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Abstract — This paper investigates spatiotemporal interpolation 

methods for the application of air pollution assessment. The air 

pollutant of interest in this paper is fine particulate matter PM2.5. 

The choice of the time scale is investigated when applying the 

shape function-based method. It is found that the measurement 

scale of the time dimension has an impact on the quality of 

interpolation results. Based upon the result of 10-fold cross 

validation, the most effective time scale out of four experimental 

ones was selected for the PM2.5 interpolation. The paper also 

estimates the population exposure to the ambient air pollution of 

PM2.5 at the county-level in the contiguous U.S. in 2009. The 

interpolated county-level PM2.5 has been linked to 2009 

population data and the population with a risky PM2.5 exposure 

has been estimated. The risky PM2.5 exposure means the PM2.5 

concentration exceeding the National Ambient Air Quality 

Standards. The geographic distribution of the counties with a 

risky PM2.5 exposure is visualized. This work is essential to 

understanding the associations between ambient air pollution 

exposure and population health outcomes. 

Keywords- spatiotemporal interpolation, fine particulate matter, 

air pollution exposure, time scale 

I.  INTRODUCTION 

Spatial interpolation methods have been well developed to 
estimate values at unknown locations based upon values that 
are spatially sampled in GIS (Geographic Information 
Systems). These methods assume a stronger correlation among 
points that are closer than those farther apart.  They are 
characterized as either deterministic or stochastic depending on 
whether statistical properties are utilized. Deterministic 
interpolation methods determine an unknown value using 
mathematical functions with predefined parameters such as 
distances in Inverse Distance Weighting (IDW) [1], areas and 
volumes in shape function (SF) based methods [2-5], while 
stochastic interpolation methods such as Kriging [6, 7], 
investigate the spatial autocorrelation.  

Although spatial interpolation methods have been adopted 
in various applications, many critical problems remain 
unsolved. One of them is that traditional GIS researchers tend 
to treat space and time separately when interpolation needs to 
be conducted in the continuous space-time domain. The 
primarily strategy identified from the literature is to reduce 
spatiotemporal interpolation problems to a sequence of 
snapshots of spatial interpolations [8]. In order to interpolate 
for an unmeasured time instance, temporal interpolation can 
then be conducted based on the spatial interpolation results  at 
each location [9]. 

A. Motivation 

Integrating space and time simultaneously is anticipated to 
yield better interpolation results than treating them separately 
for certain typical GIS applications. For example, the following 
set of ozone data collected 8 annual ozone concentration 
measurements in 1994, 4 in 1995, 3 in 1996, 6 in 1997, and 8 
in 1998, as shown by the solid circular dots in Fig. 1. Suppose 
we need to estimate the ozone concentration at the location 
illustrated by the empty dot W in 1996. The traditional strategy 
can only utilize the existing measurements at the locations A, B 
and C in 1996 to interpolate the ozone concentration at the 
location W, although A, B and C are rather far away from W. It 
would be inappropriate to use the ozone concentrations around 
the San Francisco area to interpolate the concentrations for 
New York, even if they were from the same time instance.  

Therefore, a more integrative research framework that 
allows us to incorporate measurements from other years in the 
interpolation for the space-time point W needs to be developed. 
Depending on the characteristics of various spatiotemporal 
interpolation methods, different groups of measurements may 
be chosen to interpolate for W. One possibility would be 
choosing F and G in 1997 and D and E in 1995 since these four 
points are relatively closer to W in space and time. In general, 
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spatiotemporal interpolation is based on the assumption: things 
that are closer in the space-time domain are more alike than 
those that are farther apart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Annual ozone concentration sample points from 1994 to 1998. The 

solid circular dots ( )  are the points with known measurements, while the 

empty dot ( ) is unmeasured and needs to be interpolated for 1996. 

B. Existing Approach and Its Limitation 

In order to integrate space and time simultaneously, a so 
called “extension approach” has been proposed in [4, 10]. This 
approach treats time as another dimension in space and 
therefore extending the spatiotemporal interpolation problem 
into a higher-dimensional spatial interpolation problem. Some 
applications using the extension approach can be found in [3, 
11-13]. 

Although the idea of the extension approach is intriguing, 
extending spatial interpolation to incorporate a dimension of 
time poses many challenges. One of the biggest challenges is 
that space and time have different and incomparable scales. 
The physically sound distance in a space-time domain is 
therefore difficult to define or compute. For example, how 
would you define the spatiotemporal distance between two 
points P1 (x1, y1, t1) and P2 (x2, y2, t2) when the extension 
approach of IDW is applied? This challenge has been rarely 
investigated and impedes to a very large degree the 
development of a more generalized and logically sound 
approach of spatiotemporal interpolation.  The existing practice 
used in references [3, 11, 12] is to choose some convenient 
scales coming from the raw GIS data. 

C. Contributions 

There are two main contributions of our paper. The first 
contribution is to examine whether the choice of time scale 
affects the quality of SF (Shape Function) based spatiotemporal 
interpolation results. SF-based 2-D triangular interpolation 
methods are proven to be invariant to coordinate scales [3]. 
However, in reference [3], the authors did not realize that the 
invariance is only true after the mesh is constructed. Mesh 
generation is the foundation of SF-based interpolation methods. 

It divides the total domain into a finite number of simple sub-
domains that can be triangles in the case of 2-D problems and 
tetrahedra in the case of 3-D problems. However, will a 
different choice of time scale (e.g. month or day) influence the 
construction of a mesh and thereafter the performance of a 
spatiotemporal interpolation? According to our knowledge, this 
is a topic that has been rarely investigated. 

The second contribution is to set an important initial step to 
investigate the associations between ambient air pollution 
exposure and population health outcomes. Since PM2.5 
concentrations are only measured at certain monitoring sites 
and time instances, the PM2.5 concentrations at unsampled 
locations and times need to be estimated using an effective 
method. In this paper, an efficient 3-D SF-based spatiotemporal 
interpolation method is applied to the PM2.5 data set. The 
interpolated county-level PM2.5 has been linked with 2009 
population data and the population with a risky PM2.5 exposure 
has been estimated. The geographic distribution of the counties 
exceeding the PM2.5 air quality standards is displayed. 

II. SF-BASED SPATIOTEMPORAL INTERPOLATION AND ITS 

INVARIANCE AND VARIANCE TO COORDINATE SCALES 

Shape functions, which can be viewed as a spatial 
interpolation method, are popular in engineering applications 
such as finite element algorithms [14, 15]. There are various 
types of 2-D and 3-D shape functions. We are interested in 2-D 
shape functions for triangles and 3-D shape functions for 
tetrahedra, both of which are linear approximation methods.  
Shape functions have been adopted and further developed as 
spatiotemporal interpolation methods for GIS applications [3, 
16, 17]. Reference [3] also describes IDW and Kriging based 
spatiotemporal interpolation methods and compares them to 
SF-based methods by using an actual real estate data set with 
house prices. SF-based spatiotemporal interpolation methods 
have been applied to various applications including air quality 
mapping [11, 12]  and many others [18-20]. 

A. SF-based Spatiotemporal Interpolation: A Review 

At the beginning stage of applying SF-based interpolation 
methods, a mesh that divides the total domain into a finite 
number of simple sub-domains or elements should be 
generated. For example, 

 for a 2-D spatial problem, a mesh composed of triangular 
elements should be generated if one wants to use shape 
functions for triangles to interpolate unknown values in the 
(x, y) coordinate system; 

 for a 3-D spatial problem, a mesh composed of tetrahedral 
elements should be generated if one wants to use shape 
functions for tetrahedra to interpolate unknown values in 
the (x, y, z) coordinate system. 

Quite successful algorithms have been developed to 
generate triangular or tetrahedral meshes, including the popular 
method of Delaunay triangulation meshing [21, 22]. Delaunay 
triangulation is related to the construction of the so called 
“Voronoi diagram”, which is related to “Convex Hull” 
problems. The techniques to compute 2-D Delaunay 
triangulations can be extended to create 3-D tetrahedral 
meshes. Fig. 2 shows a tetrahedron. 
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Figure 2.  Computing 3-D shape functions by tetrahedral volume divisions. 

w1, w2, w3 and w4 are measured values, while the value w at location (x, y, z) 

is unmeasured and needs to be interpolated. 

Considering the tetrahedron in Fig. 2, the SF-based 

interpolation result at a point (x, y, z) located inside the 

tetrahedron can be obtained by using the measurement values 

w1, w2, w3, and w4 at the four corners as below [3]:   

1 1 2 2

3 3 4 4

( , , ) ( , , ) ( , , )

( , , ) ( , , )

w x y z N x y z w N x y z w

N x y z w N x y z w
  

where N1, N2, N3 and N4 are the following shape functions 

1 2
1 2

3 4
3 4

( , , ) , ( , , ) ,

( , , ) , ( , , )

V V
N x y z N x y z

V V

V V
N x y z N x y z

V V    
V1, V2, V3, and V4 are the volumes of the four sub-tetrahedra 

ww2w3w4, w1ww3w4, w1w2ww4, and w1w2w3w, respectively; and 

V is the volume of the outside tetrahedron w1w2w3w4 as shown 

in Fig. 2. 

Our paper focuses on spatiotemporal interpolation 

problems in the domain of 2-D space and 1-D time. Using the 

extension approach of SF-based interpolation methods, we 

treat time as the imaginary third dimension z in space. 

Therefore, substituting the z variable by the time variable t in 

(1) and (2) gives a SF-based spatiotemporal interpolation 

method for 2-D space and 1-D time problems: 

1 1 2 2

3 3 4 4

( , , ) ( , , ) ( , , )

( , , ) ( , , )

w x y t N x y t w N x y t w

N x y t w N x y t w
         

where N1, N2, N3 and N4 are the following shape functions 

31 2 4

1 2 3 4
( , , ) , ( , , ) , ( , , ) , ( , , )

VV V V
N x y t N x y t N x y t N x y t

V V V V

  Extending spatial interpolation to incorporate a dimension 

of time using the SF-based interpolation method has shown 

promising results compared with the extension methods based 

on IDW and Kriging [3, 12]. The challenge of mixing 

incomparable scales of space and time has been investigated in 

[3]. It has been proven that the SF-based 2-D triangular 

interpolation method is invariant to coordinate scales. 

However, the invariance only holds after the mesh is 

generated. From the application point of view, one often needs 

to decide coordinate scales before meshing, especially the time 

scale for spatiotemporal interpolation. There is a lack of 

literature investigating the metrical integration of space and 

time prior to the mesh construction. For the rest of this section, 

we first show the proof of the invariance to coordinate scales 

of 3-D tetrahedral shape functions after meshing.  Then we 

investigate its variance to coordinate scales before meshing. 

B. Invariance to Coordinate Scaling After Meshing 

Lemma 1. 3-D tetrahedral shape functions are invariant to 
coordinate scaling after the mesh construction.  

Proof. Similar as the proof for 2-D triangular shape functions 
in [3], we obtain a proof for the invariance of 3-D tetrahedral 
shape functions to coordinate scaling after meshing as below. 

Since it is assumed that coordinate scaling happens after the 

mesh is constructed, each tetrahedron in the mesh has the same 

set of corner vertices before and after coordinate scaling. For a 

given tetrahedron, comparison can be made for the value of 

N1(x,y,t) in (3) and (4) before and after coordinate scaling. We 

first calculate the results of V1, V2, V3, and V4 in (4) using the 

coordinates of the corner vertices. Then we have 

2 3 4 2 4 3 3 2 4 3 4 3 4 2 3 4 3 3 3 4 4 3

2 4 4 2 2 3 3 2 2 4 2 3 3 4 3 2 4 3

4 2 2 3 2 4 3 2 3 4 4 2 4 3

2 3 4 2 3 4 3 2 4 3 2 4 4 2 3 4

1

2 3

[ (

) (

) ( ) ]

[(

( , , )

x y t x y t x y t x y t x y t x y t y t y t

y t

N

y t y t y t x x t x t x t x t x t

x t y x y x y x y x y x y x y t

x y t x t y

x y t

x y t x t y x y t x t y
1 3 4 1 3 4

3 1 4 3 1 4 4 1 3 4 1 3 1 2 4 1 2 4 2 1 4 2 1 4

4 1 2 4 1 2 1 2 3 1 2 3 2 1 3 2 1 3 3 1 2 3 1 2
)].

x y t x t y

x y t x t y x y t x t y x y t x t y x y t x t y

x y t x t y x y t x t y x y t x t y x y t x t y

 

Assume that the t dimension enlarges to n times of the original 

scale. Then N1 will be calculated as b after the scaling 

1

2 3 4 2 4 3 3 2 4 3 4 3 4 2 3 4 3 3 3 4

4 3 2 4 4 2 2 3 3 2 2 4 2 3 3 4 3 2

4 3 4 2 2 3 2 4 3 2 3 4 4 2 4 3

2 3 4 3 2

'

2 3 4

[ (

) (

) ( ) ]

[(

( , , )

nx y t nx y t nx y t nx y t nx y t nx y t ny t

ny t ny t ny t ny t ny t x nx t nx t nx t nx t

nx t nx t y x y x y x y x y x y x y nt

nx y t nx t y nx y

N x y t

t
4 3 2 4 4 2 3 4 2 3 1 3 4

1 3 4 3 1 4 3 1 4 4 1 3 4 1 3 1 2 4 1 2 4

2 1 4 2 1 4 4 1 2 4 1 2 1 2 3 1 2 3 2 1 3

2 1 3 3 1 2 3 1 2
)].

nx t y nx y t nx t y nx y t

nx t y nx y t nx t y nx y t nx t y nx y t nx t y

nx y t nx t y nx y t nx t y nx y t nx t y nx y t

nx t y nx y t nx t y

 

It is obvious that N1’(x,y,t) is the same as N1(x,y,t). 
Therefore N1 is invariant to t coordinate scaling after meshing. 
Invariance to x or y coordinate scaling is straightforward too. 
Similarly, we can prove that N2, N3 and N4 in (3) and (4) are 
also invariant to coordinate scaling after meshing.              □ 

C. Variance to Coordinate Scaling Before Meshing 

When the SF-based spatiotemporal interpolation using the 
extension approach is applied, an important question has been 
neglected in the literature: will different time scales lead to 
different meshes using the Delaunay triangulation method? 

In order to answer this question, a simple 2-D example can 
demonstrate whether coordinate scales affect the mesh result: 
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 We first used the 76 house locations of the real estate data 

in [3] and generated the 2-D Delaunay triangular mesh as 

shown in Fig. 3. 

 
 

 

 

 

 

 

 

 

 

Figure 3.  Delaunay triangulation result with the original coordinate scales. 

 Then we double the y-coordinate and generated the new 

mesh as shown in Fig. 4. 

 

Figure 4.  Delaunay triangulation result with the y coordinate values doubled. 

It is not hard to find that the two triangulations in Figures 3 
and 4 are not the same, which gives the proof to Lemma 2. In 
other words, the construction of a mesh is sensitive to the 
scales chosen for the dimensions. 

Lemma 2. 3-D tetrahedral shape functions are variant to 
coordinate scaling before the mesh construction.  

Different meshes will eventually lead to different 
interpolation results, because each point to interpolate may be 
located in different elements. Therefore, a reliable mesh 
constructed with an appropriate time scale is fundamental to 
the success of a SF-based spatiotemporal interpolation using 
the extension approach. 

III. APPLICATION 

Particle pollution (also known as “particulate matter”) in 
the air includes a mixture of solids and liquid droplets. Such 
particles are either emitted directly or form in the atmosphere 
when other pollutants react. Particles come in a wide range of 
sizes. The EPA (Environmental Protection Agency) is 
concerned about particles that are 10 micrometers in diameter 
or smaller because those are the particles that generally pass 
through the throat and nose and enter the lungs.  Ten 

micrometers are smaller than the width of a single human hair.  
Once inhaled, these particles can affect the heart and lungs and 
cause serious health effects. EPA groups particle pollution into 
two categories (http://www.epa.gov/air/particlepollution): 

 Inhalable coarse particles (PM10), such as those found near 
roadways and dusty industries, are larger than 2.5 
micrometers and smaller than 10 micrometers in diameter. 

 Fine particles (PM2.5), such as those found in smoke and 
haze, are 2.5 micrometers in diameter or smaller. These 
particles can be directly emitted from sources such as 
forest fires, or they can form when gases emitted from 
power plants, industries and automobiles. 

The data used in this study is daily PM2.5 concentration 
measured in 2009 by monitoring sites over the contiguous U.S. 

A. Experimental Data 

The PM2.5 data set with measurements. The data 
coverage contains point locations of the monitoring sites, the 
daily concentration level measurements of PM2.5, and the days 
of the measurements. We obtained a number of data sets from 
the U.S. EPA (http://www.epa.gov/ttn/airs/airsaqs/detaildata) 
and reorganized them into a data set with schema (id, x, y, 
[time], w), where x and y are the longitude and latitude 
coordinates of the monitoring sites, [time] is (year, month, day) 
when a PM2.5 measurement is taken, and w is the measured 
PM2.5 values.  The reorganized data set has some entries with 
PM2.5 values as zero, which means no measurements available 
at a particular site and on a particular day. After all the zero 
entries are filtered out, there are 146,125 daily measurements at 
955 monitoring sites, which are shown as stars (*) in Fig. 5. 

 

 

 

 

 

 

 
Figure 5.  Monitoring sites with PM2.5 measurements in 2009. 

The county data set with points to interpolate. The data 
set with locations to interpolate are the centroids of 3,109 
counties in the contiguous United States.  This data set has the 
format of (id, x, y). The estimated PM2.5 values at each county 
location and on each day in 2009 need to be computed. 
Therefore, there are 3,109 × 365 = 1,134,785 spatiotemporal 
PM2.5 values to interpolate. 

B. Applying SF-based Spatiotemporal Interpolation using an 

Appropriate Time Scale 

When implementing SF-based spatiotemporal interpolation, 
it is important to decide the time scale, as discussed in the 
previous section. The four time scales shown in Table 1 have 
been tested. 
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TABLE I.  FOUR TIMES SCALES TESTED FOR THE PM2.5 DATA SET. 

time ScaleA ScaleB 
(ScaleA/10) 

ScaleC 
(ScaleA/5) 

ScaleD 
(ScaleA/15) 

01/01/2009 1 0.1 0.2 0.067 

01/02/2009 2 0.2 0.4 0.133 

… … … … … 

12/31/2009 365 36.5 73 24.333 

 
In order to decide which is the best time scale to use for 

interpolation, 10-fold cross validation [23] was implemented 
using the following steps.  

1. The PM2.5 data set with measurements was randomly split 
into ten nearly equally sized folds. 

2. For each of the four time scales in Table 1, ten iterations of 
training and validation were performed such that within 
each iteration a different fold of the data was held-out for 
validation while the remaining nine folds were used for 
learning. Within each iteration, the following two actions 
have been taken: 

a. The spatiotemporal points in one fold (validation fold) 
were interpolated using the remaining nine folds 
(learning folds). Each point in the validation fold had 
both the original PM2.5 measurement and an estimated 
value, after the interpolation. 

b. Six accuracy assessments were made to compare the 
original and estimated PM2.5 values in the validation 
fold: MAE (Mean Absolute Error), MSE (Mean 
Squared Error), RMSE (Root Mean Squared Error), 
MARE (Mean Absolute Relative Error), MSRE (Mean 
Squared Relative Error) and RMSRE (Root Mean 
Squared Relative Error). They are defined as follows: 

2

1

2

1 1

( )

1

2 2

1 1

( )

( ) ( )

N

i i

i

N N

i i i i

i i

N

i i

I O
i

i

N

N N

i i i i

i i
i i

I O I O

MAE MSE
N N

I O

O

RMSE MARE
N

I O I O

O O

MSRE RMSRE
N N

    

where N is the number of observations, Ii’s are the 
interpolated values, and Oi’s are the original values.  

3. Since there are ten iterations and a different validation fold 
is chosen within each iteration, for each accuracy 
assessment, the average of ten accuracy results has been 

calculated.  Table 2 shows the average results of , 

, , ,  and . In Table 2, 

ScaleA gives different values for  and  
compared to the other scale results.  ScaleB, ScaleC and 
ScaleD yield similar results. Since ScaleC shows the best 

result for , we decided to use ScaleC for our PM2.5 
data interpolation. 

TABLE II.  ACCURACY ASSESSMENTS FOR THE PM2.5 DATA SET. 

Accuracy 

Assessment 

ScaleA ScaleB 
(ScaleA/10) 

ScaleC 
(ScaleA/5) 

ScaleD 
(ScaleA/15) 

 3.1538 3.5621 3.2526 3.7344 

 77.2331 74.5937 74.7896 73.0842 

 8.6521 8.4539 8.4200 8.3536 

 3.2384 0.4286 0.3866 0.4486 

 5462.2800 35.4845 36.6819 35.1620 

 73.3605 3.1898 3.4048 3.2607 

C. SF-based Interpolation Results 

The SF-based interpolation for the county-level PM2.5 data 
was implemented in Matlab using ScaleC.  A total of 1,134,785 
(3,109 × 365) PM2.5 values were computed for 3,109 county 
centroids in the contiguous U.S. on each day in 2009. 

IV. POPULATION EXPOSURE ANALYSIS 

The interpolated county-level PM2.5 was linked to 2009 
county population data. The population with a risky PM2.5 
exposure was estimated.  The revised EPA National Ambient 
Air Quality Standards for PM2.5 in 2006 was adopted here 
(http://www.epa.gov/pm/standards.html): 

 35 micrograms per cubic meter (35 µg/m
3
) for 24-hours, 

 15 micrograms per cubic meter (15 µg/m
3
) for the annual 

mean. 

The results from our spatiotemporal interpolation suggest: 

 there is a population of 33,147,335 (33.1million) residing 
in counties with an annual PM2.5 exceeding the national 
standard of $15 µg/m

3
 and 

 more than one third of the U.S. population (111,752,669) 
residing in counties where PM2.5 exceeded 35 µg/m

3
 for at 

least one day in 2009. 

Fig. 6 shows the geographic distribution of such counties 
with the annual and/or 24-hour PM2.5 exceeding EPA National 
Ambient Air Quality Standards. 

 
Figure 6.  Geographic distribution of counties in the contiguous United States 
that exceeded the PM2.5 air quality standards in 2009. 
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V. FUTURE WORK 

First, we tested only four possible time measurement scales 
and chose the best one for the PM2.5 air pollution data. A more 
systematic and effective method should however be developed 
to help decide the most appropriate time scale that should be 
chosen in a particular application. 

Second, the use of county centroids in this study could have 
caused biases in county population level exposure to PM2.5. In 
future studies, a finer geographic resolution, such as census 
block groups and tracts, may provide a more solid base for 
evaluating population exposure to air pollutants.  

Third, it would be of great value to link air quality with 
population health outcomes, such as asthma and other 
respiratory diseases. Such future study will hopefully further 
support the utility of our method presented. 

DISCLAIMER 

The findings and conclusions in this report are those of the 
authors and do not necessarily represent the official position of 
the Centers for Disease Control and Prevention (CDC), USA. 
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