
DOI: 10.5176_2010-2283_1.2.46

Design and Simulation of High Performance Parallel
Architectures Using the ISAC Language

Zdeněk Přikryl, Jakub Křoustek, Tomáš Hruška, Dušan Kolář, Karel Masařík, Adam Husár
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

{iprikryl, ikroustek, hruska, kolar, masarik, ihusar}@fit.vutbr.cz

Abstract — Most of modern embedded systems for multimedia
and network applications are based on parallel data stream
processing. The data processing can be done using very long
instruction word processors (VLIW), or using more than one
high performance application-specific instruction set processor
(ASIPs), or even by their combination on single chip.

Design and testing of these complex systems is time-consuming
and iterative process. Architecture description languages (ADLs)
are one of the most effective solutions for single processor design.
However, support for description of parallel architectures and
multi-processor systems is very low or completely missing in
nowadays ADLs. This article presents utilization of new
extensions for existing architecture description language ISAC.
These extensions are used for easy and fast prototyping and
testing of parallel based systems and processors.

Keywords — architecture description language; ISAC; ASIP;
VLIW; multiprocessor system on a chip; simulation; debugging

I. INTRODUCTION

Embedded systems have become inseparable parts of our
everyday life. A core of such system consists of one or more
application-specific instruction set processors. These
processors are highly optimized for a given task, such as
multimedia processing or network applications. Data processed
by these applications can be divided into several streams which
can be processed at the same time. Therefore, the most efficient
way how to improve the performance is parallelization.

Parallelization can be done either on a software level (e.g.
threads) or a hardware level (e.g. more computational units).
However, the software level still needs a hardware support (e.g.
Intel’s Hyper-Threading [16]).

The designer of parallel architectures should have powerful
tools which help him or her in a design space exploration.
Processor can be described using an architecture description
language (ADL) or hardware description language (HDL) [19],
[2]. In our point of view, ADL is better, since it hides hardware
details. Therefore, it allows easy and fast prototyping of new
processors.

In this article, we focus on the description of hardware level
parallelism. More specifically, we will focus on the description
of basic parallel architectures. The first ones are very long
instruction word processors (VLIW). The second ones are
multi-processor systems on a chip (MPSoC) which use more

than one processor. Based on used processors, the MPSoC can
be homogenous or heterogeneous. The homogenous MPSoC is
formed from the same type of processors and it is often called
multi-core processors. On the other hand, a heterogeneous
MPSoC uses a general purpose processor as a control processor
and some DSP processor(s) for an audio/video processing. In
the following text, the term multi-core processor denotes
homogenous MPSoC and the term MPSoC denotes
heterogeneous MPSoC. Each of these architectures is discussed
in the following sections.

In complex systems, such as multi-core processors or
MPSoCs, interconnections among cores or processors, as well
as connection to shared memories, etc., have to be described.
The interconnection should be described by using the ADL
model as well. The description is used for the simulation and
for the hardware description generation.

However, the support for the description of parallel
architectures is very weak or completely missing in the
nowadays ADLs (e.g. nML [5], LISA [10], EXPRESSION [8],
etc.). Therefore, we define new constructions for existing ADL,
which allow description of such architectures. The extended
ADL is the ISAC language. It was developed within the
LISSOM project [15].

Specific ISAC language constructions, that allow the
description mentioned above are described in this article. The
basic principles of the simulation platform together with the
debugging features are also described. Experimental results can
be found at the end of the article. The results prove that our
solution has great design possibilities, and also, the speed of
different types of simulators is very good.

II. STATE OF THE ART

A. VLIW Architecture Overview

The history of the very long instruction word (VLIW)
processor architecture dates back to 1983 [6]. In the last
decades, the VLIW architecture has been very popular, mainly
in the embedded systems domain. This popularity has been
gained by its high performance, and high instruction level
parallelism. The explicit instruction-level parallelism and
scheduling of a program execution at compilation time are the
main features of this architecture. Each The VLIW instruction
specifies a set of operations that are issued in parallel. An
instruction contains multiple operation slots. Each of these slots

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

97

specifies one of the operations that will be issued
simultaneously. The VLIW operations are minimal units of the
execution and are similar to the RISC instructions [25].
Instructions are encoded and stored in processor memory as
bundles. Roughly speaking, an encoded operation is called
syllable. Therefore, the bundle contains several syllables.

From the microarchitectural point of view, the VLIW
processors consist of clusters with register files and functional
units [7]. The functional units are usually specialized. It means
that every functional unit has its own task (adder, multiplier,
a unit for memory access, etc.), which is managed by
operations. Therefore, this architecture contains several
different decoders, while it usually contains only one fetch unit
for fetching the whole long instruction words. The clusters can
be interconnected, so data needed for a functional unit in one
cluster can be transported from another cluster. This is done by
special operations.

B. VLIW Instruction Encoding

As it has been told previously, instructions are built up
from operation slots, typically from four or more. The issued
operations are executed simultaneously. The scheduling of
these operations is done statically at compilation time.
However, when the compiler is unable to plan a useful
operation (e.g. functional units must wait for a result of
another unit), the NOP (no operation) instruction is issued.
The NOP tells the decoder to do nothing. These useless
operations are encoded in the same way as the other
operations, in the original encoding strategy [6]. This
horizontal nature of the instruction set leads to the code size
bloat and instruction cache wasting. Therefore, there is an
effort to remove useless operations. We talk about the
instruction compression. The instruction compression makes
decoding harder, hence complexity of the fetch and decoding
units increase (e.g. the fetch unit has to figure out correct
operation dispatching). There are four basic types of the
VLIW instruction encoding [7] (see Fig. 1 for the illustration):

Simple encoding encodes every operation, including NOPs,
as it is. Therefore, the bundle has the same structure as the
original instruction. No operation compression is done, hence
the encoding and decoding is trivial, but the code size is large.

Fixed-overhead encoding uses a bit field header that
describes the structure of each slot. Therefore, the size of the
header equals to the number of slots. The encoding of
operations excluding NOPs follows the header. Thus, the
bundle size is variable.

Distributed encoding is similar to the fixed-overhead
encoding with few differences. The header is distributed
directly into syllables as one or two bits (e.g. parallel bit or
start/stop bits). These bits specify if operations run in parallel
or not. Information related to NOPs is not stored in the bundle.
Every operation is encoded into a syllable, except NOP
operations which are not encoded. The bundle size is variable
again. This encoding is used in the majority of today’s VLIW
processors, for example TI C6x [30] or
HP/STMicroelectronics Lx ST2xx family [29].

Template-based encoding uses the header for the bundle
description, similar to the fixed-overhead encoding. The
header contains a template defining operations composition.
Main difference between this one and the other encoding types
is in the bundle structure. The bundle is of the fixed length, the
NOPs are not encoded and the bundle can be created using
more than one long instruction. Moreover, one instruction can
be encoded into several bundles. Therefore, the fetching and
decoding of such bundles is even more difficult because these
units have to continuously reconstruct instructions for next
cycles and store the rest of bundles. This encoding is used
especially in the Intel Itanium processor as EPIC (Explicitly
Parallel Instruction Computing) [26].

Figure 1. Typical instruction encodings used in the VLIW architecture:

a) Simple encoding, b) Fixed-overhead, c) Distributed, d) Template-based

The NOP compression is not the only reason for the
instruction encoding. Some architectures use an instruction
encoding phase for transformations that are unable to describe
in an operation coding description. For example, the HP/ST
Lx ST231 transforms operations with long immediate values,
which cannot fit in fixed length operations, to two following
syllables. The first syllable contains the opcode, the register
operands and the first part of immediate value, while the next
syllable holds the rest of the immediate value. Another
example is the CHILI VLIW processor that uses the
interleaving operation encoding. In the first syllable, the
opcodes of operations are stored; in the next syllables the
operands are stored.

The current architecture description languages (ADLs) do
not support the VLIW instruction encoding at all. Most of the
current ADLs (e.g. nML, LISA, EXPRESSION, etc.) support
VLIW processors, but only the simple uncompressed encoding
is used. In such situation, a user can define the VLIW
processor, but is unable to describe features, such as the NOP
compression, the interleaved operation encoding, etc.

C. Multi-core Architecture Overview

In the middle of this decade, one of the major performance
criteria was the processor frequency. Therefore, every vendor
tried to develop a processor with the highest frequency.
Unfortunately, this approach has hit a dead end. The main
reason for this situation is that cooling of such processors has
become an insolvable problem because of very high heat
output. An example is the Intel’s Pentium 4 [13] which was
manufactured by 90nm technology. It never reaches frequency

100b

99b

instr. 1/op. A instr. 1/op. B instr. 2/op. E

0 1

nop a)

b)

c)

operation A 128b

32b 32b 32b

operation B operation D

32b

operation B

1101 operation A operation D

operation B

1 operation A operation D

104b template d)

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

98

higher than 5 GHz since there is no viable way to cool it
down.

Therefore, the designers have come with other way to
increase performance. Instead of increasing the frequency,
they duplicate a simpler processor with lower frequency. In
the multi-core terminology, one core equals to the single
simple processor. In contrast to the VLIW processors, each
core of the multi-core processor has its own fetch unit and one
core may be a simple RISC processor. In order to utilize all
cores, an application has to be written in a specific way. The
multi-core processor itself cannot identify tasks which can run
in parallel. These tasks are identified by the application
developer (e.g. a thread creation) or by a compiler. The tasks
running on particular cores can communicate with the other
tasks via a shared memory. For the performance reasons, the
cores usually share caches. Since several cores access
the same cache, each access must be performed at defined
time which is the same for all cores. Even in the case when
each core runs at different frequency (for a performance or
power-consumption reasons). Therefore, the accesses have to
be synchronized. For example, the synchronization element
can be a system bus or a memory controller. This is very
important from the simulation point of view (it is described in
the section V).

An example of such architecture is the Intel Core 2 Quad
[12] which uses three layers of caches. Each core has its own
L1 cache, then there are two shared L2 caches (two cores
share one L2 cache), and finally there is shared L3 cache and
it is shared among all four cores. The previous architecture is
shown in Fig. 2.

 Figure 2. Example of a multi-core architecture

D. MPSoC Architecture Overview

Since the manufacturing technology reached 22 nm, more
things can be placed on the chip. Hence, the trend of
nowadays embedded systems is to place more than one
processor on the same piece of a chip [14]. Each of the
processors is highly optimized for a given task. For example, a
video player can contain one control RISC processor, one
digital signal processor (DSP) for audio processing and one or
more VLIW processors for video and image processing.

The processors can communicate with others via a shared
memory (the same system as in multi-core processors) or by

sending/receiving packets (the network-on-chip architecture
(NoC) [9]) or by interrupts (an interrupt wakes the processor
up, it does its job and falls asleep again) or via other
interconnection systems (e.g. a cross-bar). In the case of
shared memory, the situation is quite similar to the multi-core
processors (the access to a shared resource is allowed at a
defined time which is the same for all processors, which
shares the memory). In the case of packet communication,
each node in the network has its own memory. When the node
needs communicate with other node, it simply sends a packet
with all necessary data over the network. Routers, which are
also placed on the chip, deliver packet to the receiving node.
In the case of interrupts, only one processor usually accesses
the memory at a particular time (although it is shared by more
processors). For example, it fills a part of memory with data
and then another processor can process them. The accesses of
two processors are done in independent non-overlapping
times. The mentioned different types of communications are
also very important from the simulation point of view (it is
described in the section V). It should be noted there can be
several main memory elements on the same chip, where each
one them is used by a subset of processors. Also other
components, such as LCD controllers or IO devices, are
placed on the same chip. They are usually controlled by one of
the processors. An example of MPSoC is shown in Fig. 3.

Figure 3. Example of a MPSoC architecture

Nowadays, the MPSoC are designed in a way which uses
co-simulation techniques. It means that individual ASIPs are
designed using some ADL. The communication among them
is simulated using specific modules. These modules can
represent routers in the case of network on chip (NoC)
architecture, etc. They are often written in the C language or
VHDL/Verilog. The simulation of an ASIP together with
modules is called co-simulation.

III. THE ISAC LANGUAGE

The ISAC (Instruction Set Language C) language was
developed in the frame of the Lissom project [15] at Brno
University of Technology. It is inspired by the LISA language
[6] and it extends the LISA language with new constructions
which allow, among other things, to simple model
architectures mentioned in section II. The ISAC language [17]

ARM5
(control unit)

DSP
(audio unit)

VLIW
(video unit 1)

Main memory

Video
memory

VLIW
(video unit 2)

Shared L3 Cache

Shared L2 Cache Shared L2 Cache

Core 1

L1

Core 2

L1

Core 3

L1

Core 4

L1

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

99

belongs into so-called mixed architecture description
languages. It means that a processor model consists of several
parts. In the resource part, processor resources, such as
registers or a memory hierarchy, are declared. In the operation
part, processor’s instruction set with behavior of instructions
and processor’s microarchitecture is described.

The basic constructions of the operation part are the
operation construction and the group construction. An
operation can have several sections. The sections are used for
four basic model parts of processors. Each model describes an
ASIP from a different point of view. There are: the
instruction-set model, the model of instruction decoders
hierarchy, the timing model and the behavioral model. There
are usually many operation constructions in an ASIP
description.

These operations can be directly connected to each other or
grouped according to a functional similarity using the group
construction. In fact, the group construction creates variants of
operations. By using the group and operation constructions,
the four mentioned models are built up. The assembler,
coding, bundle, debundle and codingroot sections are used for
the instruction-set model. These sections capture format
of instructions in assembly and machine language, so they
define the instruction in textual and binary forms.

For the behavioral model the behavior and expression
sections are used. In these sections, a subset of ANSI C
language can be used. Note that most of the constructs from
ANSI C language can be transformed to a hardware
description language (e.g. VHDL). The behavior section
defines the semantics of each operation; so for example, a
simple instruction with behavior is described using the
assembler, coding and behavior sections, see Fig. 4. The
hierarchy of instruction decoders is captured in the structure
section. In this section, various configurations of instruction
decoders can be defined. A processor can use either several
instruction analyzers or conditionally used instruction
analyzers (the pre-decode and decode phase).

The timing model is described in the activation sections.
This section is essential for the cycle-accurate simulator and
the hardware description generation. It contains links to other
operations that are activated for execution either in the same
clock cycle or in the future. An activation of an operation can
be conditioned. Events are operations containing the activation
or structure section and operations that are used within these
sections. Note that every event can be assigned to a particular
pipeline stage, which forms implicit ASIP timing. Timing can
be also formed explicitly by an additional ISAC construction.
There has to be the special event main in the each processor
description. It denotes a new clock cycle (i.e. it is the main
synchronization event).

It should be noted that the description of instruction set is
strictly separated from the description of microarchitecture
(the codingroot and structure sections). This approach brings
powerful modeling possibilities because there can be more
decoders which decode an instruction in a particular order

(e.g. Intel’s 8051 [28]), while the instruction is encoded in a
different order. An example of operations and groups can be
found in [21], [17] and in the following sections.

Figure 4. Example of a simple processor description in the ISAC language.

IV. MODELING OF PARALLEL SYSTEMS IN THE ISAC

LANGUAGE

The ISAC language extensions for parallel architectures
design are described in the deep detail in [23]. We will briefly
discuss the most important features.

A. Description of VLIW Instruction Encoding

In general, the instruction encoding is not a bijective
function because the process of the encoding can differ
from decoding. In the instruction encoding phase, we lose
information about the operation dispatching. This information
must be included in the decoding description. Therefore, it is
necessary to describe both encoding (used by the assembler)
and decoding (used by the disassembler, JIT compiled
simulator and VHDL generator).

Both the instruction encoding and decoding is described in
the specialized top-level sections (bundle and debundle) with
the modified and very restricted subset of the C language.
Furthermore, the templates for generic encoding types are
provided. With this approach we are able to describe every
encoding type.

In the case of a VLIW architecture which has several slots
and the slots have the same instructions working on the
different clusters, additional ISAC construction entity can be
used. This construction describes resources within particular
cluster and also the connection to other cluster or clusters (e.g.

RESOURCES { // HW resources

 PC REGISTER bit[32] pc; // program counter

 REGISTER bit[32] regs[16]; // register file

 RAM bit[32] memory {

 SIZE (0x10000); FLAGS (R, W, X);

 };

}

// instruction set description

OPERATION opc_add

 {ASSEMBLER {"ADD"};CODING{0b0};EXPRESSION{0x0;};}

OPERATION opc_sub

 {ASSEMBLER {"SUB"};CODING{0b1};EXPRESSION{0x1;};}

GROUP opc = opc_add, opc_sub;

OPERATION reg REPRESENTS regs

 {// textual and binary description of registers}

OPERATION instruction_set {

 INSTANCE reg ALIAS {rd, rs, rt};

 INSTANCE opc;

 ASSEMBLER { opc rd "," rs "," rt };

 CODING { 0b00 rs rt rd opc };

 BEHAVIOR { // instruction’s behavior description

 switch (opc) {

 case 0x0: regs[rd] =

 regs[rs] + regs[rt]; break;

 case 0x1: regs[rd] =

 regs[rs] - regs[rt]; break;

 }

 };

}

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

100

one cluster can use registers from the other cluster and vice
versa), while the other clusters are simply replicated. The main
advantage of this approach is massive reduction of model code
redundancy (i.e. model size).

B. Multi-core Processors and Multi-processor System on a
Chip

A multi-core processor and can be described using the
ISAC language as well. Each processor core is described in a
separate model. The processor cores can communicate with
other processor cores via shared resources (a resource is
marked as a shared), such as shared caches. To be more
precisely, the resource is marked as shared only in the one
model. In other models, the resource has to be marked as
extern (analogically to the C language modifier, there is no
variable modifier called shared in the C language because
every variable can be shared by default). In addition, it is
possible to specify the type of a shared cache and used policy
by modifiers MSI and MESI (based on MSI/MESI protocol). It
should be noted that if a cache uses other protocol, the
designer is able to use his or her own cache. The bus can be
also shared among the processors.

In the case of multi-processor system on a chip, there are
usually shared busses or other components. The bus can be
described using the ISAC constructions. The situation is
similar as in the shared cache description. Sometimes the
MPSoC contains special shared functional units, such as
routers (used in the case of NoC), which cannot be described
via the ISAC constructions. The router can be modeled using
the C language (or other language). It creates independent
module (also known as plugin). The plugin functionality can
be used directly in the processors models. The plugin is
integrated in the simulator during the simulation Nevertheless,
the synchronization or mutual exclusions among the processor
accesses have to be solved by the developer within the plugin.

V. SIMULATING AND DEBUGGING OF MULTI-CORE

PROCESSORS AND MPSOC

The concept of the simulator generation uses new formal
models which were developed within the Lissom project.
Namely, it is two-way coupled finite automaton (see [11]) and
event automata (see [24]). The formal models ensure good
equivalency between the simulator and hardware representation
of the processor. Therefore, no additional huge hardware
verification is necessary. In the following subsections the
concept of the multi-core processor and MPSoC simulation is
described. It should be noted that some of the principles that
are described further, such as copying of simulator to network
host, are also used in the single processor simulation.

A. Different types of Simulators

Different types of simulators can be used during the
MPSoC or multi-core processor simulation. Each simulator
type has its advantages and disadvantages. We provide three
basic types of simulators.

The first type is interpreted simulator [24]. The concept of
this simulator is based on a constant fetching, decoding and
execution of instructions from the memory. Therefore, the
simulation itself is relatively slow. For example, instructions
within a loop are fetched and decoded several times in the
simulated application, although they were not changed. On the
other hand, simulator itself is not dependent on the simulated
application, and furthermore, the self-modifying code is
supported out of the box. The interpreted simulator creation is
also relatively fast.

If the developer wants to increase the speed of
a simulation, he or she can use the second type of simulator,
the compiled simulator [21]. It is created in two steps. In the
first step the simulated application is analyzed. The C code
simulating the application is emitted based on the analysis. In
the second step, the emitted C code is compiled together with
the static parts of simulator, such as processor resources etc. It
is clear that this version of compiled simulator (also known as
static compiled simulator) is dependent on the simulated
application and the self-modifying code is not supported.
Nevertheless, the speed of simulator can be several times
faster than the interpreted simulator. The second version of the
compiled simulator is the just-in-time compiled simulator. It
supports the self-modifying code and it is not dependent on the
simulated application. It is created in only one step and works
in the following way. At the beginning of simulation, the
simulator works as the interpreted simulator. The main task of
this phase is to find so-called hot-spots (i.e. parts of the
simulated application in which the most of simulation time is
spent). Then, these parts are compiled, so the subsequent
simulation of these parts will be quite faster. Thanks to the
first part (hot-spots location) the speed of just-in-time
compiled simulator is slower than the speed of static compiled
simulator. Still, it can be several times faster than the speed of
interpreted simulator. The compiled simulator creation can
take more time than the creation of an interpreted simulator
(especially just-in-time compiler simulator).

The last type of simulator is the translated simulator [22].
It improves the compiled simulator, so it has also two versions
(static and just-in-time). The translated simulator is the fastest
type of simulator, but it needs additional information about
simulated application. It needs starting and ending addresses
on all basic block in the simulated application. Thanks to this
information, the simulator can be highly optimized. The
addresses are stored usually as debug info in the simulated
application. These addresses cannot be obtained via the static
analysis of the simulated application, because of the indirect
jump instructions. Such an instruction uses a value of a
register or memory as a destination address of the jump.
Therefore, the analysis does not know where the instruction
will jump. The only way how to reliably obtain the addresses
is to use a high-level language compiler. If it is used for
application creation, then it knows exactly where the basic-
blocks start and end, and it can simply store the addresses in
the application as the debug info. It should be noted that we

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

101

also provide the C compiler generation. The C compiler is
created from the same processor model as the simulator.

The interpreted and compiled simulator can have two
levels of accuracy. It can be either the instruction-accurate one
or the cycle-accurate one. During the instruction-accurate
simulation the basic step of the simulation is a single
instruction (one instruction is executed at the time). This
simulation type has very good performance, but is quite far
from the hardware representation, since the whole
microarchitecture is not simulated at all. On the other hand,
during the cycle-accurate simulation, the basic step is the
single clock cycle. This level is very close to the hardware,
because the microarchitecture is simulated now (e.g. pipeline).
But the simulation itself is slower. The translated simulation
can be done only at the instruction accurate level because of
the performance reasons.

Each core of the multi-core processor or each processor in
the MPSoC can be simulated using different type of simulator.
For example, in the typical MPSoC designs, the already
debugged processors are simulated using the compiled or
translated simulator. And the processors which are currently
debugged are simulated using interpreted simulator.

B. Concept of Multi-core Processor and MPSoC simulation

The MPSoC simulation platform in the Lissom project is
based on so-called three-layer architecture. There are the
presentation, middle, and simulation layers (see Fig. 5). The
presentation layer accepts commands from the developer, such
as the start of a simulation and it displays important
information, such as results from a simulation. The presentation
layer can have several forms. There is a graphic user interface
(GUI) in a form of a plugin for the Eclipse platform [4].
Advanced users can use command line interface (CLI)
allowing the scripting and other advanced techniques, such as
the automatic testing, etc. The presentation layer communicates
with the middle layer. The middle layer accepts commands and
processes them. For example, it accepts a command that the
developer wants to create a simulator from a processor
description, so the middle layer creates the simulator and sends
message to the presentation layer about any possible errors that
may occur. The middle layer also takes care of the installation
of the simulator into the simulator layer. The simulators can be
installed into any suitable host in a network. Note that each of
these layers can run on a different host in a network.

As it was already mentioned, for each processor
description, an independent simulator is created. This simulator
is created at the host where the middle layer is running.
Therefore, the simulator can run only on a host which has the
same environment (i.e. which has the same operation system as
the host with middle layer has).

Then, according to the user configuration, the simulator is
transported to the particular host. The configuration file
contains all needed information, such as a destination host and
port. For copying, the SCP application [27] is used since it is
multi-platform and it has security features. If the host is
localhost, then the simulator is not copied anywhere. After the
simulator is transferred to the destination host, it is executed

and waits until it receives a message which starts the
simulation. This message is sent by the middle-layer based on
user’s command (i.e. user action from GUI or command
entered in the command line).

Figure 5. Three-layer model.

The first simulator in the configuration file is so-called
boss-simulator. We provide two kind of simulation. There are
synchronous and asynchronous multi-core processor or
MPSoC simulations. In the asynchronous simulations, the boss-
simulator is just an ordinary simulator without any specific
tasks. The simulators are synchronized in an application layer.
As it was mentioned, this kind of simulation is suitable for
example for NoC architecture simulation. In the case of
synchronous simulations, the boss-simulator is used for clock
cycle generation. The clock cycle generation algorithm is
inspired by Bresenham’s line algorithm [3], because the
simulators are allowed to not have exact divisible frequencies
(the configuration file contains information about simulators
frequencies). This kind of the simulation is suitable for multi-
core processors with a shared memory. According to the clock
cycle generation algorithm, the boss-simulator sends the
starting messages to particular simulators and waits till it
receives ending messages. The boss-simulator has to wait until
it receives ending messages from all the simulators (the
simulation of one clock cycle can take different amount of time
in the different simulator), which received starting message.
Only then it knows that all simulators, which had to simulate
one clock cycle, finished. Then a new clock cycle begins. Note
that the boss-simulator also simulates some processor, so it also
receives starting message and sends ending messages.

If the simulator accesses a shared resource, which is not
owned by the processor, the similar communication act as in
the clock cycle generation is used. It means that the simulator
which wants to access the resource sends a message to the
simulator which owns the resource. Then the simulator which
owns the resource either changes the resource value (write
message) or returns its value (read message). The message is
sent even if the simulators run on the same host (i.e. accesses
are not done via shared memory among the simulators). Access
is protected by a variable so concurrent accesses are mutually
excluded.

C. Debugging of Multi-core Processors and MPSoC

The developer can set breakpoints on any source code line
in any application. Note that several types of breakpoints are

Presentation Layer

Middle Layer

Simulator Simulator

Simulation Layer

Simulator

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

102

supported (e.g. conditional breakpoints, counters breakpoints,
etc.). If the simulator hits a breakpoint, it stops and sends a
stopping message to all other simulators. Then the developer
can obtain/set a value of/to any resource of any processor.
Also, he or she can control the application execution flow in
the step mode. In the case of the synchronous simulation, the
step is performed by all simulators (stepping messages are sent
to all simulators). In the case of the asynchronous simulation,
the step can be performed either by all simulators or by a
particular simulator only (the stepping message is sent to the
particular simulator only). The simulator can also be resumed
from stepping mode (it receives the resuming message).
Resuming works in the similar way as the step mode, so either
all simulators are resumed or, in the case of asynchronous
simulation, only selected simulators can be resumed.

D. Simulation results

During the simulation the designer can see values of
resources of the particular processor as well as the shared
resources. This information can be used for an application and
processor model debugging. If the designer needs to optimize
the design, he or she needs so-called profiling information.
This information is collected by the profiler. The profiler tracks
all important activities in the processor. In general, we
distinguish between architecture independent and architecture
dependent profilers. The architecture independent profilers
work in a way that they inject a new code into an application.
This new code keeps eye on important things. The
disadvantage of it is that the new code can misrepresent some
of statistics, such as a utilization of a particular resource.
Therefore, it is mainly used for an application optimization. On
the other hand, this kind of profiler is quite fast and can be used
among several processor architectures. The architecture
dependant profilers have deep knowledge of architecture and
therefore, they can get more detailed information, such as
cache miss/hit ratio or pipeline utilization. Hence, it can be
used for processor architecture optimization. Because they
track more things within the architecture, they are slower than
the first type of profiler.

The profiler can work on the assembly language level (low-
level profiler) or on the level of high programmable language
(high-level profiler), such as the C language. From the low-
level profiler point of view, an instruction is important. All
statistics are gathered with regards to it. In other words, each
executed instruction has information about clock cycles needed
for execution or it has information about resources which were
used during the instruction execution. From the high-level
profiler point of view, a function is usually important (or other
high level construction). The function collects other
information than the instruction. The function has information
about the cache hit/miss ratio and also about clock cycles
needed for its execution. The call-graph is also reconstructed
after the simulation. It captures how the functions were called
(i.e. connection among them).

In the Lissom project the architecture dependant profiler is
generated. We support low-level and high-level profilers. Both
of them are also based on formal models (see [20]). The low-
level profiler tracks the accesses to local and shared resources;
it can log the executed instructions and computes several

statistics, such as the instruction-set coverage or even the
program coverage. It also creates a graph for every shared
resource. This graph shows the shared resource usage by
individual processors. The designer can easily discover bottle-
necks in the ASIP design, such as overloaded functional unit,
or in the running program, as well as bottle-neck points in the
communication, such as an overloaded busses, etc. The high-
level profiler can be used especially for the application
optimization. It digestedly shows the function statistics. We
also provide an interactive visualization of the call-graph (i.e.
the developer can simply hide or show a part or parts of call-
graph in the different level of details)

VI. EXPERIMENTAL RESULTS

In this section, we briefly provide results of our solution
using the ISAC language. For single processor testing we
chose two architectures. The first one is MIPS architecture (the
created model has the simple microarchitecture; the translated
simulator is based on the instruction-accurate model). The
MIPS was developed by MIPS Computers Systems. The
instruction-set of MIPS is in the version MIPS32 Release 1.
The second one is the VEX architecture. The VEX is a four-slot
VLIW processor designed by HP [7]. Each slot processes
different types of instructions. The speed comparison of the
different simulator types is showed in Fig. 6.

Several programs from MiBench [18] test suite (e.g. crc32,
sha, dijkstra, etc.) were chosen as the testing algorithms. The
results shown in the graphs are the average values from
several runs (the maximum and minimum values differ from
the average values in tenths of a percent). All simulators were
compiled with the gcc (v4.3.3) compiler with optimizations –
O3 enabled. The tests were performed on the Intel Core 2
Quad with 2.8 GHz, 1333 MHz FSB and 4GB RAM running
64-bit Linux based operating system.

0

20

40

60

80

100

120

MIPS VEX

P
er

fo
rm

an
ce

 [
M

IP
S]

Interpreted Simulator Compiled Simulator

Translated Simulator

Figure 6. Simulator speeds of single processors.

 For the multi-core testing purposes we chose again MIPS.
We created a system with two cores. Each core has its own L1
cache and both cores share one L2 cache connected to the
main memory. Each core solves the same algorithms with
different data. For the MPSoC testing, we chose an additional
architecture. It is ARM [1] architecture (again, created model
have simple microarchitecture). The ARM model describes the
ARMv5 architecture. All the processors used in the MPSoC

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

103

testing have L1 cache and there is also a main memory shared
by all processors. Each processor solves a different task and
uses event based notification about finishing its job, so other
processor can process next data. This is the asynchronous
simulation, so each simulator can run at its maximum speed on
a different node in the network.

Results of the multi-core and MPSoC simulations can be
seen in Fig. 7. Both simulators ran on the same host.
The speed of the multi-core simulation was 2.75 million
instructions per second (MIPS). The speed is the same for the
all types of simulators. The most of the execution time is spent
in synchronization functions, therefore, the speeds are the
same (time which is spent in the clock cycle simulation is
much smaller than time which is spent in the synchronization
functions). The profilers are low-level (i.e. on the assembly
language level). Unfortunately, it is quite hard to find other
projects which provide similar results, so we cannot directly
compare our results with others.

0

10

20

30

40

50

60

70

MIPS ARM5 VEX I VEX II

P
er

fo
rm

an
ce

 [
M

IP
S]

 Interpreted Simulator Interpreted Profiler
Compiled Simulator Compiled Profiler

Figure 7. Simulators and profilers speed comparison.

The simulation speed comparison of the ISAC bundle
feature can be seen in Fig. 8. The interpreted simulation for
three versions of instruction accurate model of VEX processor
model has been used: the uncompressed encoding model
(Simple encoding); model with Distributed encoding
automatically generated from user description in bundle
section; and model with optimized build-in Distributed
encoding template.

All benchmark algorithms have been compiled with VEX C
Compiler (v3.42) [7] with no optimizations enabled –O0, in
order to maximize differences between compressed and
uncompressed instruction encoding.

The penalty for the usage of instruction encoding is
approximately 3%, mainly because of more difficult decoding
phase. The compression rate of the programs can be also seen
in Fig. 8. This aspect will positively affect cache hit ratio (note
that this speedup can be recognized only in cycle accurate
model).

The following table shows line reduction when the entity
construction is used. As one can see, the reduction is
enormous. Therefore, the model is more maintainable.

0

5

10

15

20

25

30

CRC_32 SHA Dijkstra Bitcount Quicksort

P
er

fo
rm

an
ce

 [
M

IP
S]

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Uncompressed Bundle
Bundle template Code size reduction

Figure 8. Simulator speeds and code compression ratio based on usage of

bundle feature in VEX VLIW processor.

TABLE I. ISAC LINE REDUCTION USING ENTITY STATEMENT.

Processor ISAC lines
ISAC lines using

ENTITY
Line count
reduction

VEX 2525 1475 42 %
Chili 2 5630 2650 53 %

An example of the profiler output we can see in Fig. 9. It is
a screenshot which was taken after the simulation. It shows
some of the processor registers together with the access
information. The values show how many times was particular
resource read or written. Note that memory elements have
additional statistics about execution. Highlighted backgrounds
mark changes from the beginning of profiling.

Figure 9. Example of profiling information.

VII. CONCLUSION

The support of parallel systems description is very limited
(or completely missing) in most of the modern architecture
description languages. In this paper, we provide a solution to
this problem. We define extensions for an existing ADL (the
ISAC language), which allow the modeling of VLIW
processors, multi-core processors, and MPSoCs. The
constructions for VLIW processors allow describing clusters
in a way which does not force the developer to copy and paste
the same functionality for different clusters. Therefore, a
model of the four-way VLIW processor with two clusters is
almost two times shorter in terms of the lines of description
code.

Furthermore, constructions for a formal description of the
long instruction word encoding and compression have been

Synchronous
simulation

Asynchronous simulation

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

104

added. The user can utilize the predefined encoding type or
define an entirely new one. Such a feature was completely
missing in the contemporary mixed architecture description
languages. Usage of the instruction compression leads to
smaller applications (in terms of program size). These
applications have very good cache hit/miss ratio, which
positively affects performance. Exact results depend on the
encoding type and amount of program ILP.

The constructions for multi-core processors and MPSoCs
allow the description of shared resources and access to them.
All of the mentioned constructions allow easy and fast
processor and embedded system prototyping.

There are several types of simulators for single processor
simulation. Each of them can be used in the different stage of
multi-core processor or MPSoC design. There are also two
types of single processor profilers, which can be used for
processor or application optimization.

We provide two ways of the simulating and debugging
multi-core processors and MPSoC. The synchronous
simulation can be used with multi-core processors where the
processors access the same shared memory. The asynchronous
simulation can be used with MPSoC, where the
communication is done via sending/receiving packets,
interrupts, etc. We provide several types of breakpoints and
also several ways of the controlling an application execution
flow.

 Furthermore, the simulators are based on the formal
models allowing better equivalency between the simulators
and hardware representations of processors. The co-simulation
is also supported.

ACKNOWLEDGMENT

This work was supported by the research funding MPO ČR,
No. FR-TI1/038 - System for Programming and Realization of
Embedded Systems, BUT FIT grant FIT-S-10-2, doctoral grant
GA ČR 102/09/H042, by the Research Plan No. MSM,
0021630528 – Security-Oriented Research in Information
Technology, and by the SMECY European project.

REFERENCES

[1] ARM Architecture and Documentation: www.arm.com.

[2] B. Bailey, et al.: “ESL Design and Verification: A Prescription for
Electronic System Level Methodology,” Morgan Kauffman Publishers,
2007.

[3] J. E. Bresenham: “Algorithm for Computer Control of a Digital Plotter,”
IBM Systems Journal, 4(1): pp. 25-30, January 1965.

[4] Eclipse Platform: www.eclipse.com.

[5] A. Fauth, J. Van Praet, M. Freericks: “Describing instruction set
processors using nML”, In: European conference on Design and Test,
IEEE Computer Society Washington, 1995.

[6] J. A. Fisher: ”Very Long Instruction Word Architectures and the ELI-
512,” Proceedings of the 10th Annual International Symposium on
Computer Architecture, pp. 140–150, June 1983.

[7] J. A. Fisher, P. Faraboschi, C. Young: ”Embedded Computing – A
VLIW Approach to Architecture, Compilers, and Tools,” Morgan-
Kaufmann Elsevier Publishers, ISBN 1-55860-766-8, 2005.

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A. Nicolau:
“EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability”, In: Design, Automation, and Test
in Europe, Springer Netherlands, 2008.

[9] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, D.
Lindqvist: “Network on a chip: An architecture for billion transistor
era,” In: IEEE NorChip, 2000.

[10] A. Hoffmann, H. Meyr, R. Leupers: ”Architecture Exploration for
Embedded Processors with LISA,” Kluwer Academic Publischers,
ISBN-4020-7338-0, 2002.

[11] T. Hruška, D. Kolář, R. Lukáš, E. Zámečníková: “Two-Way Coupled
Finite Automaton and Its Usage in Translators,” In: New Aspects of
Circuits, Heraklion, GR, WSEAS, 2008, pp. 445-449, ISBN 978-960-
6766-82-4, ISSN 1790-5117

[12] Intel Core2 Quad-Core Dcumentation.
http://www.intel.com/design/core2quad/.

[13] Intel Pentium 4 Processor Documentation.
http://www.intel.com/support/processors/pentium4/.

[14] A. Jerraya, W. Wolf: ”Multi-processor Systems-on-chips,” Morgan
Kauffman Publishers, 2005.

[15] Lissom Project. http://www.fit.vutbr.cz/research/groups/lissom/.

[16] D. Marr, et al.: “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal, 2002.

[17] K. Masařík: “System for Hardware-Software Co-Design,” FIT BUT,
ISBN 978-80-214-3863-7, Brno, CZ, 2008.

[18] MiBench Version 1.0. http://www.eecs.umich.edu/mibench/.

[19] P. Mishra, N. Dutt: “Processor Description Languages,” Morgan
Kauffman Publishers, ISBN-978-0-12-372487-2, 2008.

[20] Z. Přikryl, T. Hruška: “Cycle Accurate Profiler for ASIPs,” In: 5th
Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science, pp. 168-175, ISBN 978-80-87342-04-6 CZ, Brno,
CZ, 2009.

[21] Z. Přikryl, T. Hruška, K. Masařík, A. Husár: “Fast Cycle-Accurate
Compiled Simulation,” In: 10th IFAC Workshop on Programmable
Devices and Embedded Systems, PDeS 2010, Pszczyna, PL, IFAC,
2010, pp. 97-102, ISSN 1474-6670.

[22] Z. Přikryl, J. Křoustek, T. Hruška, D. Kolář: “Fast Translated Simulation
of ASIPs,” In: 6th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, Brno, CZ, MUNI, 2010, pp. 135-142,
ISBN 978-80-87342-10-7.

[23] Z. Přikryl, J. Křoustek, T. Hruška, D. Kolář, K. Masařík, A. Husár:
“Design and Debugging of Parallel Architectures Using the ISAC
Language,” In: Proceedings ot the Annual International Conference on
Advanced Distributed and Parallel Computing and Real-Time and
Embedded Systems, Singapore, SG, GSTF, 2010, pp. 213-221, ISBN
978-981-08-7656-2

[24] Z. Přikryl, K. Masařík, T. Hruška, A. Husár: “Fast Cycle-Accurate
Interpreted Simulation,” In Tenth International Workshop on
Microprocessor Test and Verification: Common Challenges and
Solutions, pp. 9-14, ISBN 978-0-7695-4000-9, Austin, US, ICSP, 2009.

[25] B. R. Rau: “Cydra 5 Directed Dataflow Architecture,” In COMPCON
’88, pp. 106–113, San Francisco, 1988.

[26] M. Schlansker, B. R. Rau: “EPIC: An Architecture for Instruction-Level
Parallel Processors,” HP Labs Tech. Rept. HPL-1999-111, February
2000.

[27] SCP homepage: http://www.openssh.com/.

[28] C. Steiner: “The 8051/8052 Microcontroller: Architecture, Assembly
Language, and Hardware Interfacing,” Universal Publishers, ISBN: 978-
1581124590, 2005.

[29] STMicroelectronics: “ST200 VLIW Series – ST240 SIMD Instruction
Set Architecture,” 2006.

[30] Texas Instruments Incorporated: “TMS320C64x/C64x+ DSP – CPU and
Instruction Set Reference Guide,” October 2008.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

105

http://www.fit.vutbr.cz/research/groups/lissom
http://www.fit.vutbr.cz/research/view_pub.php?id=9376
http://www.fit.vutbr.cz/research/view_pub.php?id=9376
http://www.fit.vutbr.cz/research/view_pub.php?id=9377
http://www.fit.vutbr.cz/research/view_pub.php?id=9377

Zdeněk Přikryl

He is a Ph.D. student at the Faculty of
Information Technology, Brno University of
Technology, Czech Republic. He received
his MSc. degree at the same university in
2007. His main research interests are the
desing, simulation and hardware realization
of embedded systems with one or more
application-specific instruction set

processors. Nowadays, he is the leader of the simulation team
and the hardware realization team in the Lissom project.

Jakub Křoustek

He is a Ph.D. student at the Faculty of
Information Technology, Brno University of
Technology, Czech Republic. He received
his MSc. degree from the same university in
2009. He is currently working on the Lissom
research project as the leader of the generic
decompiler and debugger development
team. His current research interests include

the reverse engineering, malware detection and compiler
design, with special focus on the code analysis and reverse
translation.

Tomáš Hruška

He graduated at the Brno University of
Technology, Czech Republic. Since 1978,
he’s been working at the Department of

Computer Science, Brno University of
Technology. He founded the Faculty of
Information Technology (FIT) in 2002 and
served there as the dean till 2008. Prof.
Hruska is currently the vice-dean of FIT. In

1978-1983, he dealt with research in the area of compiler
implementation for microprocessor behavior simulation
languages. In 1983-1989, he concentrated on design and
implementation of both general-purpose and problem-oriented
languages. Since 1987 he participated on the project of C
language compiler. Since 2006 he’s been working on the

design and implementation of the Lissom and Codasip®
projects. Prof. Hruska received his CSc. (Ph.D.) in Computer
Science and Engineering from the Brno University of
Technology, Czech Republic.

Dušan Kolář

He went to Brno University of Technology,
Czech Republic, where he studied computer
science and cybernetics and obtained his
degrees in 1994 and 1998. Since then, he
has been working at the university, presently
at the Faculty of Information Technology.
His main research interests are formal
languages and automata and formal models

with focus on their exploitation in compilers and formal
models transformation.

Karel Masařík

He is a graduate from the University of
Technology. He gained his MSc. degree in
2004 and finished his Ph.D. studies at the
same university in 2008. He is interested in
the design of embedded systems with
application-specific instruction set
processors using high level description
languages. He works currently as a professor

assistant at the Brno University of Technology. He is also the
CTO of the Lissom project.

Adam Husár

He gained his MSc. degree at the Faculty of
Information Technology, Brno University of
Technology. Now he does his Ph.D. studies
at the same institute. He specializes on
embedded systems design with focus on
compilers and electronic design automation
tools and he has experience with
application-specific processor design.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

106

