

Hybrid Distributed Real Time Scheduling Algorithm

A.Prashanth Rao1 , Dr.A. Govardhan2 C.Venu Gopal3
1Reasearch Scholar, JNTU College of Engineering, Hyderabad (Dt), A.P, India,

+91-9490232922,
adirajupppy@yahoo.com

2Professor of CSE & Principal, JNTU College of Engineering, KarimNagar (Dt), A.P, India,
+91-9440887733

govardhan_cse@yahoo.co.in
31Reasearch Associate of CSE, Osmania University, Hyderabad, A.P, India.

cherupalli_v@yahoo.com

Abstract: In the design of real time distributed system, the
scheduling problem is considered to be nature of NP Hard
and has been addressed in the literature. However due
growing complexities of real time applications, there is
need to find optimal dynamic scheduling algorithm. In this
paper, we describe a heuristic hybrid scheduling algorithm
which combines both static and dynamic tasks. Initially a
processor can be allocated a fixed number of units based on
pre-defined tasks which are generated from different
sensors and there will certain number of units are meant for
dynamically created tasks. When a dynamic task arrives at
a node, the local scheduler at that node attempts to
guarantee that the task will complete execution before its
deadline, on that node. If the attempt fails the scheduler
searches the node where task will feasibly scheduled. This
type of scheduling performs the best results and scheduling
algorithm can be configurable.

Keywords: Multiprocessor, Critical Instant,
Deadline, Utilization Value, Scheduling.

Abbreviations:

RM: Rate Monotonic;
RMST: Rate Monotonic Small Tasks;
RMGT: Rate Monotonic General Tasks;
RMCT: Rate Monotonic Critical Tasks;
RMEDF: Rate Monotonic Earliest Deadline First;

1. INTRODUCTION
Distributed real time systems are becoming more

prevalent in applications such as avionics, process control,
chemical industry, and robotics. These applications contain
many tasks that has period, execution time, deadline which
must be met. Tasks in these applications are typically
categorized as critical, essential, and nonessential. Critical
tasks are defined as those which must meet their deadline
under all circumstances; otherwise it leads to a catastrophe.
Essential tasks are those that have a deadline and are
important in the operation of the system, but will not cause
a catastrophe if they are finished on time. If essential tasks
miss their deadline, the performance of the system

degrades. Nonessential tasks are defined are those whose
deadline if missed will not affect the system in the near
future but may have effect in the long run. Maintenance
and Bookkeeping activities fall in this category. All these
types of tasks are to be scheduled without missing deadline.

A scheduling algorithm provides a set of rules that
determine the processor(s) or node to be used and tasks to
be executed at any particular point of time. There are many
scheduling algorithms to handle fixed priority tasks are
known as static scheduling algorithms [1], [2], [3].
However, static scheduling for task groups determines a
poor effiencey in resource usage, which could become
unacceptable in many applications scenarios. Similarly
there are many dynamic scheduling algorithms [4], [5], [6]
of group of tasks which uses Earliest Deadline First (EDF)
algorithm. There are several schedulability conditions for
RM algorithm which are predominantly oriented towards
task periods. Two off line algorithms namely RMST [8]
and RMGT [8] which were developed, order the tasks
according to their periods and scheduling.

Most of real applications uses both algorithms and
there need to combine these two algorithms to schedule the
real time tasks. In this paper we need to develop a hybrid
algorithm which is used to schedule both periodic and non-
periodic tasks. So we should have a proper mix of low and
high priority tasks and also separate set are formed.

 This paper is organized as follows. Section 2
describes Basic Terminology. System Model in Section 3.
Section 4 describes global scheduling Results and
Discussions in Sections 5. Finally, the conclusion and
future scope are given in Section 6.

2. BASIC TERMINOLOGY
The real time tasks which were generated from

different sources such as sensors, which are treated as static
tasks and are repeated in regular interval of time. These
tasks in turn to create other tasks known as aperiodic tasks
and arrival of these are not known in advance. Some other

PDF processed with CutePDF evaluation edition www.CutePDF.com

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

162

mailto:adirajupppy@yahoo.com
mailto:govardhan_cse@yahoo.co.in
mailto:cherupalli_v@yahoo.com
user
DOI: 10.5176_2010-2283_1.2.54

tasks also generated due environmental change in the
system. These types of tasks are known as dynamic in
nature. Tasks in real time systems are periodic and
aperiodic.

a) Periodic tasks: Periodic tasks are time driven
and recur at regular interval of time called the
period. Generally sensor generates periodically
these types of the tasks. These tasks are known as
static in nature and characterized by periodicity
and worst case execution time. These tasks are
scheduled using RM algorithm.

b) Aperiodic tasks: Aperiodic tasks are event-
driven and activated only when certain events
occur. Aperiodic task whose inter-arrival times
are known as sporadic tasks. These types of
tasks are dynamic in nature and characterized by
phase (ǿ), worst case execution time (ei) and
deadline (di). These tasks are scheduled using
EDF algorithm.

 Both type of tasks such as periodic and aperiodic
will together scheduled when they arrive.

c) Laxity: The Laxity of Taski is defined to be (di –
ei - t) where di is the deadline , ei execution time
and t is current time

d) Maximum Periodicity (Pmax): If Pmax is the
maximum periodicity constraint, then for a
feasible system T< Pmax . Where T is the total
execution for a system task.

Using above definitions we can develop a

scheduling algorithms which we discussed in detailed in the
section (4), before that we need understand system model
which describes the following section.

3. SYSTEM MODEL
 In this section we describe certain characteristics of
system and these are used to develop the proposed
algorithm.

1. Tasks are periodic in nature and it is
characterized by periodicity (pi), execution time
(ei) and arrival times are known in advance.
Fixed priority scheduling algorithm used to
schedule these tasks.

2. Tasks are aperiodic, i.e. the task arrivals are not
known a priori. Every taski characterized by
arrival time (ai), ready time (ri),worst case
computation time (ei) and deadline (di)

3. Periodic tasks are preemptable where as aperiodic
tasks are non-preemptable

4. There are m nodes in loosely coupled distributed
system and each node allocate fixed number of
execution units which equal to half of its time
critical value (M) or Pmax and rest of half units are
meant for non-periodic tasks. This means time

axis is divided into two partitions windows in
which one window statically pre-assigned tasks
and other window dynamically allocated tasks.

5. The first window uses RM algorithm where as
other window uses EDF algorithm.

6. M denotes the least common multiples of pi , ∀
j=1... n. A time interval of length M is called a
hyper-period or Critical Time Value of the tasks
which are allocated to that particular processor.

7. Critical Time Interval is the time gap or time
interval between two consecutive instants of time
when at those instants of all the tasks arrive
simultaneously.

If all tasks arrive at time t=0 and again the next
instant of arrival of tasks is at time t=M. The
interval [0, M] is Critical Time Interval.

On each node there are three components
involved in the system. The local scheduler who
is used to schedules the task at given node. The
dispatcher invokes the next task to be executed
and global scheduler schedules the task if it is not
schedule locally. These concepts are pre-request
to understand global scheduling algorithm.

4. GLOBAL SCHEDULING
There are m nodes in a loosely coupled

distributed system and each node contains set of resources
such as processor. A task is an execution entity and its
execution can be preempted if it is scheduled based on RM
algorithm otherwise non-preemptive. Before presenting
scheduling algorithm we need to define task system and its
feasibility.

4.1.TASK SYSTEM AND FEASIBITY

Typically the real time systems with computer
oriented control of a process involves execution of
independent task system ΓΓΓΓ = {ττττ1, ττττ2, ττττ3, ττττ4… ττττn }, each task
ττττj ∈∈∈∈ ΓΓΓΓ has pi period and an execution time ej. In reality and
in general, the total execution period (Pmax) of ΓΓΓΓ for task ττττj

∈∈∈∈ Γ, Pmax ≠∑
=

n

j
je

1

. It is quite reasonable to state that

Pmax ≥ ∑
=

n

j
je

1
 as the periodicity of each task ττττj ∈∈∈∈ ΓΓΓΓ varies

from another. We define the periodicity of each task ττττj as pj
, and it is obvious that the execution time of ττττj has to be
less than that of its periodicity or ej < pj otherwise it cannot

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

163

be processed completely. The task system can be defined
by equation (1) arranging all tasks with increasing periods.

 ΓΓΓΓ1 = {(pi1, ei1), (pi2, ei2)… (pin, ein)} ------------ (1)

The above task system (1) is used to schedule the
task system for fixed priority algorithm. But each such
system generates aperiodic tasks which need to schedule
using dynamic priority algorithm. Initially task system
partitioned into two or more subsets and each subset will
execute on a different processor. The division of subset
based on total execution units of periodic task system.

 The total executions time (T) units of periodic task
system can be estimated and feasibility of tasks is
determined. These execution units (T) can be divided into
m sets and each set contain the execution time units less
than or equal to half of its time critical value (M) or Pmax.
Remaining half of units reserved for non-periodic tasks,
their arrival times are not known in advance. On each
processor the time axis is divided into two parts, the first is
known as static and other window known as dynamic
window. The static window uses RM algorithm and
dynamic uses EDF algorithm. So we can improve the
utilization of the processor. The fixed allocation algorithm
uses window which describes below.

4.2 FIXED ALLOCATION ALOGRITHM

Initially tasks are allocated to the processor based
on the periodicity (Pmax) of the task which will be the first
element in the queue. The total execution units are set to be
Pmax and these execution units on time axis t will be divided
into two windows using configurable parameter k. The
configurable parameter value in between 0 and 1 which
depends upon the application and its data values. For some
applications planning cycle i.e. LCM of periodicity values
as taken as Pmax taken into consideration.

 According to RMEDF Algorithm 1(shown
below), which divides time axis into two windows one for
static allocation and other for dynamic allocation and the
number of tasks allocated processor based on K* Pmax by
varying the value of k, we can mix-up the periodic and non-
periodic tasks. This algorithm also allocates the fixed
periodic tasks to each processor.

When k=1, the window completely loaded with periodic
task sets. The RMEDF algorithm converted to RMCT (see
Figure1)

The RMEDF Algorithm is used to divide the window into
parts and allocates periodic tasks as well free slots are used
for dynamically created tasks. The algorithm presented
below.

 Input: Queue which contains tasks (n) starting from
largest periodicity to smallest periodicity

Output: No. of processors required (m2) and each set
divides into two windows.

I.M=LCM(p1, p2, p3, p4,……. Pn) ;
// M is the critical instant of periodic task system.

II.I = Set of jobs or number of occurrences in given
 M of a given task system
 i.e I1 = M/ p1 , I2 = M/ p2 ,.............In = M/pn

 I = {I1 ,I2 ,I3 ,………..In }

III.T = Total execution time units of given task
system within the critical instant.

If T < M than schedule on uniprocessor system i.e.
m= 1 go to step VI

I. Compute Number of processors.
i. m2=0, T=0,i=0, j=n-1;

//Initializing the variables

ii. While((i<n)&&(i<j))
 { T= ei , temp= Pi;

 While (j≥0)

 {

 T= [temp/pj]ej +T;
 if (T< k*(temp))
then j—
 // k is configurable
parameter.
 else m2= m2+1;}
i++; }

IV.Write the value of m and corresponding m sets,
each set contains a set of tasks which are feasible to
schedule on given processor.

RMEDF Algorithm 1

4.3 DYNAMIC ALLOCATION ALGORITHM

Assume that each node may contain a set of
processors and they need to communicate with each other.
When a task arrives at node Ni the local scheduler of Ni is
invoked to try to guarantee the newly arrived task on that
node. If it is feasible on that node it will add to its local
scheduler otherwise it searches where it should be
scheduled.

 n

T = ∑ Ii * ei

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

164

Each node maintains a status table which contains
process details, total number of execution units, surplus
computational capacity, taskId, and cooperation with other
processors. If any processor reaches to maximum
utilization for allocating one task, no other task is allocated
to that processor. This processor treated as non-cooperative
with other processor. This means that processor can not be
allocated to any other tasks except aperiodic tasks results
from the same periodic task which is generated.

 The RMEDF Algorithm 1 allocates periodic
tasks to the processor and divides the window into two
parts. The dynamic tasks such aperiodic or sporadic
tasks..etc, are scheduled using Focused Addressing with
Bidding (FAB) [7].The different modules within the FAB
are

a) Information policy: Each node in distributed
system maintains status table. The status table
contains the information about pre-assigned tasks
and free available slots which can accommodate
the dynamic tasks.

b) Transfer Policy and Selection Policies: When
dynamic task arrives at a node, the local
scheduler of that node try to schedule the task
locally without disturbing pre-assigned tasks. If
local scheduler fails, it selects task need to
transfer to another light node to schedule the
arrived task.

c) Location Policy: If the transfer policy of a node
decides to transfer selected task then location
policy identifies the suitable node.

 The global scheduler sorts the nodes according to
available free slots at each and every instant of time.
When event occurs at particular instant of time, global
scheduler algorithm is invoked.

I. Input: Read task parameters phase (Ф), execution
time (ei) and deadline (di).

II. Output: Allocate newly arrived task one the

processor.

III.If newly arrived taski allocated locally then stop

IV.Compute the transfer time ttrans of taski =deadline –
(current time (t) +execution time(ei)

V.Compute free slots between the current time and

deadline of newly arrived taski for each node.
a. Selects suitable nodej
b. AAllllooccaattee ttaasskkii ttoo nodej
c. Repeat steps I to V for other dynamic

tasks.

Algorithm2: global scheduler

Using global scheduler algorithm we can allocate
tasks to the processor and assume that the communication
between the nodes have fixed time units. If ttrans is less than
these units then global scheduler selects remote processor if
free slots available to execute task.

5. Results and Discussions

Example: Let us illustrate the above algorithm
with an example. In Table 1 we show the parameters for a
set of 10 tasks after sorting with increasing priority.

According to RMEDF algorithm total time
execution units of given task system can be computed and
feasibility of the system can be performed. The execution
units for each processor can allocate by using above
algorithm. Each time configurable parameter is changed to
optimal number of units allocated to individual window.

Table1:Example RMEDF

When configurable parameter k=1:

RMEDF Alogrithm1 Computes:

Number of processor (m) = 4, which is more optimal than
period oriented algorithm.
Task system divides into 4 subsets.
Subset1: {(400,113) ,(20,3),(7,2)}, Allocated to processor1.
LCM of periodic tasks = 2800 units.
Subset2: {(280,141), (36, 11)}. Allocated to processor2.
LCM of periodic tasks = 2520 units.
Subset3: {(230,138), (45, 14)}. Allocated to processor3.
LCM of periodic tasks = 2070 units.
Subset4: {(150, 31), (65, 16), (60, 19)}, Allocated to
processor4. LCM of periodic tasks = 3900 units.

For processor 1: Total execution units=7*113
+140*3+400*2=2011, so maximum utilization of processor
in only 72% due periodic task set. Remaining (2800-2011)
789 units may utilize properly for background processes.
Similarly we can compute available slots for other
processor. The processor status table maintains details
about processor such processor ID, allocated tasks,
available slots for dynamic tasks.

Ta
sk
id

1 2 3 4 5 6 7 8 9 10

Pi 400 280 230 150 65 60 45 36 20 7

ei 113 141 138 31 16 19 14 11 3 2

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

165

If configurable parameter k reduces by some
value, the number of processor may increase but utilization
of the processor increases properly by including non-
periodic tasks. This means the proper mix of periodic and
non-periodic tasks.

K=0.70

RMEDF Alogrithm1 Computes:

Number of processor (m) = 6,
Task system divides into 4 subsets.
Subset1: {(400,113), (7, 2)}, Allocated to processor1.
LCM of periodic tasks = 2800 units.
Subset2: {(280,141), (20, 3)}Allocated to processor2.
LCM of periodic tasks = 280 units.
Subset3: {(230,138)}. Allocated to processor3. LCM of
periodic tasks = 230 units.
Subset4: {(150, 31), (36, 11)}, Allocated to processor4.
LCM of periodic tasks = 2700 units.
Subset5: {(65, 16), (45, 14)}, Allocated to processor5.
LCM of periodic tasks = 585 units.
Subset6: {(60, 19)}, Allocated to processor6 LCM of
periodic tasks = 60 units.

For processor 1: Total execution units=7*113
+400*2=1591. So maximum utilization of processor in
only 56% due periodic task set. Remaining (2800-1591)
1209 units may non-periodic tasks which are uses EDF
algorithm. Similarly we can compute available slots for
other processor.

When dynamic task arrived at processor 1 with a phase 20,
execution time 1.5 units and deadline 4.

The absolute deadline of the task = 20+4=24.

Global scheduler called when event generates, Scheduler
determines that the task not be scheduled locally because
high priority task (7, 2) releases at t= 21 and should
complete before 23.

Scheduler computes, ttranf = 24-(21+1.5) =2.5 units.
If communication time between the local processor and
remote processor less than 2.5 units and there are available
free slots in this interval (20-24) then the task will be
allocated to that processor. So processor 6 selected as a
remote processor.

From the simulations, the performance of RMCT as shown
Figure1, RMCT tasks give better results than RMGT

Simulations are performed using MATLAB 6.0 and
complete tool under the progress. When new task arrives
global scheduler automatically identifies the node for
execution of new task. If it is not found suitable one then it
preempts low priority task without missing deadline.

6. CONCLUSION

This paper provides a better algorithm called
RMEDF for allocating execution units for both periodic
and non-periodic task set for given complex real time
embedded system. Also allocating periodic and non-
periodic tasks to nodes.Based on these concepts we are
developing a simulation tool which schedules the both
periodic and non-periodic tasks. Our future works takes
precedence relations and real-time faults into consideration
and also effective scheduler which can suitable for any type
application..

7. REFERENCES
[1] S.Cheng, J.A.Stankovic, and K.Ramamritham,
Scheduling Algorithm for Hard Real Time Systems: A
Brief Survey, Tutorial: Hard Real Time Systems, EFF
Press, 1988, pp 150-173.

[2] J. D Gafford, Rate Monotonic Scheduling, IEE Micro,
June 1991, pp 34-39 Real Time Systems by James
W.S.Liu Published by Pearson Education, II Ededition,
1991.

[3] Georgio C Buttazzo, Rate Monotonic vs.EDF:
Judgement Day, Real-Time Systems, 29, 5-26, 2005.

[4] Sylvain Lauzac, Rami Melhem, Fellow, IEEE, and
Daniel Mosse´, Member, IEEE computer Society An
Improved Rate-Monotonic Admission Control and Its
Applications, IEEE Transactions On Computers, Vol. 52,
No. 3, March 2003

 [5] H.Chetto and M.Chetto, Some Results of the Earliest
Deadline Scheduling Algorithm, IEEE Transactions on
Software Engineering 15(10), 1989, pp 466-473

[6] Giorgio C.Buttazzo, Hard Real-Time Computing
Systems Predictable Scheduling Algorithms and
Applications, Kluwer Academic Publishers,1997

[7]C.Siva Ram Murthy and G.Manimaran, Resource
Management in Real-Time Systems and Networks, PHI
Learning Private Limited, 2009

 [8] Almut Burchard, Jorge Liebeherr, Member, Yingfeng
Oh, and Sang H. Son,New Strategies for Assigning
RealTime Tasks toMultiprocessor Systems,IEEE
Transactions On Computers, Vol.44, No.12, December
1995

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

166

A.Prashanth Rao received the Master of
Technology Degree in computer science in
1999 from JNTU, Hyderabad.Presently
working an Associate Professor in
B.V.R.I.T, Narsapur, Medak. He is
currently pursuing a Ph.D in the area real
time embedded system at the Jawaharlal

Nehru Technological University, Hyderabad

Dr.A.Govardhan did his BE in Computer
Science and Engineering from Osmania
University College of Engineering,
Hyderabad in 1992, M.Tech
fromJawaharlal Nehru University,
Delhi in 1994 and Ph.D from Jawaharlal
Nehru Technological University,
Hyderabad in 2003. He is presently a

Professor of CSE and Principal at Jawaharlal Nehru
Technological University Hyderabad College of
Engineering, Karimnagar Dt,, AP, India. He is a member
on the Editorial Board of International Journal of Emerging
Technologies and Applications in Engineering
Technologies and Sciences (IJ-ETA-ETS) and International
Journal of Computer Applications in Engineering
Technologies and Sciences (IJ-CA-ETS), International
Journal of Advanced Computing, International Journal of
Data Engineering and Computer Science, Scientific and
Technical Committee & Editorial Review Board, World
Academy of Science, Engineering and Technology. He has
105 research publications at International/National Journals
and Conferences. He is a Committee Member in
PAKDD2010, ICETCSE-2010, ICACT-2008 and NCAI06.
He is Reviewer for papers of ADCOM2006, ACT2009. He
is member in various professional bodies including CSI,
ISTE, FSF, IAENG and WASET. He is a member on
Boards of Studies of Various Institutions including JNT
University Hyderabad. He has guided 123 M.Tech projects.
His areas of interest include Databases, Data Warehousing
& Mining, Information Retrieval, Computer Networks,
Real Time Systems, Image Processing and Object Oriented
Technologies

Mr.Venugopal Cherupalli received his
graduation from IETE, New Delhi and did
several PGs in Electronics and Computer
Science from O.U and IETE, New Delhi.
He worked 22yrs in ECIL (Electronics
Corporation Of India Ltd.) Also worked in

US on s/w projects. Presently working in O.U.as professor.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

167

	1. INTRODUCTION
	2. BASIC TERMINOLOGY
	3. SYSTEM MODEL
	4. GLOBAL SCHEDULING
	5. Results and Discussions
	6. CONCLUSION
	7. REFERENCES

