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ABSTRACT 
Our primary aim is to design a framework to solve the well known 
traveling salesman problem(TSP) using combined approach of 
Ant Colony Optimization (ACO) and Genetic Algorithm (GA). 
Several solutions exists for the above problem  using ACO or GA 
and even  using a hybrid approach of ACO and GA. Our 
framework gives the optimal solution for the above problem by 
using the modular hybrid approach of ACO and GA along with 
heuristic approaches.We have incorporated GA, RemoveSharp 
and LocalOpt heuristic approaches in ACO module, hence each 
iteration calls the GA and heuristics within ACO module which 
results in a higher amount of pheromone deposited in the optimal 
path for global pheromone update. As a result the convergence is 
quicker and solution is optimal.  

Keywords 
Traveling Salesman Problem(TSP),Ant Colony Optimization 
(ACO), Genetic Algorithm (G.A), Heuristics, Optimization, 
Pheromone. 

1. INTRODUCTION 
In the approach discussed in this paper we distribute the search 
activities over "ants," that is, agents with simple basic capabilities 
which, to some extent, mimic the behavior of real ants.  

Ant colony algorithm[2] determines optimal solution by 
simulating the process of ants searching for food. The ants 
collective  behavior reflects an information positive feedback 
phenomenon. The increased amount of pheromone attributed as 
the positive feedback.  This optimization technique does not rely 
on mathematical description of the specific issues, but has strong   
global optimization feature[3], high performance[4] and 
flexibility. Three main aspects to determine  ACS are:  

1.1 ACS (Ant Colony System) State Transition 
Rule 

 Ants prefer to move from one place to another( i.e one node to 
other node) which are connected by short edges with a  high 
amount of pheromone[2]. It can be done by using following rule. 

An ant positioned on node r chooses the city s as shown in Fig1  
to move by applying the rule given by Eq. (1) 

 

PIk(r,s)=  (r,s).[η(r,s)]β, if sєJk(r)                             
                            ∑ (r,u)[η(r,u)]β             uεJk(r) 
                            
                                                                                -(1) 
                                  0                  otherwise 

 where τ is the pheromone, η =1/d is the inverse of the distance d 

(r,s), Jk(r) is the set of cities that remain to be visited by ant k 
positioned on city r (to make the solution feasible), and ß is a 
parameter which determines the relative importance of pheromone 
versus distance (ß >0). 

In Eq. (1) we multiply the pheromone on edge (r,s) by the 
corresponding heuristic value 

η (r,s). In this way we favor the choice of edges which are shorter 

and which have a greater amount of pheromone.  

1.2   ACS Local Updating Rule 
While building a solution (i.e., a tour) of the TSP, ants visit edges 
and change their pheromone level by applying the local updating 
rule[5] of Eq. (2): 

(r,s)(1-ρ). (r,s)+ρ. ∆ (r,s)   - (2) 

where 0< <1 is a parameter. 

We have experimented with several values for the term ∆ (r,s).A 
good choice was inspired by Q-learning[3] , an algorithm 
developed to solve reinforcement learning problems which allows 
an agent to learn such an optimal policy by the recursive 
application of a rule. ∆ (r,s)=γ.max (s,z) where zєJk(s) and 
0<γ<=1.Alternate choices may be ∆ (r,s)=t0 or ∆ (r,s)=0. 

1.3 ACS Global Updating Rule 
Once all ants have built their tours,pheromone is updated on all 
edges by using the following rule:  
 (r,s) (1-α)* (r,s)+α*∆ (r,s).                                          – (3) 
where 0<α<1 is pheromone decay [4][6]parameter and we assume 
α=0.2 to get a better effect of probability on the globally shortest 
path.  
Where,   (r,s) =     (Lgb) -1   if (r,s) ε global best tour 

 

0 otherwise 
and  Lgb is length of globally best tour. 
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1.4 Genetic Algorithm 
Genetic algorithm [1] is a relatively new optimization technique 
which can be applied to various problems, including those that are 
NP-hard. The technique does not ensure an optimal solution, 
however it usually gives good approximations in a reasonable 
amount of time. This, therefore, is a choice to try on the traveling 
salesman problem [5], one of the most famous NP-hard problems. 

Genetic algorithms are based on natural evolution and use a 
“survival of the fittest” technique, where the best solutions survive 

and are varied until we get a good result.  

2. HYBRID GENETIC ALGORITHM 
In Hybrid Genetic Algorithm [8] some heuristic functions are 
considered with the crossover function of GA. We have designed 
a modified algorithm[13] by removing the Initial Heuristics (IH) 
part as it is not well fitted for the large number of cities. If the 
number of cities increases the performance of IH degrades. And 
also we have removed the multiple instances of local search. Only 
single instance we have used over here for the sake of simplicity 
as it also performs well. The modified Hybrid Genetic Algorithm 
[13] is designed to use the improvement of offspring produced by 
crossover. The offspring is obtained by crossover [6] between two 
parents selected randomly. The tour improvement heuristics: 
RemoveSharp and LocalOpt are used to bring the offspring to a 
local minimum [7]. If cost of the tour of the offspring thus 
obtained is less than the cost of the tour of any one of the parents 
then the parent with higher cost is removed from the population 
and the offspring is added to the population. If the cost of the tour 
of the offspring is greater than that of both of its parent then it is 
discarded. The modified Hybrid Genetic Algorithm works as 
below: 

 Step 1: 

 Select two parents randomly. 
 Apply Crossover between parents and generate an 

offspring 
 Apply RemoveSharp algorithm to offspring 
 Apply LocalOpt algorithm to offspring 
 If TourCost(offspring) < TourCost(any one of the 

parents) then replace the weaker parent by the offspring 

Step 2:  Shuffle any one randomly selected tour from population 

Step 3: Repeat steps 1 and 2 until end of specified number of 
iterations                                     

2.1   Crossover Algorithm  
The crossover operator that is used here is a slight variant of the 
general crossover operator. The crossover operator uses an “edge 

map” to construct an offspring which inherits as much 

information as possible from the parent structures. This edge map 
stores information about all the connections that lead into and out 
of a city. Since the distance is same between any two cities, each 
city will have at least two and at most four edge associations (two 
from each parent).Crossover algorithm works as follows:  

 Step 1: Choose the initial city from one of the two parent 
tours. (It can be chosen randomly or according to criteria 
outlined in step 4). This is the “current city”. 

 Step 2: Remove all occurrences of the “current city ” from 

the left-hand side of the edge map. 
 Step 3: If the “current city” has entries in its edgelist go to 

step 4; otherwise, go to step 5. 

 Step 4: Determine which city in the edgelist of the “current 

city”, has shortest edge with the “current city”. The city with 

the shortest edge is included in the tour. This city becomes 
the “current city”. Ties are broken randomly. Go to step 2. 

 Step 5: If there are no remaining unvisited cities, then 
STOP. Otherwise, randomly choose an unvisited city and go 
to step 2. 

                                      

2.2 The RemoveSharp Algorithm 

The RemoveSharp algorithm removes sharp increase in the tour 
cost due to a city, which is badly positioned. The algorithm works 
as below: 

 Step 1: A list (NEARLIST) containing the nearest m cities                  
to  a selected city is created. 

 Step 2: RemoveSharp removes the selected city from the 
tour and forms a tour with N-1 cities. 

 Step 3: Now the selected city is reinserted in the tour either 
before or after any one of the cities in NEARLIST and the 
cost of the new tour length is calculated for each case. 

 Step 4: The sequence, which produces the least cost, is 
selected. 

 Step 5: The above steps are repeated for each city in the 
tour. 

 

2.3 The Local Opt Algorithm  
The LocalOpt algorithm will select q consecutive cities (Sp+0 , 
Sp+1 , . . . . . , S p+q-1) from the tour and it arranges cities Sp+1 , 
Sp+2 , . . . . , Sp+q-2 in such a way that the distance is minimum 
between the cities S p+0  and S p+q-1  by searching all possible 
arrangements. The value of p varies from 0 to n-q, where n is the 
number of cities. 

3. MODULAR HYBRID ANT COLONY 
APPROACH 
The modular hybrid ant colony [13]algorithm by effectively using 
Ant Colony Optimization[4], Genetic Algorithm and some 
heuristics ,combined to optimize the problem and enhancing the 
throughput is as bellow: 

 

 Initialization: iteration i =0 
 Step1:  Apply ACS to the problem for iteration i. 

 Calculate initial pheromone on each path. 
 Make local updation on each path. 
 Make global updation on the best path so far. 

 Step2:  Apply modified hybrid GA. 
 Select two good  parents(paths) from output of  

Step1. 

 Step3: Apply Crossover between parents and generate an 
offspring. 

 Step4: Apply RemoveSharp algorithm to offspring. 
 Step5: Apply LocalOpt algorithm to offspring. 

 If TourCost(offspring) < TourCost (any one of the 
parents) then  replace the weaker parent by the 
offspring. 

 Make global updation on the best path so far. 
 Step4:  Iteration i = i+1 
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 Step5:  Go to Step1 until all the ants converges to a single 
path (i.e shortest path). 

 

The above algorithm can be modified to achieve an improved 
performance. Global updation can be done after Crossover, 
RemoveSharp and LocaOpt each. Thrice global updation will 
cause a higher pheromone level on the shortest path and hence 
early convergence.  Thus we have formulated a framework for 
solving the problems of similar types as shown below:   

 Initialization: iteration i =0 
 Step1:  Apply ACS to the problem for iteration i. 

 Assume initial pheromone on each path suitably on 
the basis of the application. 

 Make local updation on each path. 
 Make global updation on the best path so far. 

 
 Select two good parents(paths) from output of  Step1. 
 Apply modified hybrid GA(Step2 to Step4). 

 Step2: Apply Crossover between parents and generate an 
offspring. 

 If TourCost(offspring) < TourCost (any one of the 
parents) then  replace the weaker parent by the 
offspring. 

 Make global updation on the best path so far. 

 Step3: Apply RemoveSharp algorithm to offspring. 
 If TourCost(offspring) < TourCost (any one of the 

parents) then  replace the weaker parent by the 
offspring. 

 Make global updation on the best path so far. 

 Step4: Apply LocalOpt algorithm to offspring. 
 If TourCost(offspring) < TourCost (any one of the 

parents) then  replace the weaker parent by the 
offspring. 

 Make global updation on the best path so far. 
 Step5:  Iteration i = i+1 
 Step6:  Go to Step1 until all the ants converges to a single 

path (i.e shortest path). 

 

4. EXPERIMENTAL DETAILS 
Let us consider a TSP problem[9] for six cities in a completely 
connected graph and the distances between the cities are given as 
in the figure 1.We have considered r as the source and destination 
node (city) and initialized with 12 ants. 

 
   Fig 1 

According to the algorithm all ants starts from r and travel all the 
cities and reaches again at r in different paths causes local 
updation of pheromone on that paths and a global updation of 
pheromone on the shortest path out of them. After selecting two 
promising tours from ACS and applying crossover of GA and 
other two heuristic functions RemoveSharp& LocalOpt on them, 
determines the shortest path and results in a global updation each 
time again. The algorithm proceeds till all ants converge in a 
shortest path. The implementation was done in Turbo C language 
on Windows platform  in a Pentium 4 machine. 

4.1 Complexity Analysis Improved Modular 
Hybrid ACS verses of Modular Hybrid ACS. 
 (i). Complexity for step1 (ACS complexity): 

   Assuming local update takes p unit time and global update takes 
q unit time. 

So Step1 of algorithm 3 having complexity: 

=n(n+1)/2*p (for local update) +n*q (for global update) ≈ O(n2). 

(ii). Complexity for step2 (Cross over Complexity): 

Let each comparison takes l unit of time and adding the city in the 
edgelist takes m unit of time. So in worst case time complexity 
=n*(n*(l+m)) ≈ O(n2). 

(ii). Complexity for step3 (RemoveSharp Complexity) 

 Let removing a city from the tour and reinsertion (may be before 
a node or after anode) takes same unit of time x, m is the size of 
the NEARLIST and y is the time taken for each comparison. So 
the complexity is=n*(x+2m*x[for reinsertion before or after a 
particular node] +2m*y[for comparison]) ≈ O(n). For deadly 
worst case if m=(n-1),the complexity is ≈ O(n2). 

(iii). Complexity for step4 (LocalOpt Complexity)  

Time complexity of LocalOpt depends on the value of q, the 
number of consecutive cities chosen in sequence. So for (q-2)! 
combinations, in each case (q-1) additions are required to evaluate 
the cost of sequence and one comparison is to check whether the 
sequence is minimum or not. Thus n consecutive sequence of q 
cities having time complexity = n*((q-2)! * (q-1) additions + (q-
2)! comparisons) ≈ O(n). 

So the overall time complexity of the algorithm is= No of iteration 
i*[O(n2) [for ACS]+ O(n2)[for crossover]+ O(n)[ for 
RemoveSharp]+ O(n)[ for LocalOpt] ≈ O(n2)]. 

In case of Improved Modular hybrid ACS  the value of i (no of 
iteration) is dramatically reduced (discussed in section 4.2 ) than 
Modular Hybrid ACS below and hence results in improved 
complexity.  

 

4.2 Experimental Results 
The performance graph for the Hybrid GA, Modified Hybrid GA 
and Modular Hybrid ACS are as shown in the Fig 2..We have 
used Log Log plot graph to clearly indicate the small performance 
difference in the Hybrid GA and Modified Hybrid GA. Modular 
Hybrid ACS have a greater performance relative to others. 

 

 

 

 

 

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

125



 

 

 

 

 

 

 

 

 
 

 

 

 

 

    

   Fig 2 

Using Improved Modular Hybrid ACS algorithm on problem of 
Fig 1 for the traveling salesman requires only one iteration to 
solve the problem whereas Modular Hybrid ACS requires only 
two and  simple ACS requires three iterations respectively. Table 
1 shows the details of the path distances followed by each ant in 
simple ACS, Modular Hybrid ACS and Improved Modular 
Hybrid ACS algorithm in each iteration and their convergence.  
The performance improves in case of large number of cities in 
comparison with simple ACS and Modular Hybrid ACS. 

  Table 1 

 

 

The results are shown iteration wise. In the first iteration 
Improved Modular Hybrid ACS having better performance than 
Modular Hybrid ACS and simple ACS all ants chooses the 
shortest path as shown in Fig 3. 

 

 
Fig 3 

In the second iteration of Modular Hybrid ACS all ants converges 
to the shortest path whereas in simple ACS only 77.77% ants 
chooses the shortest path as shown in Fig 4 

   Fig 4 

In the third iteration of simple ACS all ants converges to the 
shortest path as shown in Fig 5. 

 
   Fig 5 
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No. of Ants 
convergesUsing 
improvedModul
ar hybrid ACS 
with path length. 

1st T1,2=16,   T6=20,       
T10=18,T3=18, 

T7=18 ,  T11,12 
=20, T4,5=20,         
T8,9=16. 

T1to4=16,T5=2
0T6=18,T7to10
=16,T11=20,  
T12=18. 

T1to6=16,   
T7to12=16. 

(Converged to 
shortest path) 

2nd  T1to4=16, 
T5,6=20,             
T7to10=16, 
T11,12=20.                

T1to6=16,  
T7to12=16. 

(Converged to 
shortest path) 

 

3rd T1to6=16,T7to12
=16.(Converged 
to shortest path)    
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5. CONCLUSION AND FUTURE SCOPE 
This paper introduces a new search methodology based on a 
distributed autocatalytic process and its application to the solution 
of a classical optimization problem. The general idea underlying 
the Ant System paradigm is that of a population of agents each 
guided by an autocatalytic process directed by a greedy force. 

 

The heuristics which are used over here results in near optimal 
solutions in most of the cases and improvement in a few cases. 
These heuristics are simple, straightforward and easy to 
implement as compared to other algorithms. Incorporating these 
heuristics inside the ACS gives the earlier convergences, hence 
better performance. The main contributions of this paper are as 
under. 

We employ positive feedback as a search and optimization tool.  

1. For initialization the output of ACS is taken which results in a 
better performance as compared to random initialization.  

2. A good starting solutions with local search employs best 
strategy. The convergence rate is very fast when heuristics are 
used. 

3. Size of NEARLIST can be varied depending on the distribution 
of the cities. 

4. Global pheromone update after applying heuristics leads to the 
earlier convergence. 

We have shown that the ACS is a very powerful and efficient 
algorithm to provide starting solutions and RemoveSharp & 
LocalOpt are very good local optimizers. And a proper sequence 
of combination makes the framework efficient. And thus 
Improved Modular Hybrid ACS have a greater performance than 
Simple ACS as well as Modular Hybrid ACS. 

This approach can be extended to different problems like vehicle 
routing problems[10], network routing problems[11], scheduling 
problems[12], etc.  
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