
DOI: 10.5176_2010-2283_1.2.47

Abstract— In robot systems several computationally intensive
tasks can be found, with path planning being one of them.
Especially in dynamically changing environments, it is difficult to
meet real-time constraints with a serial processing approach. For
those systems using standard computers, a promising option is to
employ a GPGPU as a coprocessor in order to offload those tasks
which can be efficiently parallelized. We implemented selected
parallel path planning algorithms on NVIDIA's CUDA platform
and were able to accelerate all of these algorithms efficiently
compared to a multi-core implementation. We present the results
and more detailed information about the implementation of these
algorithms.

Keywords—CUDA, GPGPU, parallel algorithms, path planning

I. INTRODUCTION

Path planning for robots in dynamic environments is a
highly challenging task [1] since the control units have to

meet real time requirements, for instance in order to ensure the
safety of human personnel [2]. This paper evaluates a number
of approaches from the broad field of parallel path planning
algorithms in order to assess their performance on GPGPUs.

A lot of robot systems are built of standard PC hardware for
processing and controlling, especially in systems where a
global view is necessary. Additionally, PCs offer the benefit of
being compatible with standard software. In this setting it is
sensible to harness the GPU of the PC as a fast coprocessor for
tasks like image processing and especially path planning,
which are both computationally intensive and can be
efficiently parallelized.

Possible scenarios for such a system are some types of robot
soccer applications, where scenes of the playing field are
captured by a camera streaming the images to a PC for
processing. Systems in use deliver frame rates of up to 100
fps[3]. Another conceivable use case of such systems are
buildings, e.g. hospitals, with camera-controlled cleaning or
service robots. The environment changes dynamically as
humans moving through the same corridors.

In all these applications path planning is one of the most
challenging tasks. A serial processing approach is rarely
sufficient, since strict real-time requirements in the range of
milliseconds have to be fulfilled. A parallel processing
approach is more promising.

Several parallel path planning algorithms have been
published. We evaluated the most promising ones which can
be classified by following categories: Visibility Graphs [4]
representing graph-based approaches, Potential Field [5], a
special potential field planner denoted as Wavefront [6],
Autowaves [7], and an emergent approach invented by us,
based on hardware agents called Marching Pixels [8].

We have implemented each of these path planning

algorithms with NVIDIA's CUDA toolkit as well as OpenMP.
Evaluation was carried out on a system featuring an Intel Core
i7 quad-core and an NVIDIA Geforce GTX 480 GPGPU.
In [9] we presented the comparative results and showed, that
all path planning algorithms can be efficiently accelerated by
the sourcing them out on a GPU. This paper focuses on the
GPU implementations for details. We will highlight
advantages and disadvantages of GPUs which should help in
further applications to use specific features of GPUs
efficiently.

II. RELATED WORK

A GPU accelerated path planning approach for multi-agents
is presented in [10]. The main goal of this approach is to
produce a collision free natural steering for many thousands of
agents moving in virtual environments. Another GPU
accelerated pathfinding algorithm is presented in [11], also
dealing with autonomous navigation of many thousand agents.
In [12], a planning algorithm for a flexible robot in complex
medical environments is presented, e.g. for the insertion of
catheters. Precision is the most important constraint for this
application and it is not targeted at real-time applications.

All of these approaches have in common that they are
focused on special applications. Their primary goal was to
speed up a given serial algorithm by parallelizing it for the
GPU.

Contrary to that, the focus of our work is to evaluate
existing parallel path planning algorithms on a GPU, to
compare them with a standard multi-core implementation and
to show how they are implemented efficiently by the usage of
GPU specific features.

III. PARALLEL PATH PLANNING ALGORITHMS

A. Abstractions and Assumptions

A path planning algorithm calculates a collision free path
from a given start position to a given target position [1]. Prior
to comparing different algorithms it is necessary to establish a
common benchmark setup. First of all we consider the
workspace to be two-dimensional.

To create a uniform benchmark scenario we used a list of
nodes of polygonal obstacles as input for all algorithms. Those
algorithms needing a map assemble it with negligible overhead
before processing. As sizes for the maps, we used
standard resolutions of , 64 , ,
 and . Each point of such a map is
referred as configuration , with .

A problem is that the algorithms expect different inputs for
processing: The approaches based on Autowaves, Wavefronts
and Marching Pixels operate directly on a discretized map
which is in our case a binary image representing obstacles and
free space of the environment. The graph-based version reads a

Efficient Implementation of Parallel Path

Planning Algorithms on GPUs

Ralf Seidler, Michael Schmidt, Andreas Schäfer and Dietmar Fey

Department of Computer Science, Chair of Computer Architecture, FAU Erlangen-Nuremberg, Germany

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

107

list of cartesian coordinates marking the corners of the
obstacles. The Potential Field Method creates a map of
potentials with the help of either obstacle coordinates or a
binary map.

B. Visibility Graph

A Visibility Map is a type of a roadmap [1] and one of the
earliest path planning methods [4]. It represents the map where
the robot is moving in a topological structure, called the
Visibility Graph. Visibility Graphs are most suitable for maps
with polygonal obstacles.

Let be the nodes of the graph which
represents the vertices of the polygonal obstacle and the start
and goal positions. At the beginning, the graph contains an
edge for each edge of an obstacle polygon. Additional edges
are being added during the construction of the graph when two
vertices are in line of sight with each other for every vertex
 . It must be determined if it is visible for the other
vertices . The most obvious way is to test for all line
segments , if they intersect with an edge of an
obstacle polygon. A common simplification of this is not to
test all edges of the polygon, but only the bounding circle. If
no intersection exists, they are part of the Visibility Graph. The
intersection tests can be done independently for every line
segment and therefore realized efficiently in parallel. The
edges of the graph are weighted with the euclidean distance of
the two associated vertices because we want to find the
shortest path from the start to the goal vertex.

Several search algorithms for weighted graphs have been
published. We decided to use Visibility Graphs combined with
Dijkstra's search algorithm for weighted graphs [13] as
representation of graph-based path planning algorithms. The
naive serial algorithm for constructing the graph requires O(l³)
operations and the search algorithm needs steps
where l is the number of vertices.

C. Potential Field Method

In potential field approaches the robot is directed through a
map with the help of a differentiable real-valued potential
function . It was originally developed as an approach with
collision avoidance in dynamically changing environ-
ments [8]. The potential is typically defined as the sum of an
attractive potential pulling the robot to the goal configuration
and a repulsive potential pushing the robot away from
obstacles. The function attains its minimum in the goal
configuration and should be monotonously increasing with the
distance from goal. With the help of the repulsive potential
 a potential barrier around obstacles is created in order to
avoid collisions. Because of the discrete representation of the
map in our consideration (discretized configuration space)
each configuration of the map is assigned to a discrete
potential value which builds a potential field where the
smallest potential value is found in the goal configuration. The
potentials for every configuration q of the configuration space
are realized by (1). The parameter d represents the distance
 from a configuration to the centroid points
of the obstacles. The attractive potential creates a conic well
which is defined with a positive scaling factor . The well has
its minimum in the goal configuration . The main idea of
the repulsive potential is to create a potential barrier around
obstacles. The barrier of the obstacle potentials is affected by

the value and depends on the application. The value is a
high value for the potential inside obstacles which prevents a
robot from moving into an obstacle. Around the obstacles a
gradient potential is defined as a so called distance of influence
which could be considered as a safety zone.

The robot follows the negated gradient of the potential

values in the field. The resulting path is planned iteratively
from the start configuration to the goal configuration with
collision avoidance. Following such a path is called gradient
descent.

For the calculation of the potential field, steps are
needed where (is the grid size of the
map. The gradient descent in maps with convex obstacles takes
approximately steps because all eight direct
neighbors of every considered path point need to be calculated
to determine the next path point. The main disadvantage of the
Potential Field Method is that there may be local minima
trapping the robot. This can be avoided by introducing an
efficient escape strategy to overcome the local minima. We
used the Best-First planning [4] which "fills up" a local
minimum with penalty value, resulting in a worst case
complexity of , where .

D. Wavefront

The Wavefront Planner is a special potential-field approach
developed for grid-based maps [1],[6]. In contrast to the
"standard" Potential Field Method, the potential field is
constructed iteratively. Only the free configurations of the map
are considered and marked with a zero, all obstacle
configurations are marked with a one. The goal configuration
is first labeled with a two. In the next iteration, all zero-valued
configurations neighboring the goal are labeled with a three. In
the next step all zero-valued configurations neighboring a
configuration labeled with a three are labeled with a four and
so on. Hence a wave front is generated growing from the goal
configuration until the start configuration is reached.

After that the planner starts the gradient descent from the
start configuration to calculate the shortest path. Because of the
different construction of the potential field it is guaranteed that
there will always be a neighboring configuration with a value
that is by one less than the value of the current configuration,
thus avoiding local minima.

In our scenarios, the wave reaches the start configuration
within iterations. Each iteration takes cell updates
in a naive implementation, resulting in a runtime complexity of
 , with .

E. Autowaves

This approach was developed for real-time, wave-based
robot navigation in dynamically changing environments [7]. It
is based on reaction-diffusion (RD) processes which appear for
example in chemical applications where the so called
Autowaves are generated. During path planning the goal
configuration generates attracting waves, while the obstacles
are generating repulsive waves. On the basis of overlapping

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

108

these waves at the robot's current position the next movement
is determined. In particular the robot moves in the direction
where the attracting wave comes from, while being pushed
with the wave-direction of the repulsive wave.

The processing of such Autowaves can be implemented for
instance via Cellular Neuronal Networks (CNN) [14],
particularly with RD-CNN, which is a special two-layer model
for the processing of discretized reaction-diffusion equations.

We used Equation (2) for the processing of Autowaves. It
contains two sublayers which are necessary for an oscillation
to generate waves. The two sublayers of the RD-CNN are
labeled with and . The characteristics of the waves are
defined by the coefficients and .

For the calculation of the goal waves and the obstacle waves

we need two layers of Equation (2). One layer generates the
waves of the goal in the map, the other one generates the
obstacles waves. Every configuration is assigned two vectors
of which represent the values of the goal waves and obstacle
waves. The robot can determine by these values in which
direction it should move next.

To ensure the full propagation of the waves among all pixels

of the image, iterations, with , are taken in
our scenarios. Each iteration also takes cell updates,
resulting in a complexity of .

F. Marching Pixels

Marching Pixels (MP) are virtual agents akin to artificial
ants. They collect information deposited from other MPs for
future behavior. MPs are very simple units, but together they
can tackle complex tasks[15],[16]. MPs can be modeled with
cellular automata and can be used for many image processing
tasks, e.g. parallel centroid detection of multiple objects or
path planning. The algorithm presented in [8] combines a
skeletonization operation [17] with the MP concept. The
skeletonization is performed on the free space of the map
where the robot can move freely. The resulting skeleton is an
approximated Voronoi diagram [17]. After the skeletonization,
an MP runs from the start position to the goal position across
the skeleton. On a crossroad new MPs are created on not yet
visited paths. If two MPs meet each other or if a MP reaches
an already visited crossroad then this path of the skeleton can
be safely deleted because it can not be part of the shortest path.
The MP which reaches the goal position first succeeds and
only this path remains. All other paths are deleted. An
animation of the algorithm can be found in [19].

Let be the maximum of the height and
width of the grid. According to [13] the skeletonization step
takes iterations. The runtime of the MP algorithm is
empirically determined with iterations as explained in [8],
one iteration needs to update cells. The resulting
complexity would be .

IV. CUDA IMPLEMENTATION

In this section we present details related to the CUDA
implementations of the different path planning algorithms. All
algorithms receive the centroids of the obstacles as well as the
start and end point as input. Then an obstacle growing is

performed, so that the resulting path is not too close to objects.
This is done by introducing a bounding box around the objects.
To ensure a stable, reproducable setup, we did not use real
input images from a camera system but generated the
benchmark images directly on the test system.

For the implementations presented in section IV-B - IV-E,
each pixel is mapped onto a single GPU thread. In the
implementation described in section IV-A, every intersection
test is mapped to one thread. In contrast to the solutions
described in the section IV-A and IV-B the threads of IV-C, IV-
D and IV-E have to communicate with each other because of
local data dependencies.

The OpenMP solution does not differ much from the
presented CUDA implementations, except that fewer threads
are available than in CUDA and OpenMP parallel pragmas are
used. A thread is not mapped to a pixel, but many pixels are
mapped to a single thread.

A. Visibility Graph

The implementation of this algorithm is split into several
stages. At first a complete graph is computed on the host
where the obstacles are represented by the four corner-points
of their bounding box which form a clique. For every edge of
this complete graph we need to test if it belongs to the
Visibility Graph. Therefore every edge - except for the
obstacle edges, which are by definition part of the resulting
graph - has to be checked for intersection with each circle of an
obstacle. This can be done efficiently on the GPGPU. Every
thread takes one edge of the whole graph and checks it against
all obstacle circles for intersection. If there is one, a large
penalty value is inserted into the adjacency matrix. Otherwise
the Euclidean distance of this edge is inserted which is
necessary for the further computation of the shortest path. For
that we access the global memory by loading the current edge
of the graph, each obstacle and save the distance in the
adjacency matrix. Even large numbers of obstacles, fit
perfectly into the constant memory of the device. With 64
kByte available, that would be 8192 obstacles. But since every
obstacle has four edges, that would result in about 32.000
vertices for the graph, far more than necessary for our test-
cases, so this seems to be a good choice. Unfortunately the
new Nvidia Geforce GTX 480 does not yield any performance
gain, but older GPUs based on the GT200 chipset can profit of
that enhancement. We pointed out, that the availability of a
large cache in the new architecture makes this constant
memory for obsolete this application.

When the adjacency matrix is build, it is copied back to the
host, where then the shortest path can be computed. The search
of the shortest path with Dijkstra needs only a fraction of the
time necessary for the construction of the Visibility Graph.
That is why we decided to implement the search on the host.
Other works [12] show, that even this search can be efficiently
implemented on the GPGPU.

B. Potential Field Method

In this algorithm, the only off-loadable function is the
creation of the potential field. For that, we decided to have at
least threads active per thread-block. If using less
threads, more thread-blocks would be necessary and so the
utilization of the given hardware would be worse, resulting in
reduced latency-hiding and therefore reduced execution speed.

At first the object middle points are copied to the device.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

109

Then the computation kernel is started. In that, the attractive
potential is computed pixel-wise according to Equation (1).
Then all configurations are tested for being inside the radius of
an obstacle. In such a case the potential is increased by the
result of Equation (1). The last stage of the device function is
to insert the potential of the walls, so that the robot cannot
leave the field. This is done by adding the repulsive potential
in the wall's range to the global potential field.

The computation of the potential field can be efficiently
done in parallel, but the search of the shortest path with the
gradient descent is a serial process. Therefore the potential
field is transferred back to the host for final processing.
Beginning with the target point, we compute the gradient for
all neighbor points. The point with the largest gradient now
continues to be our next point, inserted into a list of path-
points. After some iterations a complete path is planned. To
avoid a local minimum, we need to implement an escape
strategy: when we reach a local minimum, a best first search is
taken where all previously visited points are discarded. This is
done by inserting the cardinal neighbors, sorted according to
their potential value, into a list. Then the point with the
smallest potential is extracted and all its neighbors are also
inserted into the sorted list. Afterwards the gradient is
determined. If it points towards an already visited point, the
point is inserted into a visitation list. Otherwise the gradient is
traced as usual. In this circumstance, when we speak of a
worst-case scenario for this algorithm, an obstacle
constellation that forms an L between the start and the goal is
meant.

C. Wavefront

Since all the algorithms receive only the middle points of
the obstacles as input, for this cellular automaton based
algorithm, we need to generate a binary map, representing the
current constellation of the obstacles in the configuration
space. This map is used as fast lookup table (LUT),
determining if a thread belongs to an object or not.
Furthermore, as an initial state of the automaton we introduce
another array, where every cell except the start point (this is set
to zero) is set to the largest possible value. All of that is done
in a separate kernel function.

After this is done, the initial state array is bound to a texture
and the kernel for computing one iteration is started, writing
the resulting states to another array. These arrays are now
exchanged in every iteration of the algorithm. The final result
is generated by restarting the kernel, which is required due to
the local data dependencies of the algorithm. Every thread of
the kernel function peeks in every cardinal direction if there is
a value smaller than the current one is has. For that we need
five loads of the surrounding cells as well as one for the LUT.
The smallest value is copied into the local cell and increased
by one. So we only need one write operation on the global
memory. After the iterations, the complete image is filled and
can then be transferred back to the host, where a gradient
descent is applied. Since there are no local minima problems,
we do not need a special escape strategy.

D. Autowaves

Autowaves are generated separately for the attracting and
repulsive waves. Therefore two initial 2D-arrays are set up,
one with the goal, the other one with all obstacles. This is done
by a kernel that uses the obstacle centroids as well as the target

position as input. Every thread handles one cell of both 2D-
arrays and decides if it is inside the bounds of an object
respectively target and updates the corresponding array. So we
get again a LUT for our computation kernel.

Afterwards, the first array is bound to a texture, used by the
RD-CNN kernel as input. The results are computed according
to Equation (2) with the parameters where the
neighboring values are fetched from the texture. These
parameters guarantee a stable and fast wave propagation. Since
the results grow rapidly in size, we decided to define an
upper/lower limit so that the result is always well defined.

Textures are always read-only and, since no inter block
synchronization is available, the kernel is run once per
iteration. The textures are rebound to the new result and the
old texture becomes the target buffer for the next iteration.

After the waves have spread over the whole image, the last
and the current result are transferred to the host. According to
the presented technique, a path is planned by comparing these
results. This is done in a dynamical way, which means that the
complete path to the goal is not calculated in one step, only the
direction is determined for the next image taken.

E. Marching Pixels

Our experiences with straightforward implementations have
shown, that the most common problem for solving marching
pixel algorithms is the use of a large cellular automaton where
each update of a cell involves a lot of branches, leading to
divergent behavior within warps. Another problem we
encountered, is the disadvantageous ratio of memory
bandwidth to computational requirements.

The first issue can be solved by computing a LUT, which
stores the resulting new state for any combination of cell and
neighbor states. The states are combined by masking and
shifting bits in order to obtain an address which in turn is used
to load the new state from the LUT.

 The LUT can be computed once, before path planning starts
and can be reused for future invocations. However, due to the
number of states a cell can take on (eight) and the number of
cells to be considered (eight neighbors plus the cell's own
state), the LUT for the given algorithm is about 135 MBytes is
size. On a GPGPU, this would require an additional, most
likely non-coalesced read from global memory per update, thus
seriously hurting performance.

Therefore we did split the Marching Pixels algorithm into
two phases: first the skeletonization, then the Marching Pixels
phase. Since the skeletonization can be implemented with
basically two states (a little precaution has to be taken when
considering a path's start and end points), the LUT can be
exponentially shrunken to 4096 Bytes. This is more than the
expected Bytes since we have to consider the direction of
the skeletonization and if the current cell is the start or end
point.

The other problem can be mitigated by using textures, which
cache redundant accesses. We further optimized this by storing
a two times two pixel block in each texture byte and letting
each thread update a total of four times four pixels per step.
This way a thread has to load 16 Bytes (four for own cells and
twelve neighboring bytes) and write four bytes per step while
performing 16 updates, leading to a ratio of 1.25 Bytes per
update. This is a significant improvement over a naive
implementation in which each thread would load nine bytes,

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

110

perform one update and write one byte back, resulting in a
ratio of 10 Bytes per update. Of course this packed storage
requires a lot of bit masking operations, but calculations are
available in abundance on a GPU. Together with using textures
to cache redundant reads, this allowed us to significantly
reduce the impact of memory latency and improve our
bandwidth usage.

For the Marching Pixels phase we did not use a LUT, but
did perform the necessary computations directly in the code.
We were able to speed up this phase however, by not
considering the whole image in each time step, but rather only
those pixels who did form the resulting skeleton in the first
phase. Cells are stored in two two-dimensional arrays, one for
the old states and one for the new states which are to be
computed. After each time step, the newly generated image
array is bound to a texture, while the old texture becomes the
result for the next iteration. As discussed in Chapter III the
algorithm is stopped after at most iterations and the result
is copied back to the host.

V. RESULTS

Our system consists of an Intel Core i7 920 quad-
core@ 2.66GHz with 12GB RAM and a Geforce GTX 480
with 1.5 GB GDDR2 RAM. For programming NVIDIA
Toolkit version 3.0 with NVIDIA SDK 3.0 was used. The
results are given in two figures since the Visibility Graph's
performance depends on the number of obstacle nodes and not
on the maps resolution. The other approaches are oblivious to
the number of object nodes, but depend on the map resolution.

Figure 1(a) shows absolute run times of the resolution-
dependent algorithms on the Core i7 multi-core and Figure
1(b) shows the run times of the same algorithms on our GPU
system. The Visibility Graph results for the multi-core and
GPU run times are shown in Figure 2. The time for the data
transfer from and to the GPU is included in the run times of the
GPU implementations. The comparison of the multi-core
implementations of Figure 1(a) to their GPU counterparts of
Figure 1(b) shows that all algorithms can be accelerated on the
GPU, by a factor between 2 and 400, depending on the
algorithm and map resolution. The approaches based on

Autowaves, Wavefronts and MPs are iterative algorithms in
contrast to the Visibility Graph and Potential Field Methods.
The Visibility Graph results shown in Figure 2 shows a
quadratic runtime behavior when more and more objects are
considered. The algorithm is very fast, but slows down when
complex polygonal obstacles with many nodes are present in
the environment. The performance of the iterative algorithms
can be expressed in GLUPS (Giga Lattice Updates per
Second). For this the resolution is multiplied with the number
of iterations of an algorithm, divided by the time taken for the
whole processing. The Autowave algorithm was the slowest on
the GPU. We observed a performance of only 2.2 GLUPS.
This is due to the high memory-bandwidth needs of the CNN-
data and the complex computations necessary, compared to
them of the other algorithms. The Wavefront algorithm resides
in the midrange of the lineup with a performance of 6.0
GLUPS. Here we have much less data per cell and the
computation is significantly faster, so this results in a three
times higher GLUPS number. The Marching Pixels algorithm
is the fastest of the iterative algorithms on the GPU with a
performance of 16.5 GLUPS. This high count comes from the
very small amount of data (only two bits) necessary and the
possibility of using a LUT for the state transitions.A lot of
areas can be masked out per iteration where states of map
points are constant. Only the Potential Field Method in its best
case is faster because it is not an iterative approach. But the
disadvantage of the Potential Field Method is its susceptibility
to being stuck in local minima. For this reason, two Potential
Field curves are shown in Figure 1, one with the best case, the
other one with the L-shaped obstacles of the worst-case
scenario: The calculation of a path out of a local minimum is
expensive and has to be done in serial on the host. Because this
search is not parallelizable it inflicts serious runtime penalties
for worst case setups. This means in best case the algorithm is
fully real time capable, with a run time of less than ten
milliseconds. But in the worst case the algorithm consumes
over two seconds. For that, all other algorithms (except the
autowaves) are much faster.

We observed several GPU related advantages/disadvantages
when we did the implementations. First of all, a massive
parallel approach is possible for path planning tasks and it is
ideal when there are no data-dependencies between the
threads. But not parallelizable tasks, such as the gradient
descent of the Potential Field Method can massively hamper
the whole computation. Another important fact is, that if there
are data-dependencies, the ratio of computation to memory
transfers needs to be reduced where possible. If an algorithm is
compute bound, then a larger memory afford can speed-up the
computation. Out of this idea the state-transition of the

Fig. 2. Timings of pathfinding algorithms for different image sizes.

Please observe the different scalings.

Fig. 1 Timings of pathfinding algorithms for different image sizes.
Please observe the different scalings.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

111

Marching Pixels algorithm is speeded up with the use of a
LUT, that fits into the constant memory. Finally, when there
are access-patterns, that fit into the limitations of the texture-
access scheme, these should be used whenever possible.

VI. CONCLUSION

In this paper, we presented an evaluation of selected parallel
path planning algorithms, compared them with multi-core
implementations and presented detailed information about the
implementation on GPUs using NVIDIA's CUDA platform.

As the results show, there is no overall winner, but
nevertheless, we could show that the GPU is an efficient
coprocessor for parallel algorithms in robot systems.
Depending on the given application, a graph-based algorithm
like the Visibility Graph should be used if only a few objects
occur. In the best case the Potential Field Method is very fast
and flexible, but should only be favored when being trapped in
a local minimum is not critical for the application. In contrast
the Marching Pixels algorithm is a rather efficient solution
which is immune to adverse environment setups. Furthermore,
tight upper bounds for its runtime can be given [8], making it
an ideal choice for real-time applications whose setups do not
fit into the niches of graph-based or potential field approaches.

REFERENCES
[1] H. Choset et al., Principles of Robot Motion. Cambridge, Massachusetts,

USA: The MIT Press, 2005.
[2] R. Schraft et al., ―Man-machine-interaction and cooperation for mobile

and assisting robots,‖ in Proceedings of EIS 2004, 2004, pp. 1025–1032.
[3] W. Kubinger et al., ―An embedded vision sensor for robot soccer,‖

Lecture Notes in C
[4] Computer Science, vol. 4739/2007, pp. 1025–1032, 2007. J.-C. Latombe,

Robot Motion Planning, 7th ed. Norwell, USA: Kluwer Academic
Publishers, 1991.

[5] O. Khatib, ―Real-time obstacle avoidance for manipulators and mobile
robots,‖ Int. J. Rob. Res., vol. 5, no. 1, pp. 90–98, 1986.

[6] J. Barraquand et al., ―Numerical potential field techniques for robot path
planning,‖ IEEE Transactions on Systems, Man and Cybernetics, vol. 22,

no. 2, pp. 224–241, 1992.
[7] A. Adamatzky et al., ―Reaction-diffusion navigation robot control: From

chemical to vlsi analogic processors,‖ IEEE Trans. on Circuits and

System-I, vol. 51, no. 5, pp. 926–938, 2004.
[8] M. Schmidt and D. Fey, ―A parallel path planning approach based on

organic computing principles,‖ in 20th IASTED International Conf. on

PDCS, 2008, pp. 176–181.
[9] R. Seidler, M. Schmidt, A. Schäfer and D. Fey, ―Comparison of selected

parallel path planning algorithms on gpgpus and multi-core processors,‖

in Proceedings of the ADPC, 2010, pp. A133–A139.
[10] L. Fischer et al., ―Gpu accelerated path-planning for multiagents in

virtual environments,‖ SB Games II, 2009.
[11] A. Bleiweiss, ―Gpu accelerated pathfinding,‖ in GH ’08: Proceedings of

the 23rd ACM SIGGRAPH / EUROGRAPHICS symposium on
Graphics hardware, Aire-la-Ville, Switzerland, 2008, pp. 65–74.

[12] R. Gayle et al., ―Path planning for deformable robots in complex
environments,‖ in Robotics: Systems and Science, 2005.

[13] E. W. Dijkstra, ―A note on two problems in connexion with graphs,‖

Numerische Mathematik, vol. 1, pp. 269–271, 1959.
[14] L. O. Chua et al., ―Cellular neuronal networks:theory,‖ IEEE Trans. on

Circuits and Systems, vol. 35, pp. 1257–1272, 1988.
[15] D. Fey and D. Schmidt, ―Marching Pixels: A new organic computing

principle for high speed cmos camera chips,‖ in Proceeding ACM

International Conference on Computing Frontiers 2005, 2005, pp. 1–9.
[16] M. Komann and D. Fey, ―Realising emergent image preprocessing tasks

in cellular-automaton-alike massively parallel hardware,‖ IJPEDS, vol.

22, no. 2, pp. 79–89, 2007.
[17] R. Stefanelli and A. Rosenfeld, ―Some parallel thinning algorithms for

digital pictures,‖ Journal of the ACM, vol. 18, no. 2, pp. 255–264, 1971.
[18] F. Aurenhammer, ―Voronoi diagrams—a survey of a fundamental

geometric data structure,‖ ACM Comput. Surv., vol. 23, no. 3, pp. 345–
405, 1991.

[19] Animation of the marching pixel path planning algorithm. [Online].
Available: http://www3.informatik.unierlangen.
de/Research/PathPlanning/

Ralf Seidler started his university studies in 2004 and
received the masters-degree in computer science (Diplom
Informatiker) from the Friedrich Schiller University of Jena
in 2010. Currently he is a staff-member at the chair of
computer architecture, department of computer science at
the university of Erlangen-Nuremberg since June 2010. His
main research interest is GPGPU computing for image
processing tasks.

Michael Schmidt received his diploma degree in computer
science from the University of Jena, Germany in 2005.
From 2005 to 2009 he was a member of the research staff
at the University of Jena. Since 2009 he is working at the
University of Erlangen, Germany. His main research
interests are embedded systems and FPGAs. He is currently
working on the efficient realization of path planning
algorithms for robot systems based on FPGAs.

Andreas Schäfer graduated in Computer Science at the
Friedrich-Schiller-Universität Jena, Germany in 2006. He
received a PhD scholarship for three years and is now a staff
member of the Friedrich-Alexander-Universität Erlangen,
Germany. Andreas has specialized in high performance
computing. His research focuses on the
flexible parallelization of stencil codes.

Prof. Dr.-Ing. Dietmar Fey studied computer science at
University Erlangen-Nuremberg. The topic of his Ph.D.
thesis in 1992 was about Optical Computing Architectures.
From 1999 to 2001 he was researcher and lecturer at the
Universities in Jena and Siegen in Germany. In 2001 he
became professor for Computer Engineering at the
University of Jena. Since 2009 he has the Chair of
Computer Architecture at the University of Erlangen-

Nuremberg, Germany. His research interests are in the areas of parallel
embedded processor architectures, heterogeneous parallel architectures,
Custer and Grid computing, and nanocomputing.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

112

