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Abstract: In a Multicore architecture, each 

package consists of large number of processors. This 
increase in processor core brings new evolution in 
parallel computing. Besides enormous performance 
enhancement, this multicore package injects lot of 
challenges and opportunities on the operating system 
scheduling point of view. We know that multiagent 
system is concerned with the development and 
analysis of optimization problems. The main objective 
of multiagent system is to invent some methodologies 
that make the developer to build complex systems that 
can be used to solve sophisticated problems. This is 
difficult for an individual agent to solve. In this paper 
we combine the AMAS theory of multiagent system 
with the scheduler of operating system to develop a 
new process scheduling algorithm for multicore 
architecture. This multiagent based scheduling 
algorithm promises in minimizing the average waiting 
time of the processes in the centralized queue and also 
reduces the task of the scheduler. We actually 
modified and simulated the linux 2.6.11 kernel process 
scheduler to incorporate the multiagent system 
concept. The comparison is made for different number 
of cores with multiple combinations of process and the 
results are shown for average waiting time Vs number 
of cores in the centralized queue.       
 

Keywords: multicore, multiagent, centralized 
queue, average waiting time, scheduling, processor 
agent, middle agent, dispatcher.  
 
1. Introduction 
    Multicore architectures, which include several 
processors on a single chip, are being widely touted as 
a solution to serial execution problems currently 
limiting single-core designs. In most proposed 
multicore platforms, different cores share the common 
memory. High performance on multicore processors 
requires that schedulers be reinvented. Traditional 
schedulers focus on keeping execution units busy by 
assigning each core a thread to run. Schedulers ought 

to focus, however, on high utilization of the execution 
of cores, to reduce the idle of processors. Multi-core 
processors do, however, present a new challenge that 
will need to be met if they are to live up to 
expectations. Since multiple cores are most efficiently 
used (and cost effective) when each is executing one 
process, organizations will likely want to run one job 
per core. But many of today’s multi-core processors 
share the front side bus as well as the last level of 
cache. Because of this, it's entirely possible for one 
memory-intensive job to saturate the shared memory 
bus resulting in degraded performance for all the jobs 
running on that processor. And as the number of cores 
per processor and the number of threaded applications 
increase, the performance of more and more 
applications will be limited by the processor’s 

memory bandwidth. Schedulers in today’s operating 

systems have the primary goal of keeping all cores 
busy executing some runnable process. One technique 
that mitigates this limitation is to intelligently 
schedule jobs onto these processors with the help of 
software approach like multiagents.  
 
    The Paper is organized as follows. Section 2 
reviews related work. In Section 3 we introduce the 
multiagent system interface with multicore 
architecture. This describes Middle Agent system 
implementation, process scheduler organization and 
process dispatcher organization. In section 4 we 
discuss the evaluation and results and section 5 
presents future enhancements with multicores. Finally, 
section 6 concludes the paper.  
 
2. Background and Related Work 
    The research on contention for shared resources [1] 
significantly impedes the efficient operation of 
multicore systems has provided new methods for 
mitigating contention via scheduling 
algorithms. Addressing shared resource contention in 
multicore processors via scheduling [2] investigate 
how and to what extent contention for shared resource 
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can be mitigated via thread scheduling. The research 
on the design and implementation of a cache-aware 
multicore real-time scheduler [3] discusses the 
memory limitations for real time systems. The paper 
on AMPS [4] presents, an operating system scheduler 
that efficiently supports both SMP-and NUMA-style 
performance-asymmetric architectures. AMPS 
contains three components: asymmetry-aware load 
balancing, faster-core-first scheduling, and NUMA-
aware migration. 
In Partitioned Fixed-Priority Preemptive Scheduling 
[5], the problem of scheduling periodic real-time tasks 
on multicore processors is considered. Specifically, 
they focus on the partitioned (static binding) approach, 
which statically allocates each task to one processing 
core. 
  
    The Cache-Fair Thread Scheduling [6] algorithm 
reduces the effects of unequal cpu cache sharing that 
occur on the many core processors and cause unfair 
cpu sharing, priority inversion, and inadequate cpu 
accounting. The multiprocessor scheduling to 
minimize flow time with resource augmentation 
algorithm [7] just allocates each incoming job to a 
random machine algorithm which is constant 
competitive for minimizing flow time with arbitrarily 
small resource augmentation. In parallel task 
scheduling [8] mechanism, it was addressed that the 
opposite issue of whether tasks can be encouraged to 
be co-scheduled. For example, they tried to co-
schedule a set of tasks that share a common working 
were each 1/2 and perfect parallelism ensured. 
 
    The effectiveness of multicore scheduling [9] is 
analyzed using performance counters and they proved 
the impact of scheduling decisions on dynamic task 
performance. Performance behavior is analyzed 
utilizing support workloads from SPECWeb 2005 on a 
multicore hardware platform with an Apache web 
server. The real-time scheduling on multicore 
platforms [10] is a well-studied problem in the 
literature. The scheduling algorithms developed for 
these problems are classified as partitioned (static 
binding) and global (dynamic binding) approaches, 
with each category having its own merits and de-
merits. So far we have analyzed some of the multicore 
scheduling approaches. Now we briefly describe the 
self-organization of multiagents, which plays a vital 
role in our multicore scheduling algorithm.  
 
    Multi-Agent Systems (MAS) have attracted much 
attention as means of developing applications where it 
is beneficial to define function through many 
autonomous elements. Mechanisms of selforganisation 
are useful because agents can be organised into 
configurations for useful application without imposing 
external centralized controls. The paper [11] discusses 
several different mechanisms for generating self-
organisation in multi-agent systems [12]. For several 
years the SMAC (for Cooperative MAS) team has 
studied self-organisation as a means to get rid of the 
complexity and openness of computing applications 

[13]. A theory has been proposed (called AMAS for 
Adaptive Multi-Agent Systems) in which cooperation 
is the engine thanks to which the system self-organizes 
for adapting to changes coming from its environment. 
Cooperation in this context is defined by three meta-
rules: (1) perceived signals are understood without 
ambiguity, (2) received information is useful for the 
agent’s reasoning, and (3) reasoning leads to useful 

actions toward other agents. Interactions between 
agents of the system depend only on the local view 
they have and their ability to cooperate with each 
other.  
 
3. Multicore Architecture with Multiagent   
    System 
   Every processor in the multicore architecture (Fig.1) 
has an agent called as Processor Agent (PA). The 
central Middle Agent (MA) will actually interact with 
the scheduler. It is common for all Processor Agents. 
 
    Every PA maintains the following information in 
PSIB (Processor Status Information Block). It is 
similar to the PCB (Process Control Block) of the 
traditional operating system. Processor Status may be 
considered as busy or idle (If it is assigned with the 
process then it will be busy otherwise idle) Process 
name can be P1or P2 etc., if it is busy. 0 if it is idle. 
Process Status could be ready or running or completed 
and the burst time is the execution time of the process. 
 
 
 
   Multicore Architecture - Processor and 
agents 
 
 
 
 
 
 
 
 
  
 Figure 1. Multicore architecture with multiagent        
                                         system 
 
As we are combining the concept of multiagent system 
with multicore architecture, the processor 
characteristics are mentioned as a function of 
Performance measure, Environment, Actuators, 
Sensors (PEAS environment), which is described in 
table.1 given below. This describes the basic reflexive 
model of the agent system. 
 
 
 
 
 
 
        Table 1. Multicore in PEAS environment  

Middle Agent 
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3.1 The Process Scheduler Organization 

    Shared memory multicore system consists of a 
ready queue where all the processes that are ready for 
execution will be available. cpu scheduling is 
remarkably similar to other types of scheduling that 
have been studied for years. In this paper we take a 
model of the timesharing system, the criteria focused 
on providing an equitable share of the processor per 
unit time to each user or process is to minimize the 
average waiting time. The criteria for selecting the 
scheduling strategy will depend on the goals of the 
OS. These goals may emphasize priorities of the 
processes, fairness, overall resource utilization, 
maximized throughput and average waiting time. 
Scheduling algorithms for modern operating systems 
ultimately use internal properties.  
 
 
 
 
 
 
     
 
 
   
  
 
Figure 2. Shared memory with a ready queue 
 
In our approach (Fig.2), the scheduler selects any one 
of the processes from the ready queue according to the 
priority based RR scheduling algorithm.  

3.2 The Process Dispatcher Organization 

    After getting the Processor Agent name, process 
name and burst time from the MA the dispatcher just 
forwards the information to the Processor Agent. The 
PA that receives the information from the dispatcher 
will update its PSIB. The process will be allocated to 
the cpu by the dispatcher by performing context 
switch from itself to the selected process. 
 

    In the version Linux scheduler, the dispatcher is a 
kernal function, schedule(). This function gets called 
from other system functions, as well as after every 
system call and normal interrupt. Each time the 
dispatcher is called, it performs periodic work, 
inspects the set of tasks in the TASK_RUNNING 
state, chooses one to execute according to the 
scheduling policy, and then dispatches the task to run 
on the CPU until an interrupt occurs. The policy is a 
variant of RR scheduling. It uses the conventional 
time slicing mechanisms to place the upper bound on 
the amount of time a task can use the cpu continuously 
if other tasks are waiting to use it. A dynamic priority 
is computed on the basis of the value assigned to the 
task by the nice() or setpriority() system calls, and by 
the amount of  time that a process has been waiting for 
the cpu to become available. The counter field in the 
task descriptor becomes the key component in 
determining the dynamic priority of the task.  

3.3 Middle Agent System Implementation 

    The central common Middle Agent (Fig.3) 
maintains two tables. Initially all the PA must send a 
request to the MA to register with it (one time only the 
registration is made). Middle Agent is the central heart 
of the scheduling process. It communicates with the 
scheduler for getting the process to be scheduled on 
large number of processor. It also interacts with the 
dispatcher whose function is to assign the process to 
the different cores.  
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
      Figure 3. Middle Agent system communication 
 
 

3.3.1 Agent Processor Information Table (APIT) 

   When the PA sends a register request to middle 
agent (MA), the relevant information is stored in the 
Agent Processor Information Table (Refer Table.2). 
Initially all the entries for the processor state will be 
idle. Once the scheduler selects the first set of 
processes based on RR scheduling algorithm, it then 
contacts with MA to give the process name and the 
burst time and the state of the process will be changed 
to busy by the MA in the following table. (So initially 
the assignment will be FIFO order (i.e agent 
registration will be in FIFO only). After updating the 
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table MA sends the corresponding PA name and 
process name to the Dispatcher. The dispatcher is 
finally responsible for allocating the processes to the 
respective processor via processor agents and the 
corresponding table is also updated. The Agent 
processor information table can be maintained as part 
of the operating system process management part of 
the scheduler. Linked list representation is a preferred 
data structure used for the arrangement of processes 
on the stipulated table. 
 
   Table 2. APIT- Agent Processor Information Table 
 

 
 
3.3.2 Agent Request Table (ARQT) 
 
    Whenever the processor completes the first set of 
tasks, the agents of the processor PA immediately 
send a process request message to the MA. The MA 
after receiving the request message from the PA stores 
the information in ARQT-Agent Request Table, which 
can be implemented as a queue (Refer Table.3). 
Before storing the information MA has to check APIT 
to see whether the requested agent has already 
registered with the MA. Initially the process name will 
be 0 because we received only the request message 
from the PA. The activities will be repeated again. 
When the scheduler is ready it sends the job to the MA 
and the MA stores the process name and burst time in 
the following table. It then sends the corresponding 
PA and process name along with burst time to the 
dispatcher.  
 
        Table 3. ARQT- Agent Request Table  
 
 
4. Evaluation and Results 
    In this section, we present a performance analysis of 
our scheduling algorithm using a gcc compiler and 
linux kernal version 2.6.11. The results show that 
there is a linear decrease in the average waiting time 
as we increase the number of cores. Our scheduling 
algorithm results in keeping the processor busy and 
reduces the average waiting time of the processes in 
the centralized queue. As an initial phase, our 
algorithm partitions every process into small sub tasks. 
Suppose a process, Pi,j  is being decomposed into k 
smaller sub tasks Pi,j,1  Pi,j,2 …… Pi,j ,k,  where ijl  is the 
service time for Pijl  Each Pijl is intended to be executed 
as uninterrupted processing by the original thread Pi,j  , 
even though a preemptive scheduler will divide each 

ijl   into time quanta when it schedules Pijl . Now the 
total service time for Pi,j  process can be written as 

( Pi,j )= I,j,1+ I,j,2 + ……… i,j,k 
In every core we calculate the waiting time of the 
process as previous process execution time. The 
execution time of the previous process is calculated as 
follows: 

PET = PBT + i + i + i + i    
Where PET  is the execution time of the process, PBT is 
the burst time of the process, i  is the scheduler 
selection time, i is the Processor Agent request time, 

i is the Middle Agent response time, i  is the 
dispatcher updation time. The average waiting time of 
the process is calculated as the sum of all the process 
waiting time divided by the number of processes. 

PAWT= (i=1..n) P(i=1..n) / N 
Here when we say the process P it indicates the set of 
subtasks of the given process. For our simulation we 
have taken 1000 processes as a sample and tested 
against 25, 50, 75, 100, 125, 150, 175, 200, 225, 250 
cores. In Fig.4, the average waiting time of 1000 
processes is obtained for the selected number of cores. 
We discovered that the average waiting time decreases 
slowly with the increase of the number of cores. 

 

  
Figure 4. Number of cores vs average waiting time for 

1000 processes 
5. Future Enhancements  
   Although the results from the linux kernal version 
2.6.11analysis in the previous section are encouraging, 
there are many open questions. Even though the 

improvement (average waiting time reduction) 
possible with number of cores, for some workloads 
there is a limitation by the following properties of the 
hardware: the high off-chip memory bandwidth, the 
high cost to migrate a process, the small aggregate size 
of on-chip memory, and the limited ability of the 
software (agents) to control hardware caches. We 
expect future multicores to adjust some of these 
properties in favor of our multiagents based 
scheduling. Future multicores will likely have a larger 
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ratio of compute cycles to off-chip memory bandwidth 
and can produce better results with our algorithm. 
 
6. Conclusion 
    This paper has argued that multicore processors 
pose unique scheduling problems that require a 
multiagent based software approach that utilizes the 
large number processors very effectively. We also 
proved that lot of drastic enhancements in the 
traditional scheduler that optimizes for cpu cycle 
utilization. We discovered that the average waiting 
time decreases slowly with the increase of the number 
of cores. As a conclusion our new novel approach 
eliminates the complexity of the hardware and 
improved the cpu utilization to the maximum level. 
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