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Abstract—The Smith-Waterman algorithm is a common local 
sequence alignment method which gives a high accuracy. 
However, it needs a high capacity of computation and a large 
amount of storage memory, so implementations based on 
common computing systems are impractical. Here, we present 
our implementation of the Smith-Waterman algorithm on a 
cluster including graphics cards (GPU cluster) – 
swGPUCluster. The algorithm implementation is tested on a 
cluster of two nodes: a node is equipped with two dual graphics 
cards NVIDIA GeForce GTX 295, the other node includes a 
dual graphics cards NVIDIA GeForce 295 and a Tesla C1060 
card. Depending on the length of query sequences, the 
swGPUCluster performance increases from 37.33 GCUPS to 
46.71 GCUPS. This result demonstrates the great computing 
power of GPUs and their high applicability in the 
bioinformatics field.  

Keywords: local sequence alignment; smith-waterman; cuda; 
gpu cluster. 

I.  INTRODUCTION 

Proteins and DNAs that have a significant biological 
relationship to one another often share only isolated regions 
of sequence similarity. For identifying relationships of this 
nature, the ability to find local regions of optimal similarity 
is advantageous over global alignments that optimize the 
overall alignment of two entire sequences. Sequence 
alignment is one of the typical sequence data analysis 
problems in bioinformatics. It is a way of arranging the 
sequences of DNA, RNA, or protein to identify regions of 
similarity that may be a consequence of functional, 
structural, or evolutionary relationships between the 
sequences. Figure 1 is an example of the result of a two 
sequences alignment where some gaps are inserted into the 
first sequence to achieve the biggest region of similarity 
between them.  

 

Figure 1.  Example of an alignment for two sequences 

 Very short or very similar sequences can be aligned by 
hand. However, most interesting problems require the 
alignment of lengthy, highly variable or extremely 
numerous sequences that cannot be aligned solely by human 
effort. Instead, human knowledge is applied in constructing 
algorithms to produce high-quality sequence alignments, 
and occasionally in adjusting the final results to reflect 
patterns that are difficult to represent algorithmically 
(especially in the case of nucleotide sequences). 
Computational approaches to sequence alignment generally 
fall into two categories: global alignments and local 
alignments. Calculating a global alignment is a form of 
global optimization that "forces" the alignment to span the 
entire length of all query sequences. By contrast, local 
alignments identify regions of similarity within long 
sequences that are often widely divergent overall. Local 
alignments are often preferable, but can be more difficult to 
calculate because of the additional challenge of identifying 
the regions of similarity. A variety of computational 
algorithms have been applied to the sequence alignment 
problem, including slow but formally optimizing methods 
like dynamic programming, and efficient, but not as 
thorough heuristic algorithms or probabilistic methods 
designed for large-scale database search. 

.Currently, there are many researches of resolving the 
sequence alignment problem, mostly focus on three main 
branches: methods using point matrixes, dynamic 
programming methods and the BLAST method. For the 
global sequence alignment problem, the most developed 
algorithm is the Needleman-Wunsch [1]. This is a global 
sequence alignment method based on dynamic 
programming, to calculate points for the alignment process, 
using the substitution matrix PAM250 or BLOSUM62 for 
protein sequences. This method ensures, from the 
mathematics side of view that finding an optimal answer 
with a specific mechanism is possible, but it has a large 
amount of calculations. On the other hand, the BLAST 
algorithm [2] allows searching subsequences (a sequences 
database) which are similar to the given sequence (the query 
sequence). BLAST uses the heuristic approach so the speed 
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is remarkably fast when performing for gene banks. This 
has made BLAST the most popular tool in bioinformatics. 
Although the speed is lower than that of the BLAST 
algorithm,  but with a higher accuracy, the Smith – 
Waterman algorithm is considered as one of the most 
popular algorithms of solving the local sequence alignment 
problem. Since the execution of the Smith – Waterman 
algorithm requires a large amount of calculation and storage 
memory, due to huge biological data together with the 
dynamic programming algorithm, the implementation 
process is unacceptable for common computing systems. 
Another tendency is being developed for the next generation 
computers: multi-core structures, which help solving a lot of 
problems requiring large computing power, including 
bioinformatics. In this paper, we perform parallelism for the 
Smith Waterman algorithm on a multi-core cluster equipped 
with NVIDIA’s graphics cards (called a GPU cluster). 

Results of this experiment have shown that the speed of 
implementing the algorithm has increased significantly 
compared to executions on other common computing 
environments. This has proved the extremely high 
computing power of graphics cards and their applicability in 
bioinformatics. 

II. THE SMITH-WATERMAN ALGORITHM  
AND RELATED WORKS  

A. The Smith-Waterman Algorithm  

In the Smith – Waterman algorithm, the alignment 
process is executed by aligning every pairs of characters in 
the two sequences. The point for each pair depends on the 
followings: two characters are a match, two characters are a 
mismatch and points for adding or removing gaps (or 
penalties). The result of local alignment is that we can find 
out segments having the highest similarity between two 
sequences. The algorithm is based on the dynamic 
programming method to calculate the point of the alignment 
process. The Smith – Waterman algorithm is developed to 
identify the optimal local alignment answer of two 
biological sequences by grading the similarity using the 
dynamic programming method. Suppose that two sequences 
Sa and Sb  have the following lengths: la and lb, the Smith 
– Waterman algorithm calculates the match points of  two 
sequences, using the matrix H(i,j) of two subsequences 
Sai, Sbj (sequences end at points i,j of Sa, Sb ; 
0<i<la; 0<j<lb). H(i,j) is calculated by the 
following  recursive formula: 
E(i,j) = max{E(i,j-1) – g, H(i,j-1) – g - e} 

F(i,j) = max{F(i-1,j) – g, H(i-1,j) – g - e} 

H(i,j) = max{0,E(i,j),F(i,j),H(i-1,j-1) + 

matScore[Sa(i),Sb(j)]} 

H(i,0) = H(0,j) = E(i,0) = F(0,j) = 0; 0<i<la, 

0<j<lb 

Figure 2.  Calculation of the matrix H 

Where matScore is the scoring matrix, g is the penalty 
for an opening gap, e is the penalty for lengthen gaps. The 

maximum point of the local alignment is the maximum 
value in the matrix H. Figure 3 describes the process of 
calculating the matrix H. In this figure, we can see that each 
cell in the matrix is calculated based on values of three other 
cells. If we number sub-diagonals of the matrix H, then each 
cell on the sub-diagonal ith depends on cells of the sub-
diagonals (i-1)th, (i-2)th. Therefore, cells on the same sub-
diagonal do not depend on each other and they can be 
calculated in parallel. 

 
Figure 3.  Illustration of calculating one cell on the sub-diagonal ith 

B. Related Works 

It can be observed that the Smith – Waterman algorithm 
requires three matrixes of the size mxn where m, n are 
lengths of two sequences needed to be compared. The 
dynamic programming algorithm also requires all values of 
these three matrixes to be completely filled. With such 
required amount of calculation and memory storage, the 
algorithm becomes less practical in common cases when we 
need to align a query sequence and a large database of 
correlative sequences with high lengths.  

To achieve high results, most implementations of this 
algorithm use parallel processing computer architectures. In 
[4], [5], authors have paralleled the Smith – Waterman 
algorithm on general purpose processors according to the 
SIMD architecture. Their result has shown that the 
implementation speed has increased by 6 times. Manavski 
SA and Valle G, in [6], have paralleled the algorithm on a 
system equipped with 2 graphics cards GeForce 8800 GTX 
of NVIDIA and obtained the result of 3.5 GCUPS (the 
number of billions of cells updated per second). In 
comparison with the previous best implementations, on one 
single GPU and on the SIMD architecture, the 
implementation speed has increased about from 2 to 30 
times. This implementation has definitely marked the 
importance of the GPU multi-core architecture in 
bioinformatics problems. Inheriting this method of Farrar 
[5] and fully exploiting the computing power of processing 
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cores, in [7], authors have asserted that SWPS3 is the fastest 
vectorized installation of  the Smith – Waterman algorithm 
on Cell/BE and x86/SSE architectures, with a computer 
system using Quad core Pentium, it can reach 15.7 GCUPS. 
In that implementation, the algorithm was installed based on 
the multi-core architecture and it was paralleled by the 
multi-thread method. In some situations, the alignment 
speed of SWPS3 is calculated to be the same as that of 
BLAST algorithm, the fastest heuristic algorithm at the 
moment.  

As mentioned above, another direction which is 
intensively considered in the installation of Smith – 
Waterman algorithm is the application of the great 
parallelism computing power of GPU in solving problems 
which require a huge amount of calculation. The paper [8] 
presents about CUDASW++, another installation of the 
Smith – Waterman algorithm on graphics cards of NVIDIA. 
The version running on one single GPU reaches the speed of 
about 10 GCUPS with NVIDIA GeForce GTX 280 graphics 
cards and the one running on multi-GPUs can reach 16 
GCUPS. These results have shown a much greater 
performance compared to SWPS3 or NVBI-BLAST and 
demonstrated a high applicability of the GPU multi-core 
architecture in solving the sequence alignment problem. 

C. Our Approach 

With the exponential development of biological 
sequences database, the necessity of high performance 
computing methods is considered to solve the 
bioinformatics problems, especially the sequence alignment 
problem. Recent results using GPU to implement the Smith 
– Waterman algorithm have shown an outstanding 
performance compared to other methods. However, that 
execution can only be installed on one single GPU or on one 
computer equipped with multi-GPUs, and there is not any 
installation executed on a cluster, where nodes equipped 
with multi-GPUs. In this paper, we implemented the Smith–

Waterman algorithm on a cluster including multi-GPUs - 
GPUCluster. These results which have been compared to the 
previous effective implementations show a remarkable 
improvement of performance and demonstrate the great 
computing power, a high applicability of GPUCluster in 
bioinformatics problems. 

III. GPU CLUSTER   

A. Gpgpu and Cuda 

Graphics Processing Units (GPUs), which commonly 
accompany standard Central Processing Units (CPUs) in 
consumer PCs, are special purpose processors designed to 
efficiently perform the calculations necessary to generate 
visual output from program data. CUDA [9] is a software 
which supports to develop applications for multi cores 
graphics processing unit of NVIDIA, including the device 
controller, the application development tool (the 
programming language on GPUs and the compiler). CUDA 

is an extension of the language C. A CUDA program 
includes one or a few special piece of code, called parallel 
kernels. These kernels can be executed in parallel on the 
large number of threads on GPUs. Since threads execute the 
same code of the kernel, only be identified by the Ids of 
threads; so to increase the application performance, 
programmers need to apply data parallel techniques (data is 
divided into small parts and they are assigned to threads for 
implementing). 
 Programmers can determine the number of threads when 
activating the parallel kernel. To ensure that the program do 
not depend the hardware (the number of streaming 
multiProcessor - SM on GPUs), threads are divided into 
small groups which are executed on the same SM, called 
thread blocks, these blocks are also designed to a grid. 
When a grid is executed, the CUDA scheduler, based on the 
hardware, will identify the number of thread blocks which 
are concurrently executed. If this number is smaller than the 
number of SMs of GPUs, the whole grid will be executed 
concurrently; on the contrary, the thread blocks will be 
automatically divided into different parallel session. Beside 
the work of dividing data into different threads and 
organizing the grid and thread blocks, accessing data is also 
an important problem when programming on GPUs. And 
memory is hierarchically organized for effective usage. 

With the ability to perform data parallelism on such a lot 
of threads, GPU is an appropriate choice to implement the 
Smith-Waterman algorithm, where each thread can calculate 
one cell on sub-diagonals of the matrix H.  

B. Gpucluster 

In fact, we cannot put many graphics cards into a PC, 
only a few GPUs. Practical problems require very high 
capacity of computing power, due to the very quick increase 
of the size of input data. So, to combine the computing 
power of many GPUs for a problem, we have to put multi-
GPUs on different nodes. A GPU cluster will solve this. It is 
a cluster of nodes in which each node is equipped with one 
or more GPUs. Such a system includes hardware 
components such as CPU, GPU and to connect nodes we 
need to add a network connection such as Gigabit Ethernet. 
Required software installed on a GPU node includes: 
operating system, GPU driver in each node and parallel 
programming interfaces such as MPI. 

In recent decades, there have been a lot of GPU cluster 
systems deployed as installation of GraphStream [10], but 
they are only virtual systems. A number of projects 
deployed GPU computing nodes such as: GPU Cluster 
"DQ" 160 nodes at the LANL- [11], and "QP" 16 nodes at 
NCSA [12], both based on NVIDIA's QuardroPlex 
technology. These installations mainly provide experimental 
results in the production field using high performance. 

To harness the great computing capability of GPU 
cluster, we use the idea of plunging the CUDA framework 
in a message passing interface environment – MPI. Each of 
nodes inside the cluster has its own task of sending data and 
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intensive parallel tasks to GPU, making CPU free for 
performing network communication between nodes. To 
compile and run MPI programs, it is not difficult if using 
NVIDIA's compiler - nvcc to compile the entire mixed 
CUDA and MPI code together. Here, we mix MPI code into 
CUDA source files, since CUDA is an extension of C 
language and the compiler nvcc wraps the compiler mpicc.  

 
The next section will present our implementation of the 

Smith-Waterman algorithm on GPUCluster system and 
some experimental results. 

IV. IMPLEMENTING THE SMITH-WATERMAN ALGORITHM 

ON GPU CLUSTER 

A. Strategy 

With the description of the SW algorithm above, along 
with analysis of factors which can be paralleled in  the 
process of calculating the matrix, we employ two 
approaches on GPU cluster with two data parallel levels, 
proposed by Yongchao Liu, Douglas L Maskell  and Bertil 
Schmidt in [8]. In the first level, the algorithm can perform 
alignment with different input sequences in parallel. In 
second one, the calculation of the matrix H can be 
simultaneously executed for values of cells on sub-
diagonals. Suppose that alignment of two sequences is a 
single task, the first level can be considered as inter-task 
parallelism, the second one is considered as intra-task 
parallelism (splitting a task into several sub-tasks). 
Inter-task parallelism: each task is assigned to an 
execution thread. In one block of threads, tasks are 
simultaneously performed by different threads. 
Intra-task parallelism: each task is assigned to a block. 
Each thread inside a block will calculate one cell on the ith 
sub-diagonal based on values of cells on two sub-diagonals 
(i-1)th  and (i-2)th.  After finishing the calculation, values of 
sub-diagonal vectors are swapped to calculate values of the 
next diagonal. 

Inter-task parallelism requires much more memory, but it 
gives a better performance, so it is suitable for the alignment 
of sequences with short lengths. In contrast, intra-task 
parallelism does not require much memory and it has a 
lower performance, it is suitable for longer sequences. To 
separate these two methods, we use a threshold value of the 
sequence length to decide which method is used. 

B. Paralleling the Algorithm on Gpucluster  

Based on the method of parallelization with two levels as 
mentioned above, we distribute data on GPU cluster system 
for implementing on each GPU of each node. The cluster 
system uses a shared data directory which is synchronized 
between nodes. This directory stores biological sequences 
data. Suppose that the GPU cluster system includes n_client 
nodes, each node is equipped with n_device GPUs. First, the 
data sequence database is divided into n_client parts based 
on the size of the data. To avoid conflicts when accessing 

files containing sequence data, we use a data locker db_lock 
and a data-status-record db_stat for each access of nodes. 
The data locker and the data-status-record are unique and 
transferred between nodes. When a node finds out that data 
is not locked, it will read the data-status-record to determine 
the previous position to continue loading data into memory. 
When reading is complete, the node will update the data-
status-record and unlock the data locker. 
Initialize MPI, get the number of nodes; 

db_block_size = totalDBSize / n_client; 

WHILE data is still locked  

Wait; 

ENDWHILE 

Create data locker; 

Read record of data status to determine data 

position; 

temp_size = 0; 

WHILE temp_size < db_block_size &&dbIsNotEmpty 

 Get (Seq, SeqName, SeqLen) in DataFile; 

 temp_size += SeqLen; 

ENDWHILE 

Save the data status record; 

Unlock data; 

Figure 4.  Pseudo code of distributing data into nodes 

Before data is divided into GPUs memory, it is arranged 
in ascending order of sequence lengths. This arrangement 
aims at two purposes. The first one is to separate data into 
two blocks which are handled in two ways (as described 
above). This process is controlled by a runtime parameter 
threshold (if the sequence length < threshold, it is assigned 
to the first block, otherwise it belongs to the second block). 
These blocks continue being divided into n_device parts 
corresponding to GPUs, thus each GPU will only have to 
handle similar blocks of data in both ways. The second 
purpose is that threads of the same block will align 
sequences of approximately equal lengths, so their runtime 
is approximately similar; this increases the performance of 
the implementation. 

The program consists of two kernels performing two 
parallel algorithms with two levels on the GPU cluster (one 
kernel corresponding to inter-task parallelism and the other 
corresponding to intra-task parallelism). After loading 
sequence data into memory of each GPU, the program will 
call kernels to align sequences. Then results are saved in the 
memory of nodes and each node will write the results into 
temporary files. At node 0, the program will collect results 
performed on all nodes. Below is pseudo code for the 
implementation of the kernels on the GPU Cluster: 
/*********************ASSUMPTIONS***************** 

nThread: the number of threads executed in 

parallel; 

nSM: the number of multi-processors per GPU; 

InterSeqNo: the number of sequences whose lengths 

are less than the value threshold per GPU 

IntraSeqNo: the number of sequences whose lengths 

are more than the value threshold per GPU 

*************************************************/ 

n_batch = InterSeqNo/threads;  

WHILE n_batch > 0 

   n = min(n_batch, nSM); 
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   DECLARE grid of n blocks; 

   DECLARE each blocks of nThread threads; 

   CALL inter_kernel WITH interSeqs, interSeqNo     

    RETURN d_result; 

   DECREASE n_batch BY n; 

ENDWHILE 

IF intraSeqNo > 0 

   maxSeqOnePass = 256; 

   n_batch = intraSeqNo; 

   WHILE n_batch > 0 

     n = min(n_batch, maxSeqOnePass); 

     DECLARE grid of n blocks; 

     DECLARE each blocks of nThread threads; 

     CALLintra_kernel WITH intraSeqs, intraSeqNo     

      RETURN d_result; 

     DECREASE n_batch BY n; 

ENDWHILE 

ENDIF 

transferToHostResult(d_result); 

Figure 5.  Pseudo code of implementing the kernels on GPU Cluster  

V. EXPERIMENTAL RESULTS 

To remove the dependency on the query sequences and 
the databases used for the different test, cell updates per 
second (CUPS) is a commonly used performance measure 
in bioinformatics. CUPS presents the number of cells of the 
matrix H calculated per second, including the calculation of 
intermediate values of the matrix E, F). The formula (1) 
calculates CUPS values of one sequence alignment answer: 

 cups = qLen * dbLen/t  (1) 

Where qLen is the length of a query sequence, dbLen is the 
length of a subject sequence; t is the runtime of the program. 
The value t includes the time of loading data from main 
memory to device memory, the time of calculation on GPUs 
and the time of transferring results to CPU. 

In our test, we used a set of query sequences of lengths 
which are from 100 to 5000, the biological sequences 
database UniProt release 2010_05 - Apr 20, 2010 which 
includes 516,080 sequences and 181,676,505 amino acids. 
With this database and the value threshold is 3072, there are 
up to 515,472 sequences which are aligned by intra-task 
parallelism and 608 others are aligned by inter-task 
parallelism. Experimentation of the swGPUCluster is tested 
on two nodes Node0 and Node1, using multi-GPUs (three 
dual cards GTX295 – 6 GPUs, one card Tesla C1060 – 1 
GPU). With our GPU cluster system, the maximum 
performance is achieved when the block size threads = 256 
and the grid size blocks = 30 (the number of streaming 
multiprocessors of GPU). The performance of the 
swGPUCluster increases according to lengths of query 
sequences, from the minimum value 37.328 GCUPS to the 
maximum value 46.706 GCUPS. This result is described in 
the table 1. 

We have compared the results of the swGPUCluster to 
other solutions implementing the SW algorithm such as: 
cudaSW++ or swps3. cudaSW++ was tested on one 
GTX295 GPU. Its result shows that the minimum 

performance is 8.387 GCUPS and the maximum is 9.232 
GCUPS. In comparison to the cudaSW++ on one single 
GPU, the speed of implementing the swGPUCluster is about 
4.4 to 5 times faster than the cudaSW++. 

Another comparison of performance is performed with 
the swps3 implementation. The swps3 was tested on 
x86/sse2 platform including one node equipped with a 
processor Core 2 Quad Q8400 2.66 Ghz (4 cores), 8GB 
RAM with one thread or four threads. The performance of 
the swGPUCluster is about 13.8 to 22.8 times faster than the 
swps3 x86/sse2-single-core, and it is approximately 3.4 to 
11.4 times faster than swps3 x86/sse2 multi-cores, as shown 
in figure 6. 

 
TABLE I.   

RESULTS OF THE IMPLEMENTATION OF THE SMITH-WATERMAN 
ALGORITHM ON GPU CLUSTER 

 

Query Length Time(s) GCUPS 

P02232 144 0.779393 37.328 

P01111 189 0.944164 39.202 

P14942 222 1.078783 40.795 

P07327 375 1.721378 42.945 

P25705 553 2.532260 43.419 

P21177 729 3.224185 44.907 

P27895 1000 4.337310 45.849 

P07756 1500 6.456398 46.065 

P04775 2005 8.579664 46.355 

P19096 2504 10.681426 46.530 

P0C6B8 3564 15.174918 46.612 

P08519 4548 19.348871 46.653 

P33450 5147 21.894938 46.690 

Q9UKN1 5478 23.294546 46.706 

 
VI. CONCLUSION 

In this paper, we present the swGPUCluster – an 
implementation of the Smith-Waterman sequence alignment 
algorithm on a GPU cluster system consisting of two nodes 
equipped with multi-GPUs (3 dual cards GTX295 - 6GPUs 
and one card Tesla C1060 - 1GPU). With the test input 
which is biological sequences database UniProt version 
2010_05 - Apr 20, together with the optimal configuration 
set, the performance of the swGPUCluster increases with 
the length of query sequences from the minimum value of 
37,328 GCUPS to the maximum value of 46,706 GCUPS. 
The swGPUCluster gives a significantly better performance 
than the implementation previously installed on GPU or on 
multi-core architectures such as swps3 or cudaSW++. Our 
results show a high applicability of GPUs to speed up the 
implementation of algorithms in bioinformatics, if we well 
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exploit characteristics of computing hardware. The 
outstanding performance also shows that the performance of 
GPUs increases much faster than the performance of multi-
core CPUs.  
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