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ABSTRACT 
A custom algorithm was developed to simulate adaptive bone 

remodeling. The process of adaptive bone remodeling can be 

simulated with a self-optimizing finite element method (FEM). The 

basic remodeling rule attempts to obtain a constant value for the 

strain energy per unit bone mass, by adapting density. The precise 

solution is dependent on the loads, initial conditions and the 

parameters in the remodeling rule.  The aim of this study was to 

identify how the bone density distribution of the proximal femur 

was affected by parameters which govern the remodeling process. 

The forces at different phases of the gait cycle were applied as 

boundary conditions. The bone density distributions from these 

forces were averaged to estimate the density distribution in the 

proximal femur. The effect of varying the spatial influence 

function, and the influence range on the converged solution were 

investigated. It was shown that varying these parameters within 

reasonable upper and lower bounds had very little impact on the 

qualitative form of the converged solution.  In all cases, the 

solutions obtained are comparable with the actual density in the 

proximal femur, as measured by DEXA scans. 
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INTRODUCTION 

Research regarding bone structures can be traced back to 

Galileo (1638), who is credited with applying his understanding 

of beam bending to the mechanical analysis of bone. Wolff 

(1892), observed that bone is reshaped in response to the forces 

acting on it (Wolff’s law). Several investigations have been 

made to augment and verify ‘Wolff’s Law’ by rigorous 

mathematical procedures. Roux (1881) suggested that bone 

cells could sense and respond to mechanical stress. Wolff’s law 

is still the basis of modern theories relating bone cellular 

adaptation to stress.  

One of the fundamental theories of bone remodeling is the 

theory of adaptive elasticity as suggested by Cowin et al. 

(1976), Hegedus et al. (1976) and Firoozbakhsh et al. (1981). 

This theory is based on general continuum mechanics 

principles. The computational implementation of this theory 

using finite element modeling was conducted by Hart et al. 

(1984). Huiskes et al. (1987, 1992), Kerner et al. (1999) and 

Turner et al. (2005) utilized a homeostatic zone in their 

adaptive bone density studies. The essential idea was that above 

a certain level of strain or strain energy, bone density was 

increased and below a certain criteria, bone density was 

decreased. The bone structure remains unchanged, between 

these two levels. Weinans et al. (1992), Xinghua et al. (2002, 

2005) considered the strain energy density (SED) as the 

stimulus and defined the bone density adaptation algorithm as,  
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iU  is apparent strain energy density 

(SED) for loading case i  and n  is the total number of loading 

cases, B and reference value k are constants. 
cbρ  is the maximal 

density of bone which usually considered as the density of 

cortical bone. 

 

Mullender et al (1994), proposed that the osteocytes act as 

sensors. Each sensor produces a stimulus for mass regulation in 

its vicinity, and its effect attenuates exponentially from the 

sensor’s location. The concept of a spatial influence function 

)(rf i
 was introduced, which was used to describe the 

attenuation of stimulus between osteocyte i  and location r . 

Each actor cell received stimulus from all sensor cells. The 

contribution of each sensor to the actor cell depends on their 

location respect to the actor cell.  

 

The purpose of this study is to obtain a better understanding of 

the influence of important parameters on the behavior of the 

strain energy-adaptive bone-remodeling simulation. In 

particular, the density distribution, stability and convergence of 

the remodeling rule are investigated by changing the initial 

conditions, spatial influence function )(rf i
, and its parameters. 

 

 

ADAPTIVE MODELING METHOD 

In our present paper, we have studied the effects of different 

parameters in the remodeling rule. The bone density 

remodeling is adopted from Huiskes et al. (1987, 1992) and 

Xinghua et al. (2002, 2005), and is presented as,  
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where N is the number of sensor cells and )(rf i
 is a spatial 

influence function which brings the effect of density change 

from a sensor location to adjacent cells, i.e. ][
)( R

r

i

i

erf
−

= ; ir  is 

the distance between osteocyte i  and location r and R  is the 

influence distance. Here we have taken a range for R values in 

order to understand its effect on the converged bone density and 

the convergence rate. β  is called a comparative coefficient, 

describing the comparison of mechanical stimulus 
ia iU ρ)( in 

each sensor cell with reference value k . 
ia iU ρ)(  is measured 

per element, assuming one sensor per element, and the apparent 

density is also adapted per element. )(tB is the remodeling 

coefficient, which decreases gradually with the iteration time. 

α  is the order of non-linear remodeling equation and it is a 

constant during the iteration process. For the finite element 

procedure, the ANSYS finite element code was used (ANSYS, 

Inc., Southpointe, 275 Technology Drive, Canonsburg, PA, 

15317). 

 

The coefficient )(tB  and other parameters for the initial 

investigation were adopted from the work by Xinghua et al. 

(2002, 2005),  
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The minimal density was assumed to be 301.0 cmgr , 

representing complete resorption of an element. The maximal 

density was taken as 374.1 cmgr which is the apparent density 

of cortical bone. The density of trabecular, or cancellous, bone 

varies between 0.01 – 1.74 gr/cm
3
.   

 

The value of “ R ” in spatial function has a significant effect on 

the convergence. The convergence was not achieved with 

improper R  selection which will be discussed later in more 

detail. The effect of R  on )(rf i
 function is shown in Fig. 1.  

Each element has three possibilities to converge and reach 

remodeling equilibrium: (1) the bone is completely resorbed (
3

min 01.0 cmgr== ρρ ); (2) the bone becomes cortical (

3

max 74.1 cmgr== ρρ ); or (3) the bone remains cancellous 

with an apparent density satisfying Eq. (2). Hence, the 

remodeling equilibrium condition determined from bone 

remodeling theory is  
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A two-dimensional finite element model of a proximal femur 

was constructed as shown in Fig. 2. The model was meshed by 

2628 four nodes elements. In this study, we considered loading 

during the loading response, mid-stance, and push off phases of 

the gait cycle (stance phase).  These were also considered by 

Huiskes et al. (1987, 1992) and Xinghua et al. (2002, 2005).  

However, this study is novel, in that we allow the solution from 

each loading phase to converge and then average the solutions 

to obtain the final bone density distribution.  The adaptive bone 

remodeling algorithm is implemented via the APDL 

programming language and takes input from FEA software. 

Huiskes et al. (1987, 1992) and Xinghua et al. (2002, 2005) 

averaged the strain energy density from all phases of the gait 

cycle and then applied the adaptive algorithm. Our results show 

that this scheme is more effective than those proposed by 

Huiskes et al. (1987, 1992) and Xinghua et al. (2002, 2005), in 

smoothing sharp density gradients present in prior work.   A 

typical loading condition to the proximal femur corresponding 

to the heel strike is shown in Fig. 2. This loading was used in 

the finite element analyses and adaptive bone density 

algorithms. Table 1 shows the magnitude of loads at various 

points in the gait cycle.  

 

 

Table 1. Applied Loads to the proximal femur at different 

phases of the gait cycle based on Bitsakos et al. (2005) 
Joint Contact & 

Muscle Forces 

Muscle force components (N) 

 10% gait cycle 

(loading 

response) 

30% gait cycle 

(mid stance) 

45% gait cycle 

(push off) 

X Y X Y X Y 

Hip Joint contact 

force 

-

857.3 

-

1722.

5 

-

861.3 

-

2056.

9 

-

613.7 

-

2868.

7 

Piriformis 75.8 35.5 113.4 38 110.5 22.4 

Gluteus medius 184.5 260 160.8 220.3 241 297.8 

Gluteus minimus 43.9 60.4 85.3 120 98.8 131.6 

 

 

All of the muscle loadings, except gluteus minimus, were 

distributed over muscle attachment areas to prevent excessive 

peak stresses. The gluteus minimus force was distributed 

uniformly over an area of 1 cm
2
 around its resultant force 

location (P10 in Fig. 3). Table 2 shows the location of the 

resultant forces and the cross sectional area that the force was 

distributed over (the cross sectional area is represented by the 

square cross section length) . This is illustrated in Fig. 3.  The 

locations were taken from work by McMinn et al. (1984). 
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Table 2. Applied Loads coordinates based on McMinn et al. 

(1984) presented in Fig. 3 
Joint Contact 

& Muscle 

Force 

 Location (cm) Distribution 

length (cm) 

  X Y  

 P1 10.37 9.43  

Hip Joint 

contact force 

P2 9.52 10.08 2.15 

 P3 8.49 10.33  

 P4 3.52 8.21  

Piriformis P5 3.31 8.34 0.52 

 P6 3.08 8.48  

 P7 2.84 8.39  

Gluteus 

medius 

P8 2.31 8.10 1.07 

 P9 1.96 7.80  

Gluteus 

minimus 

P10 1.41 6.06  

 

Using Eq. (2), and considering the maximum and minimum of 

the bone density as the limiting factors of the remodeling 

algorithm, the bone density in each time step t∆  was updated 

as  
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Here we assumed 0.1=∆t . The time step was chosen to 

guarantee that it was small enough, not to affect the end result 

in a significant way, and reduce iteration time. 

 

In the first phase of simulation analysis the process starts with a 

uniform density distribution of 3

0 8.0 cmgr=ρ . The Poisson’s 

ratio was taken as 0.3 in all iterations. The following relation 

between module of elasticity and density was considered after 

Carter et al. (1977) 
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The total mass (M) of the structure was calculated after every 

time step, from  
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where iV  and iρ  are the volume and density of element i , and 

n  is the number of elements in the structure. The convergence 

was assumed reached when the mass of the structure was 

stable.  In most cases, convergence was achieved after about 

200 iterations. It should be noted again that the objective of this 

remodeling rule was to achieve kU a =ρ   for every element in 

the structure. For those elements in which the algorithm 

indicated that the bone should be resorbed completely, the 

density was assigned a minimum number, (

3

min 01.0 cmgr== ρρ ). For the elements that the algorithm 

indicated the bone density should be greater than the cortical 

bone density, the maximum bone density was assigned, (
3

max 74.1 cmgr== ρρ ). 

 

RESULTS AND DISCUSSIONS 

A typical converged density distribution with a set of 

parameters is shown in Fig. 4 (

cmRerfcmgr R
r

i

i

1.0,)(,5.1,8.0
][3

0 ====
−

αρ ). 

The iterations continued until the mass of structure reached a 

constant. To understand the local mass redistributions which 

were not accounted for by considering the total mass in the 

convergence criteria, the change of density in each element 

after each iteration was evaluated. This approach ensures that 

the convergence is achieved both globally as well as locally.  

The results show that the bone density distribution obtained 

from the adaptive bone remodeling procedure is comparable 

with actual proximal femur bone density taken from DEXA 

data. 

 

The effect of different influence functions on converged 

density pattern 

Different remodeling algorithms may produce different density 

distribution patterns and convergence rates. A realistic density 

distribution comparable with the experimental data such as CT-

scan or DEXA data with a high convergence rate may be 

affected by the choice of influence functions. In this research 

the effect of different coefficients and factors in the remodeling 

algorithm, (Eq. 2), on the bone density distribution was 

investigated.  

As we discussed, “ R ” which is the influence range of the 

influence function )(rf i
 (Eq. 2) has a significant effect on the 

convergence. Here we considered eight different values for “ R

” ( R =0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3 and 0.4cm) and 

investigated its effect on convergence rate and density 

distribution pattern. Furthermore, we studied the effect of using 

different influence functions, )(rf i
. A parabolic function instead 

of the exponential function was considered for this purpose. 

The parabolic functions considered in this investigation are 

shown in Fig. 9 and presented as; 
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The effect of the influence parameter, R
~

, on the bone density 

distribution and convergence rate was also investigated. R
~

 

values considered in this investigation were 0.0001, 0.01, 0.1, 

0.2, 0.3 and 1.0cm. The density distributions obtained by these 

two different functions (parabolic and exponential) were 

comparable with each other when their influence distances (R 

and R
~

) are almost equal.  
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The converged density distribution pattern of proximal femur 

for different influence range parameters, R , in the influence 

function )(rf i
 and their mass convergence are shown in Fig. 10 

and 11, respectively. The results indicate that there is not a 

significant difference between converged density distribution 

patterns for R  values less than 0.3cm. However, the 

remodeling rule with the same time-step did not converge for 

R >0.3. The same behavior was observed when using parabolic 

functions.  The converged density distribution pattern of 

proximal femur for different influence parameter, R
~

, in the 

parabolic influence function and their mass convergence are 

presented in Fig. 12 and 13 respectively. The divergence of 

remodeling algorithm occurred when R
~

 , was greater than 1 

cm.  

 

CONCLUSIONS 

A two dimensional adaptive bone remodeling was developed to 

predict bone density of the proximal femur. The influence of 

different influence functions and parameters in the adaptive 

modeling on the converged bone density distribution and 

convergence rate was investigated. The results show that both 

influence functions (exponential and parabolic) and influence 

range do not have a significant effect on the converged density 

distribution.  However, the influence range R and R
~

 should be 

chosen appropriately respect to element size for achieving 

convergence. It must be noted that R and R
~

 are the main 

factors controlling the impact on the neighboring element.  

Therefore, it is expected to have a significant effect on 

convergence.   

 

Three important phases of the gait cycle, heel strike, mid 

stance, and push off, were employed as boundary conditions to 

the simulation. The bone density distribution of the proximal 

femur was obtained by averaging the bone density distributions 

obtained from these density distributions. The density 

distributions obtained by this procedure predicts a reasonably 

accurate density distribution, with an intramedullary canal and 

Ward’s triangle in the femoral head.  
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Fig. 1. The effect of spatial influence function “ )(rf i ” on 

adjacent elements for different influence distance “ R ” 

 

 

 
Fig. 2. Boundary condition and forces applied to the proximal 

Femur in the remodeling algorithm at 10% of the gait cycle 

 

 

 

 
Fig. 3. Muscle loading and Hip joint contact force 

locations 

 

 

Fig. 4. Typical density distribution in proximal femur in 

the last iteration with selected parameters and function of 
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Fig. 5. The effect of parabolic influence function “ )(rf i ”on 

adjacent elements for different influence distance “ R ” 

 

 

 

 

Fig. 6. The effect of influence distance “ R ” on the converged 

density distribution of proximal femur with                             
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Fig. 7. The effect of influence distance “ R ” on the 

convergence of remodeling algorithm with                                  
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Fig. 12. The effect of influence distance “ R
~

” on the converged 

density distribution of proximal femur with                                   
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Fig. 13. The effect of influence distance “ R
~

” on the 

convergence of remodeling algorithm with                                           
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Fig. 15. Average density distribution of 10% 
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