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Abstract — Most of modern embedded systems for multimedia 
and network applications are based on parallel data stream 
processing. The data processing can be done using very long 
instruction word processors (VLIW), or using more than one 
high performance application-specific instruction set processor 
(ASIPs), or even by their combination on single chip.  

Design and testing of these complex systems is time-consuming 
and iterative process. Architecture description languages (ADLs) 
are one of the most effective solutions for single processor design. 
However, support for description of parallel architectures and 
multi-processor systems is very low or completely missing in 
nowadays ADLs. This article presents utilization of new 
extensions for existing architecture description language ISAC. 
These extensions are used for easy and fast prototyping and 
testing of parallel based systems and processors.  

Keywords — architecture description language; ISAC; ASIP; 
VLIW; multiprocessor system on a chip; simulation; debugging 

I.  INTRODUCTION 

Embedded systems have become inseparable parts of our 
everyday life. A core of such system consists of one or more 
application-specific instruction set processors. These 
processors are highly optimized for a given task, such as 
multimedia processing or network applications. Data processed 
by these applications can be divided into several streams which 
can be processed at the same time. Therefore, the most efficient 
way how to improve the performance is parallelization. 

Parallelization can be done either on a software level (e.g. 
threads) or a hardware level (e.g. more computational units). 
However, the software level still needs a hardware support (e.g. 
Intel’s Hyper-Threading [16]). 

The designer of parallel architectures should have powerful 
tools which help him or her in a design space exploration. 
Processor can be described using an architecture description 
language (ADL) or hardware description language (HDL) [19], 
[2]. In our point of view, ADL is better, since it hides hardware 
details. Therefore, it allows easy and fast prototyping of new 
processors. 

In this article, we focus on the description of hardware level 
parallelism. More specifically, we will focus on the description 
of basic parallel architectures. The first ones are very long 
instruction word processors (VLIW). The second ones are 
multi-processor systems on a chip (MPSoC) which use more 

than one processor. Based on used processors, the MPSoC can 
be homogenous or heterogeneous.  The homogenous MPSoC is 
formed from the same type of processors and it is often called 
multi-core processors. On the other hand, a heterogeneous 
MPSoC uses a general purpose processor as a control processor 
and some DSP processor(s) for an audio/video processing. In 
the following text, the term multi-core processor denotes 
homogenous MPSoC and the term MPSoC denotes 
heterogeneous MPSoC. Each of these architectures is discussed 
in the following sections. 

In complex systems, such as multi-core processors or 
MPSoCs, interconnections among cores or processors, as well 
as connection to shared memories, etc., have to be described. 
The interconnection should be described by using the ADL 
model as well. The description is used for the simulation and 
for the hardware description generation. 

However, the support for the description of parallel 
architectures is very weak or completely missing in the 
nowadays ADLs (e.g. nML [5], LISA [10], EXPRESSION [8], 
etc.). Therefore, we define new constructions for existing ADL, 
which allow description of such architectures. The extended 
ADL is the ISAC language. It was developed within the 
LISSOM project [15]. 

Specific ISAC language constructions, that allow the 
description mentioned above are described in this article. The 
basic principles of the simulation platform together with the 
debugging features are also described. Experimental results can 
be found at the end of the article. The results prove that our 
solution has great design possibilities, and also, the speed of 
different types of simulators is very good. 

II. STATE OF THE ART 

A. VLIW Architecture Overview 

The history of the very long instruction word (VLIW) 
processor architecture dates back to 1983 [6]. In the last 
decades, the VLIW architecture has been very popular, mainly 
in the embedded systems domain. This popularity has been 
gained by its high performance, and high instruction level 
parallelism. The explicit instruction-level parallelism and 
scheduling of a program execution at compilation time are the 
main features of this architecture. Each The VLIW instruction 
specifies a set of operations that are issued in parallel. An 
instruction contains multiple operation slots. Each of these slots 
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specifies one of the operations that will be issued 
simultaneously. The VLIW operations are minimal units of the 
execution and are similar to the RISC instructions [25]. 
Instructions are encoded and stored in processor memory as 
bundles. Roughly speaking, an encoded operation is called 
syllable. Therefore, the bundle contains several syllables. 

From the microarchitectural point of view, the VLIW 
processors consist of clusters with register files and functional 
units [7]. The functional units are usually specialized. It means 
that every functional unit has its own task (adder, multiplier, 
a unit for memory access, etc.), which is managed by 
operations. Therefore, this architecture contains several 
different decoders, while it usually contains only one fetch unit 
for fetching the whole long instruction words. The clusters can 
be interconnected, so data needed for a functional unit in one 
cluster can be transported from another cluster. This is done by 
special operations. 

B.  VLIW Instruction Encoding 

As it has been told previously, instructions are built up 
from operation slots, typically from four or more. The issued 
operations are executed simultaneously. The scheduling of 
these operations is done statically at compilation time. 
However, when the compiler is unable to plan a useful 
operation (e.g. functional units must wait for a result of 
another unit), the NOP (no operation) instruction is issued. 
The NOP tells the decoder to do nothing. These useless 
operations are encoded in the same way as the other 
operations, in the original encoding strategy [6]. This 
horizontal nature of the instruction set leads to the code size 
bloat and instruction cache wasting. Therefore, there is an 
effort to remove useless operations. We talk about the 
instruction compression. The instruction compression makes 
decoding harder, hence complexity of the fetch and decoding 
units increase (e.g. the fetch unit has to figure out correct 
operation dispatching). There are four basic types of the 
VLIW instruction encoding [7] (see Fig. 1 for the illustration): 

Simple encoding encodes every operation, including NOPs, 
as it is. Therefore, the bundle has the same structure as the 
original instruction. No operation compression is done, hence 
the encoding and decoding is trivial, but the code size is large. 

Fixed-overhead encoding uses a bit field header that 
describes the structure of each slot. Therefore, the size of the 
header equals to the number of slots. The encoding of 
operations excluding NOPs follows the header. Thus, the 
bundle size is variable. 

Distributed encoding is similar to the fixed-overhead 
encoding with few differences. The header is distributed 
directly into syllables as one or two bits (e.g. parallel bit or 
start/stop bits). These bits specify if operations run in parallel 
or not. Information related to NOPs is not stored in the bundle. 
Every operation is encoded into a syllable, except NOP 
operations which are not encoded. The bundle size is variable 
again. This encoding is used in the majority of today’s VLIW 
processors, for example TI C6x [30] or 
HP/STMicroelectronics Lx ST2xx family [29]. 

Template-based encoding uses the header for the bundle 
description, similar to the fixed-overhead encoding. The 
header contains a template defining operations composition. 
Main difference between this one and the other encoding types 
is in the bundle structure. The bundle is of the fixed length, the 
NOPs are not encoded and the bundle can be created using 
more than one long instruction. Moreover, one instruction can 
be encoded into several bundles. Therefore, the fetching and 
decoding of such bundles is even more difficult because these 
units have to continuously reconstruct instructions for next 
cycles and store the rest of bundles. This encoding is used 
especially in the Intel Itanium processor as EPIC (Explicitly 
Parallel Instruction Computing) [26]. 

 
Figure 1. Typical instruction encodings used in the VLIW architecture: 

a) Simple encoding, b) Fixed-overhead, c) Distributed, d) Template-based 

The NOP compression is not the only reason for the 
instruction encoding. Some architectures use an instruction 
encoding phase for transformations that are unable to describe 
in an operation coding description. For example, the HP/ST 
Lx ST231 transforms operations with long immediate values, 
which cannot fit in fixed length operations, to two following 
syllables. The first syllable contains the opcode, the register 
operands and the first part of immediate value, while the next 
syllable holds the rest of the immediate value. Another 
example is the CHILI VLIW processor that uses the 
interleaving operation encoding. In the first syllable, the 
opcodes of operations are stored; in the next syllables the 
operands are stored. 

The current architecture description languages (ADLs) do 
not support the VLIW instruction encoding at all. Most of the 
current ADLs (e.g. nML, LISA, EXPRESSION, etc.) support 
VLIW processors, but only the simple uncompressed encoding 
is used. In such situation, a user can define the VLIW 
processor, but is unable to describe features, such as the NOP 
compression, the interleaved operation encoding, etc. 

C. Multi-core Architecture Overview 

In the middle of this decade, one of the major performance 
criteria was the processor frequency. Therefore, every vendor 
tried to develop a processor with the highest frequency. 
Unfortunately, this approach has hit a dead end. The main 
reason for this situation is that cooling of such processors has 
become an insolvable problem because of very high heat 
output. An example is the Intel’s Pentium 4 [13] which was 
manufactured by 90nm technology. It never reaches frequency 
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higher than 5 GHz since there is no viable way to cool it 
down. 

Therefore, the designers have come with other way to 
increase performance. Instead of increasing the frequency, 
they duplicate a simpler processor with lower frequency. In 
the multi-core terminology, one core equals to the single 
simple processor. In contrast to the VLIW processors, each 
core of the multi-core processor has its own fetch unit and one 
core may be a simple RISC processor. In order to utilize all 
cores, an application has to be written in a specific way. The 
multi-core processor itself cannot identify tasks which can run 
in parallel. These tasks are identified by the application 
developer (e.g. a thread creation) or by a compiler. The tasks 
running on particular cores can communicate with the other 
tasks via a shared memory. For the performance reasons, the 
cores usually share caches. Since several cores access 
the same cache, each access must be performed at defined 
time which is the same for all cores. Even in the case when 
each core runs at different frequency (for a performance or 
power-consumption reasons). Therefore, the accesses have to 
be synchronized. For example, the synchronization element 
can be a system bus or a memory controller. This is very 
important from the simulation point of view (it is described in 
the section V).  

An example of such architecture is the Intel Core 2 Quad 
[12] which uses three layers of caches. Each core has its own 
L1 cache, then there are two shared L2 caches (two cores 
share one L2 cache), and finally there is shared L3 cache and 
it is shared among all four cores. The previous architecture is 
shown in Fig. 2. 

 Figure 2. Example of a multi-core architecture 

D.  MPSoC Architecture Overview 

Since the manufacturing technology reached 22 nm, more 
things can be placed on the chip. Hence, the trend of 
nowadays embedded systems is to place more than one 
processor on the same piece of a chip [14]. Each of the 
processors is highly optimized for a given task. For example, a 
video player can contain one control RISC processor, one 
digital signal processor (DSP) for audio processing and one or 
more VLIW processors for video and image processing. 

The processors can communicate with others via a shared 
memory (the same system as in multi-core processors) or by 

sending/receiving packets (the network-on-chip architecture 
(NoC) [9]) or by interrupts (an interrupt wakes the processor 
up, it does its job and falls asleep again) or via other 
interconnection systems (e.g. a cross-bar). In the case of 
shared memory, the situation is quite similar to the multi-core 
processors (the access to a shared resource is allowed at a 
defined time which is the same for all processors, which 
shares the memory). In the case of packet communication, 
each node in the network has its own memory. When the node 
needs communicate with other node, it simply sends a packet 
with all necessary data over the network. Routers, which are 
also placed on the chip, deliver packet to the receiving node. 
In the case of interrupts, only one processor usually accesses 
the memory at a particular time (although it is shared by more 
processors). For example, it fills a part of memory with data 
and then another processor can process them. The accesses of 
two processors are done in independent non-overlapping 
times. The mentioned different types of communications are 
also very important from the simulation point of view (it is 
described in the section V). It should be noted there can be 
several main memory elements on the same chip, where each 
one them is used by a subset of processors. Also other 
components, such as LCD controllers or IO devices, are 
placed on the same chip. They are usually controlled by one of 
the processors. An example of MPSoC is shown in Fig. 3. 

 
Figure 3. Example of a MPSoC architecture 

Nowadays, the MPSoC are designed in a way which uses 
co-simulation techniques. It means that individual ASIPs are 
designed using some ADL. The communication among them 
is simulated using specific modules. These modules can 
represent routers in the case of network on chip (NoC) 
architecture, etc. They are often written in the C language or 
VHDL/Verilog. The simulation of an ASIP together with 
modules is called co-simulation. 

III. THE ISAC LANGUAGE 

The ISAC (Instruction Set Language C) language was 
developed in the frame of the Lissom project [15] at Brno 
University of Technology. It is inspired by the LISA language 
[6] and it extends the LISA language with new constructions 
which allow, among other things, to simple model 
architectures mentioned in section II. The ISAC language [17] 
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belongs into so-called mixed architecture description 
languages. It means that a processor model consists of several 
parts. In the resource part, processor resources, such as 
registers or a memory hierarchy, are declared. In the operation 
part, processor’s instruction set with behavior of instructions 
and processor’s microarchitecture is described. 

The basic constructions of the operation part are the 
operation construction and the group construction. An 
operation can have several sections. The sections are used for 
four basic model parts of processors. Each model describes an 
ASIP from a different point of view. There are: the 
instruction-set model, the model of instruction decoders 
hierarchy, the timing model and the behavioral model. There 
are usually many operation constructions in an ASIP 
description. 

These operations can be directly connected to each other or 
grouped according to a functional similarity using the group 
construction. In fact, the group construction creates variants of 
operations. By using the group and operation constructions, 
the four mentioned models are built up. The assembler, 
coding, bundle, debundle and codingroot sections are used for 
the instruction-set model. These sections capture format 
of instructions in assembly and machine language, so they 
define the instruction in textual and binary forms. 

For the behavioral model the behavior and expression 
sections are used. In these sections, a subset of ANSI C 
language can be used. Note that most of the constructs from 
ANSI C language can be transformed to a hardware 
description language (e.g. VHDL). The behavior section 
defines the semantics of each operation; so for example, a 
simple instruction with behavior is described using the 
assembler, coding and behavior sections, see Fig. 4. The 
hierarchy of instruction decoders is captured in the structure 
section. In this section, various configurations of instruction 
decoders can be defined. A processor can use either several 
instruction analyzers or conditionally used instruction 
analyzers (the pre-decode and decode phase). 

The timing model is described in the activation sections. 
This section is essential for the cycle-accurate simulator and 
the hardware description generation. It contains links to other 
operations that are activated for execution either in the same 
clock cycle or in the future. An activation of an operation can 
be conditioned. Events are operations containing the activation 
or structure section and operations that are used within these 
sections. Note that every event can be assigned to a particular 
pipeline stage, which forms implicit ASIP timing. Timing can 
be also formed explicitly by an additional ISAC construction. 
There has to be the special event main in the each processor 
description. It denotes a new clock cycle (i.e. it is the main 
synchronization event). 

It should be noted that the description of instruction set is 
strictly separated from the description of microarchitecture 
(the codingroot and structure sections). This approach brings 
powerful modeling possibilities because there can be more 
decoders which decode an instruction in a particular order 

(e.g. Intel’s 8051 [28]), while the instruction is encoded in a 
different order. An example of operations and groups can be 
found in [21], [17] and in the following sections. 

 
Figure 4. Example of a simple processor description in the ISAC language. 

IV. MODELING OF PARALLEL SYSTEMS IN THE ISAC 

LANGUAGE 

The ISAC language extensions for parallel architectures 
design are described in the deep detail in [23]. We will briefly 
discuss the most important features. 

A. Description of VLIW Instruction Encoding 

In general, the instruction encoding is not a bijective 
function because the process of the encoding can differ 
from decoding. In the instruction encoding phase, we lose 
information about the operation dispatching. This information 
must be included in the decoding description. Therefore, it is 
necessary to describe both encoding (used by the assembler) 
and decoding (used by the disassembler, JIT compiled 
simulator and VHDL generator). 

Both the instruction encoding and decoding is described in 
the specialized top-level sections (bundle and debundle) with 
the modified and very restricted subset of the C language. 
Furthermore, the templates for generic encoding types are 
provided. With this approach we are able to describe every 
encoding type. 

In the case of a VLIW architecture which has several slots 
and the slots have the same instructions working on the 
different clusters, additional ISAC construction entity can be 
used. This construction describes resources within particular 
cluster and also the connection to other cluster or clusters (e.g. 

RESOURCES {                  // HW resources 

  PC REGISTER bit[32] pc;    // program counter 

  REGISTER bit[32] regs[16]; // register file 

  RAM bit[32] memory { 

    SIZE (0x10000); FLAGS (R, W, X); 

  }; 

} 

 

// instruction set description 

OPERATION opc_add 

  {ASSEMBLER {"ADD"};CODING{0b0};EXPRESSION{0x0;};} 

OPERATION opc_sub 

  {ASSEMBLER {"SUB"};CODING{0b1};EXPRESSION{0x1;};} 

GROUP opc = opc_add, opc_sub; 

OPERATION reg REPRESENTS regs 

  {// textual and binary description of registers} 

OPERATION instruction_set { 

  INSTANCE reg ALIAS {rd, rs, rt}; 

  INSTANCE opc; 

  ASSEMBLER { opc rd "," rs "," rt }; 

  CODING { 0b00 rs rt rd opc }; 

  BEHAVIOR { // instruction’s behavior description 

    switch (opc) { 

      case 0x0: regs[rd] = 

        regs[rs] + regs[rt]; break; 

      case 0x1: regs[rd] = 

        regs[rs] - regs[rt]; break; 

    } 

  }; 

} 
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one cluster can use registers from the other cluster and vice 
versa), while the other clusters are simply replicated. The main 
advantage of this approach is massive reduction of model code 
redundancy (i.e. model size). 

B. Multi-core Processors and Multi-processor System on a 
Chip 

A multi-core processor and can be described using the 
ISAC language as well. Each processor core is described in a 
separate model. The processor cores can communicate with 
other processor cores via shared resources (a resource is 
marked as a shared), such as shared caches. To be more 
precisely, the resource is marked as shared only in the one 
model. In other models, the resource has to be marked as 
extern (analogically to the C language modifier, there is no 
variable modifier called shared in the C language because 
every variable can be shared by default). In addition, it is 
possible to specify the type of a shared cache and used policy 
by modifiers MSI and MESI (based on MSI/MESI protocol). It 
should be noted that if a cache uses other protocol, the 
designer is able to use his or her own cache. The bus can be 
also shared among the processors. 

In the case of multi-processor system on a chip, there are 
usually shared busses or other components. The bus can be 
described using the ISAC constructions. The situation is 
similar as in the shared cache description. Sometimes the 
MPSoC contains special shared functional units, such as 
routers (used in the case of NoC), which cannot be described 
via the ISAC constructions. The router can be modeled using 
the C language (or other language). It creates independent 
module (also known as plugin).  The plugin functionality can 
be used directly in the processors models. The plugin is 
integrated in the simulator during the simulation Nevertheless, 
the synchronization or mutual exclusions among the processor 
accesses have to be solved by the developer within the plugin. 

V. SIMULATING AND DEBUGGING OF MULTI-CORE 

PROCESSORS AND MPSOC 

The concept of the simulator generation uses new formal 
models which were developed within the Lissom project. 
Namely, it is two-way coupled finite automaton (see [11]) and 
event automata (see [24]). The formal models ensure good 
equivalency between the simulator and hardware representation 
of the processor. Therefore, no additional huge hardware 
verification is necessary. In the following subsections the 
concept of the multi-core processor and MPSoC simulation is 
described. It should be noted that some of the principles that 
are described further, such as copying of simulator to network 
host, are also used in the single processor simulation. 

A. Different types of Simulators 

Different types of simulators can be used during the 
MPSoC or multi-core processor simulation. Each simulator 
type has its advantages and disadvantages. We provide three 
basic types of simulators.  

The first type is interpreted simulator [24]. The concept of 
this simulator is based on a constant fetching, decoding and 
execution of instructions from the memory. Therefore, the 
simulation itself is relatively slow. For example, instructions 
within a loop are fetched and decoded several times in the 
simulated application, although they were not changed. On the 
other hand, simulator itself is not dependent on the simulated 
application, and furthermore, the self-modifying code is 
supported out of the box. The interpreted simulator creation is 
also relatively fast. 

If the developer wants to increase the speed of 
a simulation, he or she can use the second type of simulator, 
the compiled simulator [21]. It is created in two steps. In the 
first step the simulated application is analyzed. The C code 
simulating the application is emitted based on the analysis. In 
the second step, the emitted C code is compiled together with 
the static parts of simulator, such as processor resources etc. It 
is clear that this version of compiled simulator (also known as 
static compiled simulator) is dependent on the simulated 
application and the self-modifying code is not supported. 
Nevertheless, the speed of simulator can be several times 
faster than the interpreted simulator. The second version of the 
compiled simulator is the just-in-time compiled simulator. It 
supports the self-modifying code and it is not dependent on the 
simulated application. It is created in only one step and works 
in the following way. At the beginning of simulation, the 
simulator works as the interpreted simulator. The main task of 
this phase is to find so-called hot-spots (i.e. parts of the 
simulated application in which the most of simulation time is 
spent). Then, these parts are compiled, so the subsequent 
simulation of these parts will be quite faster. Thanks to the 
first part (hot-spots location) the speed of just-in-time 
compiled simulator is slower than the speed of static compiled 
simulator. Still, it can be several times faster than the speed of 
interpreted simulator. The compiled simulator creation can 
take more time than the creation of an interpreted simulator 
(especially just-in-time compiler simulator). 

The last type of simulator is the translated simulator [22]. 
It improves the compiled simulator, so it has also two versions 
(static and just-in-time). The translated simulator is the fastest 
type of simulator, but it needs additional information about 
simulated application. It needs starting and ending addresses 
on all basic block in the simulated application. Thanks to this 
information, the simulator can be highly optimized. The 
addresses are stored usually as debug info in the simulated 
application. These addresses cannot be obtained via the static 
analysis of the simulated application, because of the indirect 
jump instructions. Such an instruction uses a value of a 
register or memory as a destination address of the jump. 
Therefore, the analysis does not know where the instruction 
will jump. The only way how to reliably obtain the addresses 
is to use a high-level language compiler. If it is used for 
application creation, then it knows exactly where the basic-
blocks start and end, and it can simply store the addresses in 
the application as the debug info. It should be noted that we 
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also provide the C compiler generation. The C compiler is 
created from the same processor model as the simulator. 

The interpreted and compiled simulator can have two 
levels of accuracy. It can be either the instruction-accurate one 
or the cycle-accurate one. During the instruction-accurate 
simulation the basic step of the simulation is a single 
instruction (one instruction is executed at the time). This 
simulation type has very good performance, but is quite far 
from the hardware representation, since the whole 
microarchitecture is not simulated at all. On the other hand, 
during the cycle-accurate simulation, the basic step is the 
single clock cycle. This level is very close to the hardware, 
because the microarchitecture is simulated now (e.g. pipeline). 
But the simulation itself is slower. The translated simulation 
can be done only at the instruction accurate level because of 
the performance reasons. 

Each core of the multi-core processor or each processor in 
the MPSoC can be simulated using different type of simulator. 
For example, in the typical MPSoC designs, the already 
debugged processors are simulated using the compiled or 
translated simulator. And the processors which are currently 
debugged are simulated using interpreted simulator. 

B. Concept of Multi-core Processor and MPSoC simulation 

The MPSoC simulation platform in the Lissom project is 
based on so-called three-layer architecture. There are the 
presentation, middle, and simulation layers (see Fig. 5). The 
presentation layer accepts commands from the developer, such 
as the start of a simulation and it displays important 
information, such as results from a simulation. The presentation 
layer can have several forms. There is a graphic user interface 
(GUI) in a form of a plugin for the Eclipse platform [4]. 
Advanced users can use command line interface (CLI) 
allowing the scripting and other advanced techniques, such as 
the automatic testing, etc. The presentation layer communicates 
with the middle layer. The middle layer accepts commands and 
processes them. For example, it accepts a command that the 
developer wants to create a simulator from a processor 
description, so the middle layer creates the simulator and sends 
message to the presentation layer about any possible errors that 
may occur. The middle layer also takes care of the installation 
of the simulator into the simulator layer. The simulators can be 
installed into any suitable host in a network. Note that each of 
these layers can run on a different host in a network. 

As it was already mentioned, for each processor 
description, an independent simulator is created. This simulator 
is created at the host where the middle layer is running. 
Therefore, the simulator can run only on a host which has the 
same environment (i.e. which has the same operation system as 
the host with middle layer has).  

Then, according to the user configuration, the simulator is 
transported to the particular host. The configuration file 
contains all needed information, such as a destination host and 
port. For copying, the SCP application [27] is used since it is 
multi-platform and it has security features. If the host is 
localhost, then the simulator is not copied anywhere. After the 
simulator is transferred to the destination host, it is executed 

and waits until it receives a message which starts the 
simulation. This message is sent by the middle-layer based on 
user’s command (i.e. user action from GUI or command 
entered in the command line). 

 
Figure 5. Three-layer model. 

The first simulator in the configuration file is so-called 
boss-simulator. We provide two kind of simulation. There are 
synchronous and asynchronous multi-core processor or 
MPSoC simulations. In the asynchronous simulations, the boss-
simulator is just an ordinary simulator without any specific 
tasks. The simulators are synchronized in an application layer. 
As it was mentioned, this kind of simulation is suitable for 
example for NoC architecture simulation. In the case of 
synchronous simulations, the boss-simulator is used for clock 
cycle generation. The clock cycle generation algorithm is 
inspired by Bresenham’s line algorithm [3], because the 
simulators are allowed to not have exact divisible frequencies 
(the configuration file contains information about simulators 
frequencies). This kind of the simulation is suitable for multi-
core processors with a shared memory. According to the clock 
cycle generation algorithm, the boss-simulator sends the 
starting messages to particular simulators and waits till it 
receives ending messages. The boss-simulator has to wait until 
it receives ending messages from all the simulators (the 
simulation of one clock cycle can take different amount of time 
in the different simulator), which received starting message. 
Only then it knows that all simulators, which had to simulate 
one clock cycle, finished. Then a new clock cycle begins. Note 
that the boss-simulator also simulates some processor, so it also 
receives starting message and sends ending messages. 

If the simulator accesses a shared resource, which is not 
owned by the processor, the similar communication act as in 
the clock cycle generation is used. It means that the simulator 
which wants to access the resource sends a message to the 
simulator which owns the resource. Then the simulator which 
owns the resource either changes the resource value (write 
message) or returns its value (read message). The message is 
sent even if the simulators run on the same host (i.e. accesses 
are not done via shared memory among the simulators). Access 
is protected by a variable so concurrent accesses are mutually 
excluded. 

C. Debugging of Multi-core Processors and MPSoC 

The developer can set breakpoints on any source code line 
in any application. Note that several types of breakpoints are 

Presentation Layer 
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Simulator Simulator 
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supported (e.g. conditional breakpoints, counters breakpoints, 
etc.). If the simulator hits a breakpoint, it stops and sends a 
stopping message to all other simulators. Then the developer 
can obtain/set a value of/to any resource of any processor. 
Also, he or she can control the application execution flow in 
the step mode. In the case of the synchronous simulation, the 
step is performed by all simulators (stepping messages are sent 
to all simulators). In the case of the asynchronous simulation, 
the step can be performed either by all simulators or by a 
particular simulator only (the stepping message is sent to the 
particular simulator only). The simulator can also be resumed 
from stepping mode (it receives the resuming message). 
Resuming works in the similar way as the step mode, so either 
all simulators are resumed or, in the case of asynchronous 
simulation, only selected simulators can be resumed.  

D. Simulation results 

During the simulation the designer can see values of 
resources of the particular processor as well as the shared 
resources. This information can be used for an application and 
processor model debugging. If the designer needs to optimize 
the design, he or she needs so-called profiling information. 
This information is collected by the profiler. The profiler tracks 
all important activities in the processor. In general, we 
distinguish between architecture independent and architecture 
dependent profilers.  The architecture independent profilers 
work in a way that they inject a new code into an application. 
This new code keeps eye on important things. The 
disadvantage of it is that the new code can misrepresent some 
of statistics, such as a utilization of a particular resource. 
Therefore, it is mainly used for an application optimization. On 
the other hand, this kind of profiler is quite fast and can be used 
among several processor architectures. The architecture 
dependant profilers have deep knowledge of architecture and 
therefore, they can get more detailed information, such as 
cache miss/hit ratio or pipeline utilization.  Hence, it can be 
used for processor architecture optimization. Because they 
track more things within the architecture, they are slower than 
the first type of profiler. 

The profiler can work on the assembly language level (low-
level profiler) or on the level of high programmable language 
(high-level profiler), such as the C language. From the low-
level profiler point of view, an instruction is important. All 
statistics are gathered with regards to it. In other words, each 
executed instruction has information about clock cycles needed 
for execution or it has information about resources which were 
used during the instruction execution. From the high-level 
profiler point of view, a function is usually important (or other 
high level construction). The function collects other 
information than the instruction. The function has information 
about the cache hit/miss ratio and also about clock cycles 
needed for its execution. The call-graph is also reconstructed 
after the simulation. It captures how the functions were called 
(i.e. connection among them). 

In the Lissom project the architecture dependant profiler is 
generated. We support low-level and high-level profilers. Both 
of them are also based on formal models (see [20]). The low-
level profiler tracks the accesses to local and shared resources; 
it can log the executed instructions and computes several 

statistics, such as the instruction-set coverage or even the 
program coverage. It also creates a graph for every shared 
resource. This graph shows the shared resource usage by 
individual processors. The designer can easily discover bottle-
necks in the ASIP design, such as overloaded functional unit, 
or in the running program, as well as bottle-neck points in the 
communication, such as an overloaded busses, etc. The high-
level profiler can be used especially for the application 
optimization. It digestedly shows the function statistics. We 
also provide an interactive visualization of the call-graph (i.e. 
the developer can simply hide or show a part or parts of call-
graph in the different level of details) 

VI. EXPERIMENTAL RESULTS 

In this section, we briefly provide results of our solution 
using the ISAC language. For single processor testing we 
chose two architectures. The first one is MIPS architecture (the 
created model has the simple microarchitecture; the translated 
simulator is based on the instruction-accurate model). The 
MIPS was developed by MIPS Computers Systems. The 
instruction-set of MIPS is in the version MIPS32 Release 1. 
The second one is the VEX architecture. The VEX is a four-slot 
VLIW processor designed by HP [7]. Each slot processes 
different types of instructions. The speed comparison of the 
different simulator types is showed in Fig. 6. 

Several programs from MiBench [18] test suite (e.g. crc32, 
sha, dijkstra, etc.) were chosen as the testing algorithms. The 
results shown in the graphs are the average values from 
several runs (the maximum and minimum values differ from 
the average values in tenths of a percent). All simulators were 
compiled with the gcc (v4.3.3) compiler with optimizations –
O3 enabled. The tests were performed on the Intel Core 2 
Quad with 2.8 GHz, 1333 MHz FSB and 4GB RAM running 
64-bit Linux based operating system.  
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Figure 6. Simulator speeds of single processors. 

 For the multi-core testing purposes we chose again MIPS. 
We created a system with two cores. Each core has its own L1 
cache and both cores share one L2 cache connected to the 
main memory. Each core solves the same algorithms with 
different data. For the MPSoC testing, we chose an additional 
architecture. It is ARM [1] architecture (again, created model 
have simple microarchitecture). The ARM model describes the 
ARMv5 architecture. All the processors used in the MPSoC 
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testing have L1 cache and there is also a main memory shared 
by all processors. Each processor solves a different task and 
uses event based notification about finishing its job, so other 
processor can process next data. This is the asynchronous 
simulation, so each simulator can run at its maximum speed on 
a different node in the network.  

Results of the multi-core and MPSoC simulations can be 
seen in Fig. 7. Both simulators ran on the same host. 
The speed of the multi-core simulation was 2.75 million 
instructions per second (MIPS). The speed is the same for the 
all types of simulators. The most of the execution time is spent 
in synchronization functions, therefore, the speeds are the 
same (time which is spent in the clock cycle simulation is 
much smaller than time which is spent in the synchronization 
functions). The profilers are low-level (i.e. on the assembly 
language level). Unfortunately, it is quite hard to find other 
projects which provide similar results, so we cannot directly 
compare our results with others. 
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Figure 7. Simulators and profilers speed comparison. 

The simulation speed comparison of the ISAC bundle 
feature can be seen in Fig. 8. The interpreted simulation for 
three versions of instruction accurate model of VEX processor 
model has been used: the uncompressed encoding model 
(Simple encoding); model with Distributed encoding 
automatically generated  from user description in bundle 
section; and model with optimized build-in Distributed 
encoding template. 

All benchmark algorithms have been compiled with VEX C 
Compiler (v3.42) [7] with no optimizations enabled –O0, in 
order to maximize differences between compressed and 
uncompressed instruction encoding. 

The penalty for the usage of instruction encoding is 
approximately 3%, mainly because of more difficult decoding 
phase. The compression rate of the programs can be also seen 
in Fig. 8. This aspect will positively affect cache hit ratio (note 
that this speedup can be recognized only in cycle accurate 
model). 

The following table shows line reduction when the entity 
construction is used. As one can see, the reduction is 
enormous. Therefore, the model is more maintainable. 
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Figure 8. Simulator speeds and code compression ratio based on usage of 

bundle feature in VEX VLIW processor. 

TABLE I.  ISAC LINE REDUCTION USING ENTITY STATEMENT. 

Processor ISAC lines 
ISAC lines using 

ENTITY 
Line count 
reduction  

VEX 2525 1475 42 % 
Chili 2 5630 2650 53 % 

 

An example of the profiler output we can see in Fig. 9. It is 
a screenshot which was taken after the simulation. It shows 
some of the processor registers together with the access 
information. The values show how many times was particular 
resource read or written. Note that memory elements have 
additional statistics about execution. Highlighted backgrounds 
mark changes from the beginning of profiling. 

 
Figure 9. Example of profiling information. 

VII. CONCLUSION 

The support of parallel systems description is very limited 
(or completely missing) in most of the modern architecture 
description languages. In this paper, we provide a solution to 
this problem. We define extensions for an existing ADL (the 
ISAC language), which allow the modeling of VLIW 
processors, multi-core processors, and MPSoCs. The 
constructions for VLIW processors allow describing clusters 
in a way which does not force the developer to copy and paste 
the same functionality for different clusters. Therefore, a 
model of the four-way VLIW processor with two clusters is 
almost two times shorter in terms of the lines of description 
code. 

Furthermore, constructions for a formal description of the 
long instruction word encoding and compression have been 
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simulation 

Asynchronous simulation 
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added. The user can utilize the predefined encoding type or 
define an entirely new one. Such a feature was completely 
missing in the contemporary mixed architecture description 
languages. Usage of the instruction compression leads to 
smaller applications (in terms of program size). These 
applications have very good cache hit/miss ratio, which 
positively affects performance. Exact results depend on the 
encoding type and amount of program ILP. 

The constructions for multi-core processors and MPSoCs 
allow the description of shared resources and access to them. 
All of the mentioned constructions allow easy and fast 
processor and embedded system prototyping. 

There are several types of simulators for single processor 
simulation. Each of them can be used in the different stage of 
multi-core processor or MPSoC design. There are also two 
types of single processor profilers, which can be used for 
processor or application optimization.  

We provide two ways of the simulating and debugging 
multi-core processors and MPSoC. The synchronous 
simulation can be used with multi-core processors where the 
processors access the same shared memory. The asynchronous 
simulation can be used with MPSoC, where the 
communication is done via sending/receiving packets, 
interrupts, etc. We provide several types of breakpoints and 
also several ways of the controlling an application execution 
flow. 

 Furthermore, the simulators are based on the formal 
models allowing better equivalency between the simulators 
and hardware representations of processors. The co-simulation 
is also supported. 
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