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Abstract— Structurally Synthesized Binary Decision 

Diagrams (SSBDDs) have an important characteristic 
property of keeping information about circuit’s structure. 

Boolean difference of a circuit is used to find test pattern for 
stuck at fault in combinational circuit but the algebraic 
manipulation involved in solving Boolean difference is a 
tedious job. In this paper an efficient algorithm is proposed to 
compute Boolean difference and test patterns simply using 
searching the paths of SSBDD. This model reduces algebraic 
manipulations and takes less time to compute the test pattern.  

 
Index Terms— Automatic Test Pattern generation, Binary 

decision diagrams, Boolean difference, Stuck at Fault, Struct-
urally Synthesized Binary decision diagram.  

 
I. INTRODUCTION 

 
     In a combinational circuit the presence of a single stuck at 

fault can be tested easily by a set of inputs. These set of inputs are 
applied to faulty circuit which generate different   output. The 
variation in output will show the circuit is faulty or fault free. 
Automatic test pattern generation is a method by which we can 
test the fault of a circuit. Under this method a set of binary digits 
are produced. Using these sets as input to circuit, we can easily 
detect the every single stuck at fault of the circuit. During last 
decade a large number of test pattern generation algorithms have 
been proposed. There are two types: structural method and 
algebraic method. The most notable structural methods are D 
algorithm [1] [2], PODEM, FAN, SOCRATES etc. Boolean 
difference is the most famous algebraic method to find test pattern 
[3].   

     Binary Decision Diagram  and Reduced Ordered Binary 
Decision Diagram  are used for representation and manipulation of 
Boolean Functions [4, 5, 6, and 7]. But this model have some 
problem like it suffers from the memory explosion, which limits 
its usability on large designs. So we cannot use as a model for 
such methods that require a certain degree of structural 
information about the design. To overcome this drawback we are 
moving a new concept called Structurally Synthesized Binary 
Decision Diagram (SSBDD). SSBDD is one of the popular model 
to represent the Boolean function of a Boolean circuit. It keeps the 
information of circuit structure of digital circuit [8]. 
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In this paper an efficient and effective algorithm is proposed to 

find the test pattern of a combinational circuit using searching the 
paths of corresponding SSBDD. It is clear that the efficiency of 
any algorithm is said to be increased, if the simulation time was 
reduced. In this approach a small amount of algebraic 
manipulation is required. So this approach presents the easy way 
to find the test pattern and very helpful to find the test pattern for 
large circuits, fan and fan-free circuits also.  

The paper is organized as follows. In section 2 we 
describe the preliminaries of SSBDD. In section 3 and section 4 
are dedicated to explain proposed approach and algorithm for 
generating test pattern successively. In section 5 include some 
experimental result on appropriate examples. Section 6 highlights 
directions for future work. Finally section 7 gives conclusion. 

 
II. PRELIMINARIES 

 
A. Basic concept of Boolean difference  

Boolean difference is an algebraic method to find the test 
pattern for a combinational circuit. It can detect errors at any 
position in a circuit. The Boolean difference of a function 
                          with respect the variable       

 

  
  

   

             
 

Here      and         are obtained from y=     by replacing variable 
   by value 1 and 0 correspondingly. The Boolean difference with 
respect to the variable    indicates whether f is sensitive to 
changes in input     If the function does not depends on   . In that 
case,    is said to be unobservable. This method needs huge 
manipulation of mathematical expression for a particular Boolean 
function. But once we know the Boolean difference, then the test 
patterns can easily determine for a circuit. 

B. Basic concept of SSBDD  

The SSBDDs are based upon the equivalent parenthesis form 
(EPF), that is, they describe a digital circuit structurally [9] [10]. 
The SSBDD models are generated by a superposition procedure 
that extracts information about both, function and data of 
structural paths of the circuit. For example the equivalent SSBDD 
of a combinational circuit in figure 1 is as shown in figure 2. 

 SSBDD is a very powerful model for representation and 
manipulation of Boolean function. This model has different flavor 
compared to other commonly used mathematical model. First time 
it was introduced as Structural Alternative Graphs [3] and 
generalized as multiple-valued decision diagrams in [11]. 

SSBDD model reduces the no of nodes to represent the circuit 
compared to the ROBDD. One more is the size of the SSBDD 
model is linear in respect to the circuit size while it is exponential 
for ROBDD [12].Due to that simulation time [13, 14] can be 
reduced remarkably to generate the test pattern.  
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            Fig.  1. Circuit for y=              
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Fig.  2.  Illustration of superposition principle for the Function 
y=             . 

 
III. PROPOSED APPROACH 

 
We follow the below to calculate the test pattern.  
1. SSBDD should be drawn starting from suspicious (faulty)

literal. It can be represented by γ. 
If A is stuck at fault 0 then we draw SSBDD having root 
node as A. (where γ=A).  
If A is stuck at fault 1 then we draw SSBDD having root 

  node as A. (where γ=   . 
2. We are using tracking direction R for RIGHT and D for 

DOWN. 
3. We define a term TRACK [A][B] where  A,BЄ{R,D} 

means it is set of recursively all  traced literals starting 
from next to root node, first traced at A side and end with 
all having no final B side. 

4. Example for finding the TRACK [A][B]: 
   In finding TRACK [A][B] ,we follow recursive 

approach to find all paths and will stop when there is no 
more path. Let’s take an arbitrary SSBDD, which is as s
hown in figure 3. TRACK[R] [R] is found as follows. 
TRACK[R] [R] means we are tracing the paths next to 
root node in the RIGHT direction until there is no path 
in the same direction. If any intermediate node having 
downward path we have to trace that path and reach that 
downward node, from there again move in the right 
direction only in a recursive manner.  

In figure 3 the paths for TRACK[R] [R] are v2 to 
v3, v2 to v5 via v4, and v2 to v8 via v4 and v5. 
Similarly TRACK[D][D],TRACK[R][D],TRACK[D][R
] will follow the same procedure. 

5. We define another term COMPATIBLE (A, B) where 
        A, B are literals or product of literals. This returns the     
        term Cartesian product of (A, B).which are not contradi-
       cting  (not having literal and complement of literal in 

 
 
 
 
 
 
 
 
 
 
 
 
 

          Fig.  3.   Finding TRACK[R][R] 
 

same term) each other. 
Example: 
a) COMPATIABLE (        ) =          
                                              = Ф. 
b) COMPATIABLE (AC, AD)   =        
                                              = ACD.         
c) Let A={     C}, B = {      } than 
    COMPATIBLE (A, B) = [{               ] 

                                               = {AB, AB  }. 
6. α= COMPATIABLE (TRACK[D ][D]    TRACK [R][R]) 

              β= COMPATIABLE (TRACK[R] [D]    TRACK [D][R]) 
7. µ = α   β.   

 
IV. PROPOSED ALGORITHM 

 
In figure 4, the flow chart is used to explain the algorithm to 

find test pattern. The following steps are considered. 
1. For given input Boolean function or circuit we draw 
        SSBDD with faulty literal as root node γ. 
2. Initially we keep solution set α, β, µ as empty. 
3. We have used term 

TRACK[D][D]=Track recursively starting from root 
node , first going DOWN till find a node having no 
DOWN and stop when no such path is exists. 
TRACK[D][R]=Track recursively starting from root 
node , first going DOWN till find a node having no 
RIGHT  and stop when no such path is exists. 
TRACK[R][D] =Track recursively starting from root 
node , first going RIGHT till find a node having no 
DOWN  and stop when no such path is exists. 
TRACK[R][R] = Track recursively starting from root 
node, first going RIGHT till find a node having no 
RIGHT  and stop when no such path is exists. 

4. If for root node one of the tracks i.e. TRACK [D]   or 
       TRACK [R] does not exists then µ will be other track. 

Where TRACK [D] means the path from root node to 
DOWN word does not exists and TRACK [R] means the 
path from root node to RIGHT word does not exists. 

5. If both TRACKS exists form root node then we find 
TRACK [D] [D] & TRACK[R] [R] and  

        calculate  
        α= 

COMPATIBLE (TRACK [D] [D]   TRACK [R] [R]) 
And then find TRACK [D] [R] & TRACK[R] [D] and 
calculate 

               β= 
              COMPATIBLE (TRACK [D] [R]   TRACK[R] [D]) 

6. Find union of α and β as µ. 
 

OR 

                      NOR                         
         

                        AND 
   

    

V1

1 
V2
1 

V3
1 

V4

1 
V5
1 

V6
1 

V7
1 

V8
1 
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Fig.  4.  Algorithm for finding test pattern 

7. Now finally getting test pattern just calculates 
COMPATIBLE (γ, µ). 

 

V. EXAMPLES 
 

This section explained generation of test pattern with the help 
of different types of models, like “track missing” and “no track 

missing”. The track missing means that all combinations of 
TRACKs which are not existed in that SSBDD. All combinations 
means TRACK [R][R], TRACK [D][D],TRACK [R][D] and 
TRACK[D] [R].No track missing means all combinations of 

tracks present in a given SSBDD. We explain one more case 
called undetectable fault, for which the Boolean difference is    , 
which means that even if the fault present in the Boolean circuit, 
we cannot detect that fault. 

A. Track is missing  

Let the function F (A, B, C) = A (B+C) and A as stuck at fault 
0 and 1. 

The following steps are considered to find test pattern using 
algorithm. 

 
Step1. SSBDD for given function is shown in the figure 5. 
           Here fault is assumed to be at A. So root node is 
          taken as A.  
Step2. Here A is stuck literal, so stuck at 0 can be taken as  
            γ = A and stuck at 1 can be taken as γ=   . 
Step3. Here TRACK[R][D],TRACK[D][R],TRACK[D][D]  
           are missing. 
Step4. Boolean difference µ is TRACK[R] [R]  

= {B,   C} 
                                = B+  C 

                         = B+C 
                               = {B, C}. 
Step5. Test pattern for A stuck at 0  

= COMPATIBLE (γ, µ)                                                                                              
 = A {B, C} 

                                  = {AB, AC} 
                                 = {11Ф, 1Ф1}. 
      Test pattern for A stuck at 1  
    = COMPATIBLE (γ, µ)                                                                                              
                  =    {B, C} 
                                 = {  B,   C} 
                                 = {01Ф, 0Ф1}. 
 

B. No track is missing 

Let function F (A, B, C) = AB+     and B as stuck at fault 0 
and 1. 

The following steps are considered to find test pattern using 
algorithm.  
Step1. SSBDD for given function is shown in figure 6. 
            Here fault is assumed to be at B. So root node is taken as 
            B.  
Step2. No TRACKS are missing in a given function F 
              = AB+   .         
Step3. All the TRACKs can be calculated as 
  TRACK [D][D]={    } 
               TRACK [R][R]={   } 
 TRACK [R][D]={    } 
               TRACK [D][R]={    }  
Step4. α = 
              COMPATIABLE (TRACK [D] [D] TRACK [R] [R]) 
              = COMPATIABLE {         
              = {    }. 
 
            β =  
             COMPATIABLE (TRACK[R] [D] TRACK [D] [R])     
             = COMPATIABLE {         
             = {      }. 
Step5.  Boolean difference  

µ = α   β 
        = {     }   {     } 
                                   = {             }. 
Step6. Test pattern for B stuck at 0   
       = COMPATIBLE (γ, µ) 

START 

For input circuit or Boolean function draw 
SSBDD having root as stuck literal (γ). 

If TRACK 
[R]does not 

exists? 

If TRACK 
[D]does not 

exists? 

 

Find α =COMPATIABLE 
(TRACK [D][D] TRACK[R][R]) 

    β=COMPATIABLE 

(TRACK[R][D] TRACK[D][R]) 

 

 
Boolean Difference 

  = α   β 

 

 

 =TRACK [D][D] 

 =TRACK [R][R] 

 

END 

Set      , Setα      
Setβ       

TEST PATTERN=COMPATIBLE (  , ) 
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Fig.  5.  SSBDD diagram for F=A (B + C). 
 

[R] [R] 
 
               F 
 
 
     [R][D] 
 
        [D][D] 
 
                                  
                                     [D][R] 

 
 

Fig.  6.  SSBDD diagram for F= AB+    
 
           = Bµ  
                                   = B {              }   
                                   = {A   ,        }   
                                   = {110,011}. 
            Test pattern for B stuck at 1 
     = COMPATIBLE (γ, µ) 
       =   µ 
                                   =    {              }   
                                   = {A    ,          }   
                                   = {100,001}. 

 
Let one more function F (A, B, C, D) =      +A  + C       

and A as faulty literal. 
The following steps are considered to find test pattern using 

algorithm. 
Step1. SSBDD for given function is shown in figure 7. 
              Here fault is assumed to be at A. So root node is taken as 
             A.  
Step2. No TRACKs are missing in a given function F.  
Step3. All the TRACKS can be calculated as    
   TRACK [D][D]={            } 
               TRACK [R][R]={          } 
 TRACK [R][D]={            } 
               TRACK [D][R]={               }  
Step4. α = 
             COMPATIABLE (TRACK [D][D] TRACK[R][R]) 
             = COMPATIABLE {                         
             = {Ф}. 
          β =  
            COMPATIABLE (TRACK [R][D] TRACK[D][R])     
             = COMPATIABLE {                          
             = {Ф}. 
Step5. Boolean difference  

   µ = α   β 
       = Ф   Ф 
       = Ф. 
Step6. Test pattern for stuck at 0 for A  

  
  F 
              
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  7.  SSBDD diagram for F=     +A  + C       
 
 
 
 

S                                                                      C 
        

 
 
 
 
 
 
 
 

 
    (A)                                                    (B) 

 
Fig.  8.  SSBDD diagram for      (A) Sum   S = A     
                                                  (B) Carry C = AB+BC+CA. 

 
                = COMPATIBLE (γ, µ) 

= Aµ                                                                                                
 = Ф. 
            Test pattern for stuck at 1 for A  
 = COMPATIBLE (γ, µ) 
 =    µ 
 = Ф. 
Step7.  It means the function F=      +A  + C       is not 
           sensitized with respect to the variable A. So the fault at A  
           is undetectable and the given Boolean function of the 
           circuit is not in optimized form. This Boolean function 
           can be redundant. Now we can represent the function 
            F=     +A  + C        by the function F=    + C       
           and easily understand that this minimized function is 
             totally independent of A. Due to that if any error occurs at 
            A the fault from the primary output line is not observable 
           and detectable. 
 
 
C. Analyzing Multi-output Function 

The proposed algorithm is also efficient for multi-output 
function ABC. Consider the full adder circuit and corresponding 
equations are  

Sum   S = A     
      Carry C = AB+BC+CA 

 
We can easily draw the corresponding SSBDD of Sum and 

Carry functions as shown in the figure 8. If apply the proposed 

A    
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algorithm on the SSBDD Sum, then the terms of Boolean 
difference will be like {BC,   C, B         . Now without 
computation of Boolean difference for function of carry, we can 
easily determine the terms of its Boolean difference. Using 
analyzing the SSBDD of Carry, The term   C (Considering from 
one of the term of sum) is also one of the term of Boolean 
difference of carry with respect to A. Because, if we start from A 
(Considering figure 8 (B)) and goes to RIGHT and check the 
result searching the path   C and again start from A and goes 
DOWN to check the result using same path   C. Using this way   
different values come and then that can be considered as one of 
the term of Boolean difference for Carry with respect to the root 
node A. Same procedure will be used to determine all other terms 
of Boolean difference for second function Carry.    
 

VI. FUTURE WORK 
 
Here we showed that it is easy to find test pattern for single stuck 

at fault using SSBDD for any Boolean function. We are going to 
use SSBDD for finding test patterns for multiple stuck at fault 
model or other fault model like stuck-open fault, bridging-fault or 
delay-fault. 

 
VII. CONCLUSION 

 
Here we showed that it is easy to find test pattern for single stuck 

at fault using SSBDD for any Boolean function. The Boolean 
difference is determined using tracing the paths of SSBDD of the 
circuit.  Proposed algorithm reduces the simulation time due to 
two reasons, one is that algorithm uses the SSBDD model instead 
of the other BDD model and another is that it  reduces 
mathematical manipulation due to searching the path of SSBDD to 
find the Boolean difference   instead of using classical Boolean 
difference method.  
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