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Abstract— In robot systems several computationally intensive 
tasks can be found, with path planning being one of them. 
Especially in dynamically changing environments, it is difficult to 
meet real-time constraints with a serial processing approach. For 
those systems using standard computers, a promising option is to 
employ a GPGPU as a coprocessor in order to offload those tasks 
which can be efficiently parallelized. We implemented selected 
parallel path planning algorithms  on NVIDIA's CUDA platform 
and were able to accelerate all of these algorithms efficiently 
compared to a multi-core implementation. We present the results 
and more detailed information about the implementation of these 
algorithms. 
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I. INTRODUCTION 

Path planning for robots in dynamic environments is a 
highly challenging task [1] since the control units have to 

meet real time requirements, for instance in order to ensure the 
safety of human personnel [2]. This paper evaluates a number 
of approaches from the broad field of parallel path planning 
algorithms in order to assess their performance on GPGPUs. 

A lot of robot systems are built of standard PC hardware for 
processing and controlling, especially in systems where a 
global view is necessary. Additionally, PCs offer the benefit of 
being compatible with standard software. In this setting it is 
sensible to harness the GPU of the PC as a fast coprocessor for 
tasks like image processing and especially path planning, 
which are both computationally intensive and can be 
efficiently parallelized. 

Possible scenarios for such a system are some types of robot 
soccer applications, where scenes of the playing field are 
captured by a camera streaming the images to a PC for 
processing. Systems in use deliver frame rates of up to 100 
fps[3]. Another conceivable use case of such systems are 
buildings, e.g. hospitals, with camera-controlled cleaning or 
service robots. The environment changes dynamically as 
humans moving through the same corridors. 

In all these applications path planning is one of the most 
challenging tasks. A serial processing approach is rarely 
sufficient, since strict real-time requirements in the range of 
milliseconds have to be fulfilled. A parallel processing 
approach is more promising.  

Several parallel path planning algorithms have been 
published. We evaluated the most promising ones which can 
be classified by following categories: Visibility Graphs [4] 
representing graph-based approaches,  Potential Field [5], a 
special potential field planner denoted as Wavefront [6], 
Autowaves [7], and an emergent approach invented by us, 
based on hardware agents called Marching Pixels [8]. 

We have implemented each of these path planning  
 

 

 
algorithms with NVIDIA's CUDA toolkit as well as OpenMP. 
Evaluation was carried out on a system featuring an Intel Core 
i7 quad-core and an NVIDIA Geforce GTX 480 GPGPU.  
In [9] we presented the comparative results and showed, that 
all path planning algorithms can be efficiently accelerated by 
the sourcing them out on a GPU. This paper focuses on the 
GPU implementations for details. We will highlight 
advantages and disadvantages of GPUs which should help in 
further applications to use specific features of GPUs 
efficiently. 

II. RELATED WORK 

A GPU accelerated path planning approach for multi-agents 
is presented in [10]. The main goal of this approach is to 
produce a collision free natural steering for many thousands of 
agents moving in virtual environments. Another GPU 
accelerated pathfinding algorithm is presented in [11], also 
dealing with autonomous navigation of many thousand agents. 
In [12], a planning algorithm for a flexible robot in complex 
medical environments is presented, e.g. for the insertion of 
catheters. Precision is the most important constraint for this 
application and it is not targeted at real-time applications. 

All of these approaches have in common that they are 
focused on special applications. Their primary goal was to 
speed up a given serial algorithm by parallelizing it for the 
GPU.  

Contrary to that, the focus of our work is to evaluate 
existing parallel path planning algorithms on a GPU, to 
compare them with a standard multi-core implementation and 
to show how they are implemented efficiently by the usage of 
GPU specific features. 

III. PARALLEL PATH PLANNING ALGORITHMS 

A. Abstractions and Assumptions 

A path planning algorithm calculates a collision free path 
from a given start position to a given target position [1]. Prior 
to comparing different algorithms it is necessary to establish a 
common benchmark setup. First of all we consider the 
workspace to be two-dimensional.  

To create a uniform benchmark scenario we used a list of 
nodes of polygonal obstacles as input for all algorithms. Those 
algorithms needing a map assemble it with negligible overhead 
before processing. As sizes for the        maps, we used 
standard resolutions of        , 64     ,        , 
         and          . Each point of such a map is 
referred as configuration       , with              . 

A problem is that the algorithms expect different inputs for 
processing: The approaches based on Autowaves, Wavefronts 
and Marching Pixels operate directly on a discretized map 
which is in our case a binary image representing obstacles and 
free space of the environment. The graph-based version reads a 
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list of cartesian coordinates marking the corners of the 
obstacles. The Potential Field Method creates a map of 
potentials with the help of either obstacle coordinates or a 
binary map. 

 

B. Visibility Graph 

A Visibility Map is a type of a roadmap [1] and one of the 
earliest path planning methods [4]. It represents the map where 
the robot is moving in a topological structure, called the 
Visibility Graph. Visibility Graphs are most suitable for maps 
with polygonal obstacles.  

Let               be the nodes of the graph which 
represents the vertices of the polygonal obstacle and the start 
and goal positions. At the beginning, the graph contains an 
edge for each edge of an obstacle polygon. Additional edges 
are being added during the construction of the graph when two 
vertices are in line of sight with each other for every vertex 
   . It must be determined if it is visible for the other 
vertices     . The most obvious way is to test for all line 
segments             , if they intersect with an edge of an 
obstacle polygon. A common simplification of this is not to 
test all edges of the polygon, but only the bounding circle. If 
no intersection exists, they are part of the Visibility Graph. The 
intersection tests can be done independently for every line 
segment and therefore realized efficiently in parallel. The 
edges of the graph are weighted with the euclidean distance of 
the two associated vertices because we want to find the 
shortest path from the start to the goal vertex. 

Several search algorithms for weighted graphs have been 
published. We decided to use Visibility Graphs combined with 
Dijkstra's search algorithm for weighted graphs [13] as 
representation of graph-based path planning algorithms. The 
naive serial algorithm for constructing the graph requires O(l³) 
operations and the search algorithm needs            steps 
where l is the number of vertices. 

C. Potential Field Method 

In potential field approaches the robot is directed through a 
map with the help of a differentiable real-valued potential 
function  . It was originally developed as an approach with 
collision avoidance in dynamically changing environ- 
ments [8]. The potential is typically defined as the sum of an 
attractive potential pulling the robot to the goal configuration 
and a repulsive potential pushing the robot away from 
obstacles. The function      attains its minimum in the goal 
configuration and should be monotonously increasing with the 
distance from goal. With the help of the repulsive potential 
     a potential barrier around obstacles is created in order to 
avoid collisions. Because of the discrete representation of the 
map in our consideration (discretized configuration space) 
each configuration of the map is assigned to a discrete 
potential value which builds a potential field where the 
smallest potential value is found in the goal configuration. The 
potentials for every configuration q of the configuration space 
are realized by (1). The parameter d represents the distance 
           from a configuration to the centroid points      
of the obstacles. The attractive potential creates a conic well 
which is defined with a positive scaling factor  . The well has 
its minimum in the goal configuration      . The main idea of 
the repulsive potential is to create a potential barrier around 
obstacles. The barrier of the obstacle potentials is affected by 

the value     and depends on the application. The value   is a 
high value for the potential inside obstacles which prevents a 
robot from moving into an obstacle. Around the obstacles a 
gradient potential is defined as a so called distance of influence 
which could be considered as a safety zone. 

                    

                  

         
  
 

 
 

 

   
         

        
      

 
     

 
The robot follows the negated gradient of the potential 

values in the field. The resulting path is planned iteratively 
from the start configuration to the goal configuration with 
collision avoidance. Following such a path is called gradient 
descent. 

For the calculation of the potential field,        steps are 
needed where (                  is the grid size of the 
map. The gradient descent in maps with convex obstacles takes 
approximately        steps because all eight direct 
neighbors of every considered path point need to be calculated 
to determine the next path point. The main disadvantage of the 
Potential Field Method is that there may be local minima 
trapping the robot. This can be avoided by introducing an 
efficient escape strategy to overcome the local minima. We 
used the Best-First planning [4] which "fills up" a local 
minimum with penalty value, resulting in a worst case 
complexity of                , where            . 

D. Wavefront 

The Wavefront Planner is a special potential-field approach 
developed for grid-based maps [1],[6]. In contrast to the 
"standard" Potential Field Method, the potential field is 
constructed iteratively. Only the free configurations of the map 
are considered and marked with a zero, all obstacle 
configurations are marked with a one. The goal configuration 
is first labeled with a two. In the next iteration, all zero-valued 
configurations neighboring the goal are labeled with a three. In 
the next step all zero-valued configurations neighboring a 
configuration labeled with a three are labeled with a four and 
so on. Hence a wave front is generated growing from the goal 
configuration until the start configuration is reached.  

After that the planner starts the gradient descent from the 
start configuration to calculate the shortest path. Because of the 
different construction of the potential field it is guaranteed that 
there will always be a neighboring configuration with a value 
that is by one less than the value of the current configuration, 
thus avoiding local minima. 

In our scenarios, the wave reaches the start configuration 
within     iterations. Each iteration takes     cell updates 
in a naive implementation, resulting in a runtime complexity of 
                  , with           . 

E. Autowaves 

This approach was developed for real-time, wave-based 
robot navigation in dynamically changing environments [7]. It 
is based on reaction-diffusion (RD) processes which appear for 
example in chemical applications where the so called 
Autowaves are generated. During path planning the goal 
configuration generates attracting waves, while the obstacles 
are generating repulsive waves. On the basis of overlapping 
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these waves at the robot's current position the next movement 
is determined. In particular the robot moves in the direction 
where the attracting wave comes from, while being pushed  
with the wave-direction of the repulsive wave. 

The processing of such Autowaves can be implemented for 
instance via Cellular Neuronal Networks (CNN) [14], 
particularly with RD-CNN, which is a special two-layer model 
for the processing of discretized reaction-diffusion equations. 

We used Equation (2) for the processing of Autowaves. It 
contains two sublayers which are necessary for an oscillation 
to generate waves. The two sublayers of the RD-CNN are 
labeled with   and  . The characteristics of the waves are 
defined by the coefficients   and  . 

         
    
    

   
                          

                          

      

 
For the calculation of the goal waves and the obstacle waves 

we need two layers of Equation (2). One layer generates the 
waves of the goal in the map, the other one generates the 
obstacles waves. Every configuration   is assigned two vectors 
of   which represent the values of the goal waves and obstacle 
waves. The robot can determine by these values in which 
direction it should move next. 

 
To ensure the full propagation of the waves among all pixels 

of the image,    iterations, with           , are taken in 
our scenarios. Each iteration also takes     cell updates, 
resulting in a complexity of                 . 

F. Marching Pixels 

Marching Pixels (MP) are virtual agents akin to artificial 
ants. They collect information deposited from other MPs for 
future behavior. MPs are very simple units, but together they 
can tackle complex tasks[15],[16]. MPs can be modeled with 
cellular automata and can be used for many image processing 
tasks, e.g. parallel centroid detection of multiple objects or 
path planning. The algorithm presented in [8] combines a 
skeletonization operation [17] with the MP concept. The 
skeletonization is performed on the free space of the map 
where the robot can move freely. The resulting skeleton is an 
approximated Voronoi diagram [17]. After the skeletonization, 
an MP runs from the start position to the goal position across 
the skeleton. On a crossroad new MPs are created on not yet 
visited paths. If two MPs meet each other or if a MP reaches 
an already visited crossroad then this path of the skeleton can 
be safely deleted because it can not be part of the shortest path. 
The MP which reaches the goal position first succeeds and 
only this path remains. All other paths are deleted. An 
animation of the algorithm can be found in  [19]. 

Let            be the maximum of the height and 
width of the grid. According to [13] the skeletonization step 
takes    iterations. The runtime of the MP algorithm is 
empirically determined with    iterations as explained in [8], 
one iteration needs to update    cells. The resulting 
complexity would be               . 

IV. CUDA IMPLEMENTATION 

In this section we present details related to the CUDA 
implementations of the different path planning algorithms. All 
algorithms receive the centroids of the obstacles as well as the 
start and end point as input. Then an obstacle growing is 

performed, so that the resulting path is not too close to objects. 
This is done by introducing a bounding box around the objects. 
To ensure a stable, reproducable setup, we did not use real 
input images from a camera system but generated the 
benchmark images directly on the test system.  

For the implementations presented in section IV-B - IV-E, 
each pixel is mapped onto a single GPU thread. In the 
implementation described in section IV-A, every intersection 
test is mapped to one thread. In contrast to the solutions 
described in the section IV-A and IV-B the threads of IV-C, IV-
D and IV-E have to communicate with each other because of 
local data dependencies.  

The OpenMP solution does not differ much from the 
presented CUDA implementations, except that fewer threads 
are available than in CUDA and OpenMP parallel pragmas are 
used. A thread is not mapped to a pixel, but many pixels are 
mapped to a single thread. 

A. Visibility Graph 

The implementation of this algorithm is split into several 
stages. At first a complete graph is computed on the host 
where the obstacles are represented by the four corner-points 
of their bounding box which form a clique. For every edge of 
this complete graph we need to test if it belongs to the 
Visibility Graph. Therefore every edge - except for the 
obstacle edges, which are by  definition part of the resulting 
graph - has to be checked for intersection with each circle of an 
obstacle. This can be done efficiently on the GPGPU. Every 
thread takes one edge of the whole graph and checks it against 
all obstacle circles for intersection. If there is one, a large 
penalty value is inserted into the adjacency matrix. Otherwise 
the Euclidean distance of this edge is inserted which is 
necessary for the further computation of the shortest path. For 
that we access the global memory by loading the current edge 
of the graph, each obstacle and save the distance in the 
adjacency matrix. Even large numbers of obstacles, fit 
perfectly into the constant memory of the device. With 64 
kByte available, that would be 8192 obstacles. But since every 
obstacle has four edges, that would result in about 32.000 
vertices for the graph, far more than necessary for our test-
cases, so this seems to be a good choice. Unfortunately the 
new Nvidia Geforce GTX 480 does not yield any performance 
gain, but older GPUs based on the GT200 chipset can profit of 
that  enhancement. We pointed out, that the availability of a 
large cache in the new architecture makes this constant 
memory for obsolete this application. 

When the adjacency matrix is build, it is copied back to the 
host, where then the shortest path can be computed. The search 
of the shortest path with Dijkstra needs only a fraction of the 
time necessary for the construction of the Visibility Graph. 
That is why we decided to implement the search on the host. 
Other works [12] show, that even this search can be efficiently 
implemented on the GPGPU. 

B. Potential Field Method 

In this algorithm, the only off-loadable function is the 
creation of the potential field. For that, we decided to have at 
least         threads active per thread-block. If using less 
threads, more thread-blocks would be necessary and so the 
utilization of the given hardware would be worse, resulting in 
reduced latency-hiding and therefore reduced execution speed. 

At first the object middle points are copied to the device. 
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Then the computation kernel is started. In that, the attractive 
potential is computed pixel-wise according to Equation (1). 
Then all configurations are tested for being inside the radius of 
an obstacle. In such a case the potential is increased by the 
result of Equation (1). The last stage of the device function is 
to insert the potential of the walls, so that the robot cannot 
leave the field. This is done by adding the repulsive potential 
in the wall's range to the global potential field.  

The computation of the potential field can be efficiently 
done in parallel, but the search of the shortest path with the 
gradient descent is a serial process. Therefore the potential 
field is transferred back to the host for final processing. 
Beginning with the target point, we compute the gradient for 
all neighbor points. The point with the largest gradient now 
continues to be our next point, inserted into a list of path-
points. After some iterations a complete path is planned. To 
avoid a local minimum, we need to implement an escape 
strategy: when we reach a local minimum, a best first search is 
taken where all previously visited points are discarded. This is 
done by inserting the cardinal neighbors, sorted according to 
their potential value, into a list. Then the point with the 
smallest potential is extracted and all its neighbors are also 
inserted into the sorted list. Afterwards the gradient is 
determined. If it points towards an already visited point, the 
point is inserted into a visitation list. Otherwise the gradient is 
traced as usual. In this circumstance, when we speak of a 
worst-case scenario for this algorithm, an obstacle 
constellation that forms an L between the start and the goal is 
meant. 

C. Wavefront 

Since all the algorithms receive only the middle points of 
the obstacles as input, for this cellular automaton based 
algorithm, we need to generate a binary map, representing the 
current constellation of the obstacles in the configuration 
space. This map is used as fast lookup table (LUT), 
determining if a thread belongs to an object or not. 
Furthermore, as an initial state of the automaton we introduce 
another array, where every cell except the start point (this is set 
to zero) is set to the largest possible value. All of that is done 
in a separate kernel function. 

After this is done, the initial state array is bound to a texture 
and the kernel for computing one iteration is started, writing 
the resulting states to another array. These arrays are now 
exchanged in every iteration of the algorithm. The final result 
is generated by restarting the kernel, which is required due to 
the local data dependencies of the algorithm. Every thread of 
the kernel function peeks in every cardinal direction if there is 
a value smaller than the current one is has. For that we need 
five loads of the surrounding cells as well as one for the LUT. 
The smallest value is copied into the local cell and increased 
by one.  So we only need one write operation on the global 
memory. After the iterations, the complete image is filled and 
can then be transferred back to the host, where a gradient 
descent is applied. Since there are no local minima problems, 
we do not need a special escape strategy. 

D. Autowaves 

Autowaves are generated separately for the attracting and 
repulsive waves. Therefore two initial 2D-arrays are set up, 
one with the goal, the other one with all obstacles. This is done 
by a kernel that uses the obstacle centroids as well as the target 

position as input. Every thread handles one cell of both 2D-
arrays and decides if it is inside the bounds of an object 
respectively target and updates the corresponding array. So we 
get again a LUT for our computation kernel. 

Afterwards, the first array is bound to a texture, used by the 
RD-CNN kernel as input. The results are computed according 
to Equation (2) with the parameters             where the 
neighboring values are fetched from the texture. These 
parameters guarantee a stable and fast wave propagation. Since 
the results grow rapidly in size, we decided to define an 
upper/lower limit so that the result is always well defined. 

Textures are always read-only and, since no inter block 
synchronization is available, the kernel is run once per 
iteration. The textures are rebound to the new result and the 
old texture becomes the target buffer for the next iteration.  

After the waves have spread over the whole image, the last 
and the current result are transferred to the host. According to 
the presented technique, a path is planned by comparing these 
results. This is done in a dynamical way, which means that the 
complete path to the goal is not calculated in one step, only the 
direction is determined for the next image taken. 
 

E. Marching Pixels 

Our experiences with straightforward implementations have 
shown, that the most common problem for solving marching 
pixel algorithms is the use of a large cellular automaton where 
each update of a cell involves a lot of branches, leading to 
divergent behavior within warps. Another problem we 
encountered, is the disadvantageous ratio of memory 
bandwidth to computational requirements. 

The first issue can be solved by computing a LUT, which 
stores the resulting new state for any combination of cell and 
neighbor states. The states are combined by masking and 
shifting bits in order to obtain an address which in turn is used 
to load the new state from the LUT. 

 The LUT can be computed once, before path planning starts 
and can be reused for future invocations. However, due to the 
number of states a cell can take on (eight) and the number of 
cells to be considered (eight neighbors plus the cell's own 
state), the LUT for the given algorithm is about 135 MBytes is 
size. On a GPGPU, this would require an additional, most 
likely non-coalesced read from global memory per update, thus 
seriously hurting performance. 

Therefore we did split the Marching Pixels algorithm into 
two phases: first the skeletonization, then the Marching Pixels 
phase. Since the skeletonization can be implemented with 
basically two states (a little precaution has to be taken when 
considering a path's start and end points), the LUT can be 
exponentially shrunken to 4096 Bytes. This is more than the 
expected    Bytes since we have to consider the direction of 
the skeletonization and if the current cell is the start or end 
point.  

The other problem can be mitigated by using textures, which 
cache redundant accesses. We further optimized this by storing 
a two times two pixel block in each texture byte and letting 
each thread update a total of four times four pixels per step. 
This way a thread has to load 16 Bytes (four for own cells and 
twelve neighboring bytes) and write four bytes per step while 
performing 16 updates, leading to a ratio of 1.25 Bytes per 
update. This is a significant improvement over a naive 
implementation in which each thread would load nine bytes, 
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perform one update and write one byte back, resulting in a 
ratio of 10 Bytes per update. Of course this packed storage 
requires a lot of bit masking operations, but calculations are 
available in abundance on a GPU. Together with using textures 
to cache redundant reads, this allowed us to significantly 
reduce the impact of memory latency and improve our  
bandwidth usage. 

For the Marching Pixels phase we did not use a LUT, but 
did perform the necessary computations directly in the code. 
We were able to speed up this phase however, by not 
considering the whole image in each time step, but rather only 
those pixels who did form the resulting skeleton in the first 
phase. Cells are stored in two two-dimensional arrays, one for 
the old states and one for the new states which are to be 
computed.  After each time step, the newly generated image 
array is bound to a texture, while the old texture becomes the 
result for the next iteration.  As discussed in Chapter III the 
algorithm is stopped after at most     iterations and the result 
is copied back to the host.   

V. RESULTS 

Our system consists of an Intel Core i7 920 quad- 
core@ 2.66GHz with 12GB RAM and a Geforce GTX 480 
with 1.5 GB GDDR2 RAM. For programming NVIDIA 
Toolkit version 3.0 with NVIDIA SDK 3.0 was used.  The 
results are given in two figures since the Visibility Graph's 
performance depends on the number of obstacle nodes and not 
on the maps resolution. The other approaches are oblivious to 
the number of object nodes, but depend on the map resolution.  

Figure 1(a) shows absolute run times of the resolution-
dependent algorithms on the Core i7 multi-core and Figure 
1(b) shows the run times of the same algorithms on our GPU 
system. The Visibility Graph results for the multi-core and 
GPU run times are shown in Figure 2. The time for the data 
transfer from and to the GPU is included in the run times of the 
GPU implementations. The comparison of the multi-core 
implementations of Figure 1(a) to their GPU counterparts of 
Figure 1(b) shows that all algorithms can be accelerated on the 
GPU, by a factor between 2 and 400, depending on the 
algorithm and map resolution. The approaches based on 

Autowaves, Wavefronts and MPs are iterative algorithms in 
contrast to the Visibility Graph and Potential Field Methods. 
The Visibility Graph results shown in Figure 2 shows a 
quadratic runtime behavior when more and more objects are 
considered. The algorithm is very fast, but slows down when 
complex polygonal obstacles with many nodes are present in 
the environment. The performance of the iterative algorithms 
can be expressed in GLUPS (Giga Lattice Updates per 
Second). For this the resolution is multiplied with the number 
of iterations of an algorithm, divided by the time taken for the 
whole processing. The Autowave algorithm was the slowest on 
the GPU. We observed a performance of only 2.2 GLUPS. 
This is due to the high memory-bandwidth needs of the CNN-
data and the complex computations necessary, compared to 
them of the other algorithms. The Wavefront algorithm resides 
in the midrange of the lineup  with a performance of 6.0 
GLUPS. Here we have much less data per cell and the 
computation is significantly faster, so this results in a three 
times higher GLUPS number. The Marching Pixels algorithm 
is the fastest of the iterative algorithms on the GPU with a 
performance of 16.5 GLUPS. This high count comes from the 
very small amount of data (only two bits) necessary and the 
possibility of using a LUT for the state transitions.A lot of 
areas can be masked out per iteration where states of map 
points are constant. Only the Potential Field Method in its best 
case is faster because it is not an iterative approach. But the 
disadvantage of the Potential Field Method is its susceptibility 
to being stuck in local minima. For this reason, two Potential 
Field curves are shown in Figure 1, one with the best case, the 
other one with the L-shaped obstacles of the worst-case 
scenario: The calculation of a path out of a local minimum is 
expensive and has to be done in serial on the host. Because this 
search is not parallelizable it inflicts serious runtime penalties 
for worst case setups. This means in best case the algorithm is 
fully real time capable, with a run time of less than ten 
milliseconds. But in the worst case the algorithm consumes 
over two seconds. For that, all other algorithms (except the 
autowaves) are much faster.  

We observed several GPU related advantages/disadvantages 
when we did the implementations. First of all, a massive 
parallel approach is possible for path planning tasks and it is 
ideal when there are no data-dependencies between the 
threads. But not parallelizable tasks, such as the gradient 
descent of the Potential Field Method can massively hamper 
the whole computation. Another important fact is, that if there 
are data-dependencies, the ratio of computation to memory 
transfers needs to be reduced where possible. If an algorithm is 
compute bound, then a larger memory afford can speed-up the 
computation. Out of this idea the state-transition of the 

 
Fig. 2.  Timings of pathfinding algorithms for different image sizes. 

Please observe the different scalings. 
  

 
Fig. 1 Timings of pathfinding algorithms for different image sizes. 
Please observe the different scalings. 
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Marching Pixels algorithm is speeded up with the use of a 
LUT, that fits into the constant memory.  Finally, when there 
are access-patterns, that fit into the limitations of the texture-
access scheme, these should be used whenever possible. 

VI. CONCLUSION 

In this paper, we presented an evaluation of selected parallel 
path planning algorithms, compared them with multi-core 
implementations and presented detailed information about the 
implementation on GPUs using NVIDIA's CUDA platform.  

As the results show, there is no overall winner, but 
nevertheless, we could show that the GPU is an efficient 
coprocessor for parallel algorithms in robot systems. 
Depending on the given application, a graph-based algorithm 
like the Visibility Graph should be used if only a few objects 
occur. In the best case the Potential Field Method is very fast 
and flexible, but should only be favored when being trapped in 
a local minimum is not critical for the application. In contrast 
the Marching Pixels algorithm is a rather efficient solution 
which is immune to adverse environment setups. Furthermore, 
tight upper bounds for its runtime can be given [8], making it 
an ideal choice for real-time applications whose setups do not 
fit into the niches of graph-based or potential field approaches.  
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