compiler included
various optimizations and passes for performing program
analysis including symbolic analysis, parallelism and locality
analysis, communication and synchronization analysis and
code generation.

B. The Intel Compilers

The Intel compilers generate multithreaded code
automatically. They target parallelization of applications
where most of the computations are carried out by loops [2].
The parallelization of loops is based on the results of
dataflow analysis in loops. The Intel compilers parallelize
codes written in C, C++ and FORTRAN languages.

C. The Par4All Tool

Par4All is an automatic parallelizing and optimizing
compiler for programs written in C and FORTRAN. It is
based on PIPS (Parallelization Infrastructure for Parallel
Systems) [3] source-to-source compiler framework. The
„p4a‟ is the basic script interface to produce parallel code
from user sources. It takes C or FORTRAN source files and
generates OpenMP or CUDA [4] output to run on shared
memory multicore processor or GPGPU respectively.

D. The Cetus Tool

Cetus is a tool that performs source-to-source

transformation of software programs, which are written in C

language. It also provides basic infrastructure to write

automatic parallelization tools or compilers. The basic

parallelizing techniques Cetus currently implements are

privatization, reduction variables recognition and induction

variable substitution. Cetus enables automatic

parallelization by using data dependence analysis with the

Banerjee-Wolfe inequalities [6], array and scalar

privatization.

After looking at these major automatic parallelization

tools, we can easily understand that these tools focus on data

parallelism in the programs. Most of the times, the data

parallelism is exploited by parallelizing loops in the

programs. However, parallelizable loops constitute only a

small portion of programs. The question is can automatic

parallelization tools target tasks level parallelism as well.

Inclusion of task parallelization increases the reach of the

parallelizing tools, so that these tools can support larger set

of applications. The tool that is being discussed in this

paper, the S2P tool, focuses on task as well as loop

parallelization in the programs.

III. THE S2P TOOL

The S2P tool is an automatic parallelization tool that

converts a sequential C source code to a parallel code. The

parallel code is a multithreaded code with pthread and

OpenMP constructs inserted at relevant places. Pthreads are

used for task parallelization and OpenMP is primarily used

for loop parallelization. We have also performed some

experiments in which OpenMP‟s „tasks‟ constructs are used

instead of Pthreads, for task parallelization. Results of all

the experiments are discussed in later sections.

Fig. 1 shows where S2P tool fits in a typical software

execution model. S2P tool is a source to source conversion

tool. Hence the parallel code, generated by the S2P tool,

needs to be compiled like a sequential C code.

Figure 1: S2P tool in software execution model

Figure 2: Block diagram of S2P tool.

The S2P tool consists of a front end that can scan and
parse application code and an intelligent backend that
performs static dependency analysis to identify parallelizable
sections of code. The tool also consists of a code generator

Legacy

Application

S2P

Tool

Compiler

Operating
System

Multicore
Platform

that automatically generates parallel code. This parallel code
is functionally similar to the sequential code that can execute
faster than the sequential code and also that can optimally
utilize all the available cores on the hardware. Fig. 2 shows
high level block diagram of the S2P tool. In the following
text, all the sub-modules of front end and back end are
described in detail.

The front end contains pre-processor, scanner, parser

and intermediate file generator. The pre-processor replaces

the constants, which are present in terms of pragmas, and

resolves the dependencies in header files. It then formats the

sequential C code as required by the scanner. The scanner

forms lexical tokens of the source code. The parser parses

these tokens as per the ANSI C grammar and generates an

intermediate file as output. This intermediate file contains

all the code information that is subsequently used by

different back end modules. The file stores metadata about

each and every program constructs that is present in the

sequential C programs. For a variable, information of its

definition, data type and scope of the variable, files in which

the variable is declared and accessed, lines on which the

variable is used etc is stored. For a function, information of

its definition, return types, other functions that call and get

called by this function, parameters, arguments, and so on.

Similar information is stored for iterative, control and

selection statements as well.

The intermediate file is the input to the back end that

performs static analysis for identifying dependencies among

different sections of code. It transforms the code into

pthread and OpenMP mixed code. The backend sub-

modules include the profiler, blocks identifier, pointer alias

analyzer, side effect analyzer, task dependency matrix

(TDM) creator and code generator.

Blocks of code are identified based on logical scopes.

Program constructs which are categorized as blocks are

loops, function call sites, an „if‟ statement etc. We have

considered treating „then‟ and „else‟ blocks as separate

blocks as well as the whole „if-then-else‟ block as a single

block. This decision is based on the profiling data obtained

for the „then‟ and „else‟ parts. If the „then‟ and „else‟ parts

execution times are greater than a threshold value and are

comparable with each other they are treated as separate

blocks. For example, if the „then‟ block executes for 100

seconds and the „else‟ block executes for 120 seconds they

are considered separately. But if the „then‟ block executes

for 10 seconds and the „else‟ part executes for 100 seconds

the timings are not comparable from the scheduling

perspective and hence we treat them are a single block.

Currently we have limited the block granularity to the

outermost level of logical scope. For e.g. if there is an „if-

then-else‟ block inside a loop, we consider the loop as a

block. Thus as of now we have considered only outer level

logical scopes within the „main()‟ function in a C code as

blocks. In addition to these blocks, loops are treated

separately for parallelization.

The S2P tool executes the sequential code off-line to get

profiling information. This information is stored in an

intermediate memory structure for further reference. The

profiling information is important to take decisions about

parallelization. For example, if a code block is found to be

parallelizable but the execution time for that is below a

certain threshold, then it will not be parallelized. The

threshold is calculated considering the OpenMP and pthread

thread creation and synchronization overheads. Thus blocks

that have significant execution time with respect to the

threshold value, are parallelized to ensure that the reduction

in execution time is greater than the overhead of

parallelization constructs. We also plan to implement block

merging or splitting (changing granularity) based on the

profiling information to obtain better performance results.

This work is still in progress.
Pointers are majorly used in C programs and it is

important to address pointer aliasing while analyzing
dependencies among various blocks of codes that use
pointers. We have implemented a flow insensitive and
context insensitive inter-procedural approach for computing
the aliases [7]. This approach was chosen for two major
reasons – First and foremost important reason is that it is a
safe approach. In case of even a slightest ambiguity, two
variables are considered to be aliased. This ensures that the
code is functionally correct and wrong parallelization
decisions are not taken. However, it also implies that the
parallelization performance may get reduced. Second reason
is that if we want more precise information about aliases, the
cost of implementation in terms of time, memory and
complexity would be high as compared to the performances
gained.

The side-effects of functions calls also need to be
considered for getting correct dependency information
among blocks of code. We have implemented the side-effect
analysis algorithm as described in [8] with few modifications
to accommodate exits, jumps and I/O related function calls in
C programs like printf, fprintf, exit, etc. We have also
implemented a simple method to detect the modification of
variables [5]. This information is also useful to identify
dependencies. The dependency information generated by the
alias analysis module, side-effects analysis modules and
variables update analysis is processed together and stored in
a matrix, known as the Task Dependency Matrix (TDM) [9].
The rows and columns in the TDM represent tasks. In the
current implementation of S2P tool, the tasks are equivalent
to blocks. The cells in the TDM represent the dependencies
between these tasks. Thus if n blocks are identified in the
sequential code, n X n TDM is created. If there are no
dependencies among blocks i and j then the ij

th
 element of

the matrix is empty, whereas if the i
th
 block is dependent on

the j
th
 block then the ijth element in the matrix contains the

line number at which the dependency is identified. This
dependency information is later on used by the code

generator module to insert synchronization constructs at the
appropriate places.

All of these sub-modules present in the backend help
track the task level parallelization in the program. To further
increase the effectiveness of parallelization, loops are also
analysed to exploit data parallelism in the program. In order
to parallelize loops, the iterations of the loop should be able
to run independently. In other words, two or more iterations
of the loop should not access the same data location. Data
accessed inside the loop nest is classified as variables that are
arrays and others. For non-array type of variables, same data
dependency analysis techniques, which are mentioned in the
above sections, are used. For array type of variables, two
dependency tests are used – Greatest Common Divisor
(GCD) and Single Variable Per Constraint (SVPC) is used
[10]. Both of these tests, check the dependencies of array
locations based on the arithmetic of array indices and loop
variants. Based on this analysis, if all the iterations are found
to be independent, OpenMP constructs are used to parallelize
the loop. All the data required for generating OpenMP
constructs are derived and inserted in the desired format in a
completely automatic way.

Once dependency results of all the above modules are
generated, the code generator module inserts Pthread APIs
and OpenMP constructs in the code. Broadly, tasks are
parallelized by using Pthreads, and loops are parallelized by
using OpenMP constructs. However, OpenMP „task‟
constructs are also used to enable task level parallelism in the
code, instead of Pthreads. In case of Pthreads, the following
kinds of statements are inserted at appropriate places in the
sequential code:

1. Thread creation constructs
2. Thread synchronization constructs
3. Thread exit constructs.

In case of OpenMP, loop specific and task specific

constructs are inserted. When the parallelization constructs
are inserted in the sequential code, the scheduling of the
threads is left to the underlying operating system. S2P tool
does not interfere in the scheduling of threads.

In some cases, even after parallelizing the program using
S2P tool, it is possible to have few cores still lying idle. In
order to further increase the performance by utilizing these
idle cores, a new technique of Induced Parallelization has
been developed. In this technique [11], „then‟ and „else‟
blocks of are checked for dependencies against each other. In
case of common data access by both the blocks, local copies
of data are created inside each section. Both the blocks are
put inside Pthreads are allowed to run simultaneously on the
idle cores. In order to this, the dependencies of these blocks
are also checked with that of the preceding sections of „if-
then-else‟ block. The simultaneous execution of „then‟ and
„else‟ blocks is done ahead of time. When the actual
condition of „if‟ statement is hit, only one of the „then‟ and
„else‟ block is allowed to continue execution. Figure 3 gives
a pictorial view of Induced Parallelism technique.

Figure 3: Block diagram of S2P tool

Figure 4: Induced Parallelism

IV. RESULTS AND PERFORMANCE ANALYSIS

 We have parallelized various programs using S2P tool to
analyse performance benefits on multicore hardware. Out of
test programs, we chose mp3 decoder program since it
contains opportunity for task parallelization along with loop
parallelization. Mp3 decoder is a utility for converting „mp3‟
files into „wav‟ files. Time required to decode mp3 file
depends on size of input mp3 file. As size of input file
increases, time required to decode the file also increases.

S2P generates parallelized code using Pthreads or
OpenMP for task parallelization. We have taken these results
on two different machines. One machine is an Intel Core i3,
which has 2 cores with HyperThreading (HT) technology
and frequency of 3.20 Hz. Other machine is an Intel Core 2
Quad, a four-core machine with frequency of 2.66 Hz.
Operating system on both machines is Ubuntu 10.04. RAM
of dual core machine is 3.1 GB and that of quad core
machine is 2.9 GB. Dual core machine with HT contains two
physical cores. However, a scheduler treats them as four
logical cores. In case of logical processors in HT-enabled
machine, the architectural state of the processor is
duplicated. The architectural state consists of processor data
registers, segment registers, control registers, debug
registers, and most of the model specific registers (MSRs).
However, quad core machine contains four independent
cores, each having its own execution unit, cache, architecture
state. We observed remarkable differences in the
performance of parallelized code on these two machines.

Initial
Blocks

 If (Condition)

Then
Statement

Else
Statement

Successive Blocks

Synchronization block

 Initial Blocks

 If (Conditional Statement)

 Then Statement

 Else Statement

 Successive Blocks

In all of the following figures, „S‟ column depicts the
time required to execute the sequential code. „Pt‟ column
depicts the time required to execute the parallelized code, in
which Pthreads are used. „T2‟, „T3‟ and „T4‟ columns
represent the time required to execute the parallelized code
where the number of OpenMP threads used is 2, 3 and 4
respectively.

In case of parallelized code using pthreads, the number of

threads created is equal to the number of tasks formed by

S2P tool. There is no thread pooling and scheduling is

managed by the operating system scheduler. In case of „T2‟,

„T3‟ and „T4‟, OpenMP „task‟ constructs are used. In these

cases, thread pooling is present and OpenMP manages it.

Figure 5 shows the performance of mp3 decoder for an

input file of size 6 MB.

(a)

(b)

Fig.5. Execution timings of mp3 decoder on a file of size 6MB

As shown in figure 5 (a), time required to execute

sequential code and parallel code using OpenMP tasks with

2 threads (T2) is approximately equivalent. Due to two

threads, it executes concurrently and CPU utilization is

more than 150%. In case of „T2‟ and „T3‟, the execution

timings are further increasing. The possible reasons of not

getting any performance gain could be more number of

context switches and inconsistencies in data caching in HT

environment. However, if we see similar execution on Quad

core machine as shown in figure 5 (b), it is observed that

OpenMP task achieved better results than serial execution.

Due to more number of available cores, overhead of context

switching is less. On both machines, it is observed that,

parallelization with Pthreads shows performance benefit.

However, the benefit is not significant, as thread pooling is

not used. Figure 6 shows execution timings required to

decode a file of size 27.7 MB on dual core with HT machine

and on quad core respectively.

(a)

(b)

Fig.6. Execution timings of mp3 decoder on a file of size 27.7 MB

Figure 7 shows the execution timings of mp3 decoder on

a file of size 6 MB on varying number of cores. We

observed that the performance degrades as number of cores

goes on decreasing. The performance degrades due to

reduced computational power and increased context

switching.

(a)

(b)

Fig.7. Execution timings of mp3 decoder with reducing number of cores

V. CONCLUSION AND FUTURE SCOPE

In order to increase the performance of software
programs, parallelization is one of the important techniques.
In contrast to the extensive efforts required for manual
parallelization of programs, automatic parallelization tools
are need of the hour. The S2P tool presented in this paper is a
completely automated parallelization tool, which converts
the sequential C programs into functionally equivalent
parallel programs. To increase the applicability to larger set
of codes, S2P tool presents task as well as loop level
parallelization, as opposed to other available tools. Our
observations on various test codes highlight the fact that the
performance gain in parallelized code depends on the
inherent parallelization degree present in the original
sequential program.

The results presented in the previous section portray

small part of performance experiments. Performance analysis
of the S2P tool is still in progress. The key factor that
contributes to the performance gain is minimizing the
overhead of thread management during execution of
parallelized code. Few relevant experiments in this direction
include creation of thread pool for Pthreads and changing the
granularity of tasks.

ACKNOWLEDGMENT

We would like to thank all the S2P project members, past
and present, for their efforts. We would also like to thank the
CREST team for their constant support and encouragement.

REFERENCES

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C. W. Tseng, “An
Overview of the SUIF Compiler for Scalable Parallel Machines”,
Seventh SIAM Conference on Parallel Processing for Scientific
Computing, 1995.

[2] http://software.intel.com/en-us/articles/automatic-parallelization-
with-intel-compilers/, accessed Oct 2011

[3] http://www.cri.ensmp.fr/pips/, accessed Oct 2011

[4] http://www.nvidia.com/, accessed Oct 2011

[5] A. Sane, P. Ranadive, S. Sah, “Data dependency analysis using data-
write detection techniques”, ICSTE 2010, Vol 1, V1-9 – V1-12.

[6] U. Banerjee, “Dependence Analysis for Supercomputing”, Kluwer
Academic Publishers, Norwell, MA, 1988.

[7] Deutsch, Alain, “Interprocedural May-Alias Analysis for pointer
beyond k-Limiting”, Proc. Of SIGPLAN '94, Conference of
Programming language design and implementation, Vol. 29, No. 6,
1994, pp. 230-302.

[8] K. D. Cooper and K. Kennedy, “Fast Inter-procedural side-effect
analysis in linear time”, PLDI 1988, Vol. 23, Issue 7.

[9] V. Vaidya, S. Sah, P. Ranadive, “Optimal Task Scheduler For
Multicore Procesor”, ICSTE 2010, Vol 1, pp. V1-1 – V1-4.

[10] C. D. Offner, “Modern Dependency Testing”, September 24, 1996,
pp. 1-63.

[11] V.G. Vaidya, P. Agrawal, A. Athavale, A. Sane, S. Sudhakar, P.
Ranadive, “Increasing Parallelism on multicore processors using
Induced Parallelism”, ICSTE 2010, Vol. 1, pp. V1-5 – V1-8.

ABOUT THE AUTHORS

Aditi Athavale

Aditi Athavale received her M. Tech degree in Information

Technology from Indian Institute of Technology, Roorkee,

India in 2009. She is currently working as a Junior Scientist

at Center of Research in Engineering Sciences and

Technology (CREST) at KPIT Cummins Infosystems Ltd.,

Pune, India. Her research interests include Cryptography

and its applications, Multicore Programming, and Data

Security.

Priti Ranadive

Priti has a M.Sc. from Pune University in the faculty of

Instrumentation Science. She is currently working at a

Scientist at Center of Research in Engineering Sciences and

Technology (CREST) at KPIT Cummins Infosystems Ltd.,

Pune, India. She is also a research scholar at Symbiosis

Innovation and Research Institute. Her areas of interest

include Embedded Systems, OS and RTOS, Multicore

programming and TRIZ.

M Niswanth Babu

He is an alumnus of IIIT-Hyderabad, India. He is working

in KPIT Cummins as a Senior Research Associate for last

1.5 years. His areas of interest include Parallel Computing,

Information Retrieval & Extraction.

Prasad Pawar

Prasad Pawar received the M.E. degree in computer science

from Walchand College of Engineering Sangali,

Maharashtra in 2008. He is currently working as a Sr.

Research Associate at KPIT Cummins Infosystems Ltd.

Pune, India. His research interests include parallel

computing, multicore programming, business continuity and

disaster management, IP storage area network, network

security.

Sudhakar Sah

Sudhakar Sah received his M. Tech degree from Indian

Institute of Technology (Delhi, India) in 2005.He is pursing

PhD in computer science from Symbiosis Institute of

Research and Innovation (Pune, India). He has worked in

embedded systems group at TCS (Bangalore, India) till

2005. He is currently a Senior Scientist at KPIT Cummins

Infosystems Ltd. (Pune, India). His research interests are

parallel computing, GPGPU, Signal and Image processing

and Mathematical algorithms.

Dr. Vinay Vaidya

Dr. Vinay Vaidya received PhD in Computer Vision from

the University of Washington in 1992. In the past, he has

worked at Boeing (Seattle), Fujitsu (India) and Siemens

(India). At present, Dr. Vaidya is the Chief Technology

Officer and VP at KPIT Cummins, where he heads the

Center for Research in Engineering Sciences and

Technology (CREST). He is an honorary Professor of

Computer Studies at the Symbiosis International University,

India. He has earned a position in the special edition of

Who's Who in the World, 2008. He has 12 patents and

several research papers to his credit. His research interest

includes Pattern Recognition, Image Processing, High

Performance Computing, Multicore technology, Data

Compression, and security systems.

Chaitanya Rajguru

Chaitanya Rajguru is a Technical Fellow at KPIT Cummins.

He received his B.Tech. degree in Electrical Engineering

from IIT Bombay, and his M.S. degree in Electrical

Engineering from Virginia Tech, USA. He has over 19

years‟ professional experience at Intel Corp. and at KPIT

Cummins. He holds six patents on circuits and systems. His

interests include computing hardware and algorithms, VLSI

technology, and energy & power in systems.

