
DOI: 10.5176_2010-2283_1.2.56

Applying GPUs for Smith-Waterman Sequence Alignment Acceleration

Phong H.Pham
Tan N. Duong

Ngoc M.Ta
High Performance Computing Center

Hanoi University of Science and Technology
Hanoi, Vietnam

Email: {phongph.hut, dn.nhattan,
ngoctm255}@gmail.com

Duc H.Nguyen
Thuy T.Nguyen

Hung D.Le
Department of Information Systems

Hanoi University of Science and Technology
Hanoi, Vietnam

Email: {ducnh, thuynt}@soict.hut.edu.vn

Cuong Q.Tran
Ministry of Police, Hanoi, Vietnam

Abstract—The Smith-Waterman algorithm is a common local
sequence alignment method which gives a high accuracy.
However, it needs a high capacity of computation and a large
amount of storage memory, so implementations based on
common computing systems are impractical. Here, we present
our implementation of the Smith-Waterman algorithm on a
cluster including graphics cards (GPU cluster) –
swGPUCluster. The algorithm implementation is tested on a
cluster of two nodes: a node is equipped with two dual graphics
cards NVIDIA GeForce GTX 295, the other node includes a
dual graphics cards NVIDIA GeForce 295 and a Tesla C1060
card. Depending on the length of query sequences, the
swGPUCluster performance increases from 37.33 GCUPS to
46.71 GCUPS. This result demonstrates the great computing
power of GPUs and their high applicability in the
bioinformatics field.

Keywords: local sequence alignment; smith-waterman; cuda;
gpu cluster.

I. INTRODUCTION

Proteins and DNAs that have a significant biological
relationship to one another often share only isolated regions
of sequence similarity. For identifying relationships of this
nature, the ability to find local regions of optimal similarity
is advantageous over global alignments that optimize the
overall alignment of two entire sequences. Sequence
alignment is one of the typical sequence data analysis
problems in bioinformatics. It is a way of arranging the
sequences of DNA, RNA, or protein to identify regions of
similarity that may be a consequence of functional,
structural, or evolutionary relationships between the
sequences. Figure 1 is an example of the result of a two
sequences alignment where some gaps are inserted into the
first sequence to achieve the biggest region of similarity
between them.

Figure 1. Example of an alignment for two sequences

 Very short or very similar sequences can be aligned by
hand. However, most interesting problems require the
alignment of lengthy, highly variable or extremely
numerous sequences that cannot be aligned solely by human
effort. Instead, human knowledge is applied in constructing
algorithms to produce high-quality sequence alignments,
and occasionally in adjusting the final results to reflect
patterns that are difficult to represent algorithmically
(especially in the case of nucleotide sequences).
Computational approaches to sequence alignment generally
fall into two categories: global alignments and local
alignments. Calculating a global alignment is a form of
global optimization that "forces" the alignment to span the
entire length of all query sequences. By contrast, local
alignments identify regions of similarity within long
sequences that are often widely divergent overall. Local
alignments are often preferable, but can be more difficult to
calculate because of the additional challenge of identifying
the regions of similarity. A variety of computational
algorithms have been applied to the sequence alignment
problem, including slow but formally optimizing methods
like dynamic programming, and efficient, but not as
thorough heuristic algorithms or probabilistic methods
designed for large-scale database search.

.Currently, there are many researches of resolving the
sequence alignment problem, mostly focus on three main
branches: methods using point matrixes, dynamic
programming methods and the BLAST method. For the
global sequence alignment problem, the most developed
algorithm is the Needleman-Wunsch [1]. This is a global
sequence alignment method based on dynamic
programming, to calculate points for the alignment process,
using the substitution matrix PAM250 or BLOSUM62 for
protein sequences. This method ensures, from the
mathematics side of view that finding an optimal answer
with a specific mechanism is possible, but it has a large
amount of calculations. On the other hand, the BLAST
algorithm [2] allows searching subsequences (a sequences
database) which are similar to the given sequence (the query
sequence). BLAST uses the heuristic approach so the speed

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

174

is remarkably fast when performing for gene banks. This
has made BLAST the most popular tool in bioinformatics.
Although the speed is lower than that of the BLAST
algorithm, but with a higher accuracy, the Smith –
Waterman algorithm is considered as one of the most
popular algorithms of solving the local sequence alignment
problem. Since the execution of the Smith – Waterman
algorithm requires a large amount of calculation and storage
memory, due to huge biological data together with the
dynamic programming algorithm, the implementation
process is unacceptable for common computing systems.
Another tendency is being developed for the next generation
computers: multi-core structures, which help solving a lot of
problems requiring large computing power, including
bioinformatics. In this paper, we perform parallelism for the
Smith Waterman algorithm on a multi-core cluster equipped
with NVIDIA’s graphics cards (called a GPU cluster).

Results of this experiment have shown that the speed of
implementing the algorithm has increased significantly
compared to executions on other common computing
environments. This has proved the extremely high
computing power of graphics cards and their applicability in
bioinformatics.

II. THE SMITH-WATERMAN ALGORITHM
AND RELATED WORKS

A. The Smith-Waterman Algorithm

In the Smith – Waterman algorithm, the alignment
process is executed by aligning every pairs of characters in
the two sequences. The point for each pair depends on the
followings: two characters are a match, two characters are a
mismatch and points for adding or removing gaps (or
penalties). The result of local alignment is that we can find
out segments having the highest similarity between two
sequences. The algorithm is based on the dynamic
programming method to calculate the point of the alignment
process. The Smith – Waterman algorithm is developed to
identify the optimal local alignment answer of two
biological sequences by grading the similarity using the
dynamic programming method. Suppose that two sequences
Sa and Sb have the following lengths: la and lb, the Smith
– Waterman algorithm calculates the match points of two
sequences, using the matrix H(i,j) of two subsequences
Sai, Sbj (sequences end at points i,j of Sa, Sb ;
0<i<la; 0<j<lb). H(i,j) is calculated by the
following recursive formula:
E(i,j) = max{E(i,j-1) – g, H(i,j-1) – g - e}

F(i,j) = max{F(i-1,j) – g, H(i-1,j) – g - e}

H(i,j) = max{0,E(i,j),F(i,j),H(i-1,j-1) +

matScore[Sa(i),Sb(j)]}

H(i,0) = H(0,j) = E(i,0) = F(0,j) = 0; 0<i<la,

0<j<lb

Figure 2. Calculation of the matrix H

Where matScore is the scoring matrix, g is the penalty
for an opening gap, e is the penalty for lengthen gaps. The

maximum point of the local alignment is the maximum
value in the matrix H. Figure 3 describes the process of
calculating the matrix H. In this figure, we can see that each
cell in the matrix is calculated based on values of three other
cells. If we number sub-diagonals of the matrix H, then each
cell on the sub-diagonal ith depends on cells of the sub-
diagonals (i-1)th, (i-2)th. Therefore, cells on the same sub-
diagonal do not depend on each other and they can be
calculated in parallel.

Figure 3. Illustration of calculating one cell on the sub-diagonal ith

B. Related Works

It can be observed that the Smith – Waterman algorithm
requires three matrixes of the size mxn where m, n are
lengths of two sequences needed to be compared. The
dynamic programming algorithm also requires all values of
these three matrixes to be completely filled. With such
required amount of calculation and memory storage, the
algorithm becomes less practical in common cases when we
need to align a query sequence and a large database of
correlative sequences with high lengths.

To achieve high results, most implementations of this
algorithm use parallel processing computer architectures. In
[4], [5], authors have paralleled the Smith – Waterman
algorithm on general purpose processors according to the
SIMD architecture. Their result has shown that the
implementation speed has increased by 6 times. Manavski
SA and Valle G, in [6], have paralleled the algorithm on a
system equipped with 2 graphics cards GeForce 8800 GTX
of NVIDIA and obtained the result of 3.5 GCUPS (the
number of billions of cells updated per second). In
comparison with the previous best implementations, on one
single GPU and on the SIMD architecture, the
implementation speed has increased about from 2 to 30
times. This implementation has definitely marked the
importance of the GPU multi-core architecture in
bioinformatics problems. Inheriting this method of Farrar
[5] and fully exploiting the computing power of processing

Sa

Sb i-2

i-1

i

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

175

cores, in [7], authors have asserted that SWPS3 is the fastest
vectorized installation of the Smith – Waterman algorithm
on Cell/BE and x86/SSE architectures, with a computer
system using Quad core Pentium, it can reach 15.7 GCUPS.
In that implementation, the algorithm was installed based on
the multi-core architecture and it was paralleled by the
multi-thread method. In some situations, the alignment
speed of SWPS3 is calculated to be the same as that of
BLAST algorithm, the fastest heuristic algorithm at the
moment.

As mentioned above, another direction which is
intensively considered in the installation of Smith –
Waterman algorithm is the application of the great
parallelism computing power of GPU in solving problems
which require a huge amount of calculation. The paper [8]
presents about CUDASW++, another installation of the
Smith – Waterman algorithm on graphics cards of NVIDIA.
The version running on one single GPU reaches the speed of
about 10 GCUPS with NVIDIA GeForce GTX 280 graphics
cards and the one running on multi-GPUs can reach 16
GCUPS. These results have shown a much greater
performance compared to SWPS3 or NVBI-BLAST and
demonstrated a high applicability of the GPU multi-core
architecture in solving the sequence alignment problem.

C. Our Approach

With the exponential development of biological
sequences database, the necessity of high performance
computing methods is considered to solve the
bioinformatics problems, especially the sequence alignment
problem. Recent results using GPU to implement the Smith
– Waterman algorithm have shown an outstanding
performance compared to other methods. However, that
execution can only be installed on one single GPU or on one
computer equipped with multi-GPUs, and there is not any
installation executed on a cluster, where nodes equipped
with multi-GPUs. In this paper, we implemented the Smith–

Waterman algorithm on a cluster including multi-GPUs -
GPUCluster. These results which have been compared to the
previous effective implementations show a remarkable
improvement of performance and demonstrate the great
computing power, a high applicability of GPUCluster in
bioinformatics problems.

III. GPU CLUSTER

A. Gpgpu and Cuda

Graphics Processing Units (GPUs), which commonly
accompany standard Central Processing Units (CPUs) in
consumer PCs, are special purpose processors designed to
efficiently perform the calculations necessary to generate
visual output from program data. CUDA [9] is a software
which supports to develop applications for multi cores
graphics processing unit of NVIDIA, including the device
controller, the application development tool (the
programming language on GPUs and the compiler). CUDA

is an extension of the language C. A CUDA program
includes one or a few special piece of code, called parallel
kernels. These kernels can be executed in parallel on the
large number of threads on GPUs. Since threads execute the
same code of the kernel, only be identified by the Ids of
threads; so to increase the application performance,
programmers need to apply data parallel techniques (data is
divided into small parts and they are assigned to threads for
implementing).
 Programmers can determine the number of threads when
activating the parallel kernel. To ensure that the program do
not depend the hardware (the number of streaming
multiProcessor - SM on GPUs), threads are divided into
small groups which are executed on the same SM, called
thread blocks, these blocks are also designed to a grid.
When a grid is executed, the CUDA scheduler, based on the
hardware, will identify the number of thread blocks which
are concurrently executed. If this number is smaller than the
number of SMs of GPUs, the whole grid will be executed
concurrently; on the contrary, the thread blocks will be
automatically divided into different parallel session. Beside
the work of dividing data into different threads and
organizing the grid and thread blocks, accessing data is also
an important problem when programming on GPUs. And
memory is hierarchically organized for effective usage.

With the ability to perform data parallelism on such a lot
of threads, GPU is an appropriate choice to implement the
Smith-Waterman algorithm, where each thread can calculate
one cell on sub-diagonals of the matrix H.

B. Gpucluster

In fact, we cannot put many graphics cards into a PC,
only a few GPUs. Practical problems require very high
capacity of computing power, due to the very quick increase
of the size of input data. So, to combine the computing
power of many GPUs for a problem, we have to put multi-
GPUs on different nodes. A GPU cluster will solve this. It is
a cluster of nodes in which each node is equipped with one
or more GPUs. Such a system includes hardware
components such as CPU, GPU and to connect nodes we
need to add a network connection such as Gigabit Ethernet.
Required software installed on a GPU node includes:
operating system, GPU driver in each node and parallel
programming interfaces such as MPI.

In recent decades, there have been a lot of GPU cluster
systems deployed as installation of GraphStream [10], but
they are only virtual systems. A number of projects
deployed GPU computing nodes such as: GPU Cluster
"DQ" 160 nodes at the LANL- [11], and "QP" 16 nodes at
NCSA [12], both based on NVIDIA's QuardroPlex
technology. These installations mainly provide experimental
results in the production field using high performance.

To harness the great computing capability of GPU
cluster, we use the idea of plunging the CUDA framework
in a message passing interface environment – MPI. Each of
nodes inside the cluster has its own task of sending data and

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

176

intensive parallel tasks to GPU, making CPU free for
performing network communication between nodes. To
compile and run MPI programs, it is not difficult if using
NVIDIA's compiler - nvcc to compile the entire mixed
CUDA and MPI code together. Here, we mix MPI code into
CUDA source files, since CUDA is an extension of C
language and the compiler nvcc wraps the compiler mpicc.

The next section will present our implementation of the

Smith-Waterman algorithm on GPUCluster system and
some experimental results.

IV. IMPLEMENTING THE SMITH-WATERMAN ALGORITHM

ON GPU CLUSTER

A. Strategy

With the description of the SW algorithm above, along
with analysis of factors which can be paralleled in the
process of calculating the matrix, we employ two
approaches on GPU cluster with two data parallel levels,
proposed by Yongchao Liu, Douglas L Maskell and Bertil
Schmidt in [8]. In the first level, the algorithm can perform
alignment with different input sequences in parallel. In
second one, the calculation of the matrix H can be
simultaneously executed for values of cells on sub-
diagonals. Suppose that alignment of two sequences is a
single task, the first level can be considered as inter-task
parallelism, the second one is considered as intra-task
parallelism (splitting a task into several sub-tasks).
Inter-task parallelism: each task is assigned to an
execution thread. In one block of threads, tasks are
simultaneously performed by different threads.
Intra-task parallelism: each task is assigned to a block.
Each thread inside a block will calculate one cell on the ith
sub-diagonal based on values of cells on two sub-diagonals
(i-1)th and (i-2)th. After finishing the calculation, values of
sub-diagonal vectors are swapped to calculate values of the
next diagonal.

Inter-task parallelism requires much more memory, but it
gives a better performance, so it is suitable for the alignment
of sequences with short lengths. In contrast, intra-task
parallelism does not require much memory and it has a
lower performance, it is suitable for longer sequences. To
separate these two methods, we use a threshold value of the
sequence length to decide which method is used.

B. Paralleling the Algorithm on Gpucluster

Based on the method of parallelization with two levels as
mentioned above, we distribute data on GPU cluster system
for implementing on each GPU of each node. The cluster
system uses a shared data directory which is synchronized
between nodes. This directory stores biological sequences
data. Suppose that the GPU cluster system includes n_client
nodes, each node is equipped with n_device GPUs. First, the
data sequence database is divided into n_client parts based
on the size of the data. To avoid conflicts when accessing

files containing sequence data, we use a data locker db_lock
and a data-status-record db_stat for each access of nodes.
The data locker and the data-status-record are unique and
transferred between nodes. When a node finds out that data
is not locked, it will read the data-status-record to determine
the previous position to continue loading data into memory.
When reading is complete, the node will update the data-
status-record and unlock the data locker.
Initialize MPI, get the number of nodes;

db_block_size = totalDBSize / n_client;

WHILE data is still locked

Wait;

ENDWHILE

Create data locker;

Read record of data status to determine data

position;

temp_size = 0;

WHILE temp_size < db_block_size &&dbIsNotEmpty

 Get (Seq, SeqName, SeqLen) in DataFile;

 temp_size += SeqLen;

ENDWHILE

Save the data status record;

Unlock data;

Figure 4. Pseudo code of distributing data into nodes

Before data is divided into GPUs memory, it is arranged
in ascending order of sequence lengths. This arrangement
aims at two purposes. The first one is to separate data into
two blocks which are handled in two ways (as described
above). This process is controlled by a runtime parameter
threshold (if the sequence length < threshold, it is assigned
to the first block, otherwise it belongs to the second block).
These blocks continue being divided into n_device parts
corresponding to GPUs, thus each GPU will only have to
handle similar blocks of data in both ways. The second
purpose is that threads of the same block will align
sequences of approximately equal lengths, so their runtime
is approximately similar; this increases the performance of
the implementation.

The program consists of two kernels performing two
parallel algorithms with two levels on the GPU cluster (one
kernel corresponding to inter-task parallelism and the other
corresponding to intra-task parallelism). After loading
sequence data into memory of each GPU, the program will
call kernels to align sequences. Then results are saved in the
memory of nodes and each node will write the results into
temporary files. At node 0, the program will collect results
performed on all nodes. Below is pseudo code for the
implementation of the kernels on the GPU Cluster:
/*********************ASSUMPTIONS*****************

nThread: the number of threads executed in

parallel;

nSM: the number of multi-processors per GPU;

InterSeqNo: the number of sequences whose lengths

are less than the value threshold per GPU

IntraSeqNo: the number of sequences whose lengths

are more than the value threshold per GPU

***/

n_batch = InterSeqNo/threads;

WHILE n_batch > 0

 n = min(n_batch, nSM);

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

177

 DECLARE grid of n blocks;

 DECLARE each blocks of nThread threads;

 CALL inter_kernel WITH interSeqs, interSeqNo

 RETURN d_result;

 DECREASE n_batch BY n;

ENDWHILE

IF intraSeqNo > 0

 maxSeqOnePass = 256;

 n_batch = intraSeqNo;

 WHILE n_batch > 0

 n = min(n_batch, maxSeqOnePass);

 DECLARE grid of n blocks;

 DECLARE each blocks of nThread threads;

 CALLintra_kernel WITH intraSeqs, intraSeqNo

 RETURN d_result;

 DECREASE n_batch BY n;

ENDWHILE

ENDIF

transferToHostResult(d_result);

Figure 5. Pseudo code of implementing the kernels on GPU Cluster

V. EXPERIMENTAL RESULTS

To remove the dependency on the query sequences and
the databases used for the different test, cell updates per
second (CUPS) is a commonly used performance measure
in bioinformatics. CUPS presents the number of cells of the
matrix H calculated per second, including the calculation of
intermediate values of the matrix E, F). The formula (1)
calculates CUPS values of one sequence alignment answer:

 cups = qLen * dbLen/t (1)

Where qLen is the length of a query sequence, dbLen is the
length of a subject sequence; t is the runtime of the program.
The value t includes the time of loading data from main
memory to device memory, the time of calculation on GPUs
and the time of transferring results to CPU.

In our test, we used a set of query sequences of lengths
which are from 100 to 5000, the biological sequences
database UniProt release 2010_05 - Apr 20, 2010 which
includes 516,080 sequences and 181,676,505 amino acids.
With this database and the value threshold is 3072, there are
up to 515,472 sequences which are aligned by intra-task
parallelism and 608 others are aligned by inter-task
parallelism. Experimentation of the swGPUCluster is tested
on two nodes Node0 and Node1, using multi-GPUs (three
dual cards GTX295 – 6 GPUs, one card Tesla C1060 – 1
GPU). With our GPU cluster system, the maximum
performance is achieved when the block size threads = 256
and the grid size blocks = 30 (the number of streaming
multiprocessors of GPU). The performance of the
swGPUCluster increases according to lengths of query
sequences, from the minimum value 37.328 GCUPS to the
maximum value 46.706 GCUPS. This result is described in
the table 1.

We have compared the results of the swGPUCluster to
other solutions implementing the SW algorithm such as:
cudaSW++ or swps3. cudaSW++ was tested on one
GTX295 GPU. Its result shows that the minimum

performance is 8.387 GCUPS and the maximum is 9.232
GCUPS. In comparison to the cudaSW++ on one single
GPU, the speed of implementing the swGPUCluster is about
4.4 to 5 times faster than the cudaSW++.

Another comparison of performance is performed with
the swps3 implementation. The swps3 was tested on
x86/sse2 platform including one node equipped with a
processor Core 2 Quad Q8400 2.66 Ghz (4 cores), 8GB
RAM with one thread or four threads. The performance of
the swGPUCluster is about 13.8 to 22.8 times faster than the
swps3 x86/sse2-single-core, and it is approximately 3.4 to
11.4 times faster than swps3 x86/sse2 multi-cores, as shown
in figure 6.

TABLE I.

RESULTS OF THE IMPLEMENTATION OF THE SMITH-WATERMAN
ALGORITHM ON GPU CLUSTER

Query Length Time(s) GCUPS

P02232 144 0.779393 37.328

P01111 189 0.944164 39.202

P14942 222 1.078783 40.795

P07327 375 1.721378 42.945

P25705 553 2.532260 43.419

P21177 729 3.224185 44.907

P27895 1000 4.337310 45.849

P07756 1500 6.456398 46.065

P04775 2005 8.579664 46.355

P19096 2504 10.681426 46.530

P0C6B8 3564 15.174918 46.612

P08519 4548 19.348871 46.653

P33450 5147 21.894938 46.690

Q9UKN1 5478 23.294546 46.706

VI. CONCLUSION

In this paper, we present the swGPUCluster – an
implementation of the Smith-Waterman sequence alignment
algorithm on a GPU cluster system consisting of two nodes
equipped with multi-GPUs (3 dual cards GTX295 - 6GPUs
and one card Tesla C1060 - 1GPU). With the test input
which is biological sequences database UniProt version
2010_05 - Apr 20, together with the optimal configuration
set, the performance of the swGPUCluster increases with
the length of query sequences from the minimum value of
37,328 GCUPS to the maximum value of 46,706 GCUPS.
The swGPUCluster gives a significantly better performance
than the implementation previously installed on GPU or on
multi-core architectures such as swps3 or cudaSW++. Our
results show a high applicability of GPUs to speed up the
implementation of algorithms in bioinformatics, if we well

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

178

exploit characteristics of computing hardware. The
outstanding performance also shows that the performance of
GPUs increases much faster than the performance of multi-
core CPUs.

REFERENCES

[1] www2.cs.uh.edu/~zhenzhao/Review/alignment.htm

[2] http://blast.ncbi.nlm.nih.gov/Blast.cgi.

[3] http://en.wikipedia.org/wiki/SmithWaterman_algorithm.

[4] Rognes T, Seeberg E: “Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on common
microprocessors” . Bioinformatics 2000 , 16(8):699-706

[5] Farrar M: “Striped Smith-Waterman speeds database searches six
times over other SIMD implementations” . Bioinformatics 2007 ,
23(2):156-161

[6] Manavski SA, Valle G: “CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment”

[7] Szalkowski A, Ledergerber C, Krahenbuhl P and Dessimoz C:
“SWPS3 – fast multi-threaded vectorized Smith-Waterman for IBM
Cell/B.E. and ×86/SSE2” . BMC Research Notes 2008, 1:107.

[8] Yongchao Liu, Douglas L Maskell and Bertil Schmidt:
“CUDASW++: optimizing Smith-Waterman sequence database
searches for CUDA-enabled graphics processing units”. BMC
Research Notes 2009, 2:73.

[9] NVIDIA.http://www.nvidia.com/object/cuda_home_new.html

[10] (2009) GraphStream, Inc. website. [Online]. Available:
http://www.graphstream.com/.

[11] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.
Buijssen, M. Grajewski, and S. Tureka, “Exploring weak scalability
for FEM calculations on a GPU-enhanced cluster,” Parallel
Computing, vol. 33, pp. 685-699, Nov 2007.

[12] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R.
Pennington, W. Hwu, “QP: A Heterogeneous Multi-Accelerator
Cluster,” in Proc. 10th LCI International Conference on High-
Performance Clustered Computing, 2009. [Online].
Available:http://www.ncsa.illinois.edu/~kindr/papers/lci09_paper.pdf.

0

10

20

30

40

50

G
CU

PS

Query Length

swGPUCluster

swps3-x86/sse2
multi-core

cudaSW++
singleGPU

swps3-x86/sse2-
single-core

Figure 6. Comparison of performance of swGPUCluster with cudaSW++ and swsp3-x86/sse2.

Nguyen Thanh Thuy, Professor.
Professor Thuy received the B.E.
(1982), D.E. (1987) degrees in
Computer Science from Hanoi
University of Science and
Technology. He is a professor, School
of Information and Communication
Technology. His current interests
include reasoning, machine learning,
artificial intelligence and HPC.

Nguyen Huu Duc, Ph D.
Dr Nguyen received his Ph.D. in
computer science from the Japan
Advanced Institute of Science and
Technology in 2006. His primary
interest is in the area of programming
languages, specifically design and
implementation of parallel
programming languages for
multicore/manicore architectures.

Pham Hong Phong
Phong received B.E degrees in computer
science from Hanoi University of Science
and Technology in 2009. His current
interests include artificial intelligence,
high performance computing and parallel
computing on GPUs.

Duong Nhat Tan
Tan received B.E degrees in computer
science from Hanoi University of
Science and Technology in 2010.
Currently, Tan’s interests are high
performance computing, parallel
computing on GPUs and could
computing.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

179

