
DOI: 10.5176_2010-2283_1.2.31

 Test Pattern Generation Algorithm Using
Structurally Synthesized BDD

Mousumi Saha, Naveen Singh Bisht, Shrinivas Yadav, Praveen Kumar K

Abstract— Structurally Synthesized Binary Decision

Diagrams (SSBDDs) have an important characteristic
property of keeping information about circuit’s structure.

Boolean difference of a circuit is used to find test pattern for
stuck at fault in combinational circuit but the algebraic
manipulation involved in solving Boolean difference is a
tedious job. In this paper an efficient algorithm is proposed to
compute Boolean difference and test patterns simply using
searching the paths of SSBDD. This model reduces algebraic
manipulations and takes less time to compute the test pattern.

Index Terms— Automatic Test Pattern generation, Binary

decision diagrams, Boolean difference, Stuck at Fault, Struct-
urally Synthesized Binary decision diagram.

I. INTRODUCTION

 In a combinational circuit the presence of a single stuck at

fault can be tested easily by a set of inputs. These set of inputs are
applied to faulty circuit which generate different output. The
variation in output will show the circuit is faulty or fault free.
Automatic test pattern generation is a method by which we can
test the fault of a circuit. Under this method a set of binary digits
are produced. Using these sets as input to circuit, we can easily
detect the every single stuck at fault of the circuit. During last
decade a large number of test pattern generation algorithms have
been proposed. There are two types: structural method and
algebraic method. The most notable structural methods are D
algorithm [1] [2], PODEM, FAN, SOCRATES etc. Boolean
difference is the most famous algebraic method to find test pattern
[3].

 Binary Decision Diagram and Reduced Ordered Binary
Decision Diagram are used for representation and manipulation of
Boolean Functions [4, 5, 6, and 7]. But this model have some
problem like it suffers from the memory explosion, which limits
its usability on large designs. So we cannot use as a model for
such methods that require a certain degree of structural
information about the design. To overcome this drawback we are
moving a new concept called Structurally Synthesized Binary
Decision Diagram (SSBDD). SSBDD is one of the popular model
to represent the Boolean function of a Boolean circuit. It keeps the
information of circuit structure of digital circuit [8].

Manuscript received 26th November, 2010.
Mousumi Saha is with the National Institute of Technology, Durgapur,

India (Phone: 91-9474487495; Fax: 343-2547375; Email: msaha.nitd@g
mail.com.)

Naveen Singh Bisht is with the Tata Consultancy Services, Pune,
Maharastra. India (Email:naveen.bisht@tcs.com.)

Shrinivas Yadav is with the Huawei Technologies Co. Ltd, Bangalore,
India (Email: shrinivasy@huawei.com.)

Praveen Kumar K is with the National Institute of Technology,
Durgapur, India (Email: praveen.kumar432@gmail.com.)

In this paper an efficient and effective algorithm is proposed to

find the test pattern of a combinational circuit using searching the
paths of corresponding SSBDD. It is clear that the efficiency of
any algorithm is said to be increased, if the simulation time was
reduced. In this approach a small amount of algebraic
manipulation is required. So this approach presents the easy way
to find the test pattern and very helpful to find the test pattern for
large circuits, fan and fan-free circuits also.

The paper is organized as follows. In section 2 we
describe the preliminaries of SSBDD. In section 3 and section 4
are dedicated to explain proposed approach and algorithm for
generating test pattern successively. In section 5 include some
experimental result on appropriate examples. Section 6 highlights
directions for future work. Finally section 7 gives conclusion.

II. PRELIMINARIES

A. Basic concept of Boolean difference

Boolean difference is an algebraic method to find the test
pattern for a combinational circuit. It can detect errors at any
position in a circuit. The Boolean difference of a function
 with respect the variable

Here and are obtained from y= by replacing variable
 by value 1 and 0 correspondingly. The Boolean difference with
respect to the variable indicates whether f is sensitive to
changes in input If the function does not depends on . In that
case, is said to be unobservable. This method needs huge
manipulation of mathematical expression for a particular Boolean
function. But once we know the Boolean difference, then the test
patterns can easily determine for a circuit.

B. Basic concept of SSBDD

The SSBDDs are based upon the equivalent parenthesis form
(EPF), that is, they describe a digital circuit structurally [9] [10].
The SSBDD models are generated by a superposition procedure
that extracts information about both, function and data of
structural paths of the circuit. For example the equivalent SSBDD
of a combinational circuit in figure 1 is as shown in figure 2.

 SSBDD is a very powerful model for representation and
manipulation of Boolean function. This model has different flavor
compared to other commonly used mathematical model. First time
it was introduced as Structural Alternative Graphs [3] and
generalized as multiple-valued decision diagrams in [11].

SSBDD model reduces the no of nodes to represent the circuit
compared to the ROBDD. One more is the size of the SSBDD
model is linear in respect to the circuit size while it is exponential
for ROBDD [12].Due to that simulation time [13, 14] can be
reduced remarkably to generate the test pattern.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

6

mailto:msaha.nitd@g%20mail.com
mailto:msaha.nitd@g%20mail.com
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.tcs.com%2F&ei=9YPrTK_PLI6PcbzKjbwP&usg=AFQjCNFHzzN6PMubZm5R-gyVsSeV-ZOPsg&sig2=9D1IoaN5ip2EnmF7Z_bMpQ
mailto:praveen.kumar432@gmail.com

 Fig. 1. Circuit for y=

 Y

Fig. 2. Illustration of superposition principle for the Function
y= .

III. PROPOSED APPROACH

We follow the below to calculate the test pattern.
1. SSBDD should be drawn starting from suspicious (faulty)

literal. It can be represented by γ.
If A is stuck at fault 0 then we draw SSBDD having root
node as A. (where γ=A).
If A is stuck at fault 1 then we draw SSBDD having root

 node as A. (where γ= .
2. We are using tracking direction R for RIGHT and D for

DOWN.
3. We define a term TRACK [A][B] where A,BЄ{R,D}

means it is set of recursively all traced literals starting
from next to root node, first traced at A side and end with
all having no final B side.

4. Example for finding the TRACK [A][B]:
 In finding TRACK [A][B] ,we follow recursive

approach to find all paths and will stop when there is no
more path. Let’s take an arbitrary SSBDD, which is as s
hown in figure 3. TRACK[R] [R] is found as follows.
TRACK[R] [R] means we are tracing the paths next to
root node in the RIGHT direction until there is no path
in the same direction. If any intermediate node having
downward path we have to trace that path and reach that
downward node, from there again move in the right
direction only in a recursive manner.

In figure 3 the paths for TRACK[R] [R] are v2 to
v3, v2 to v5 via v4, and v2 to v8 via v4 and v5.
Similarly TRACK[D][D],TRACK[R][D],TRACK[D][R
] will follow the same procedure.

5. We define another term COMPATIBLE (A, B) where
 A, B are literals or product of literals. This returns the
 term Cartesian product of (A, B).which are not contradi-
 cting (not having literal and complement of literal in

 Fig. 3. Finding TRACK[R][R]

same term) each other.
Example:
a) COMPATIABLE () =
 = Ф.
b) COMPATIABLE (AC, AD) =
 = ACD.
c) Let A={ C}, B = { } than
 COMPATIBLE (A, B) = [{]

 = {AB, AB }.
6. α= COMPATIABLE (TRACK[D][D] TRACK [R][R])

 β= COMPATIABLE (TRACK[R] [D] TRACK [D][R])
7. µ = α β.

IV. PROPOSED ALGORITHM

In figure 4, the flow chart is used to explain the algorithm to

find test pattern. The following steps are considered.
1. For given input Boolean function or circuit we draw
 SSBDD with faulty literal as root node γ.
2. Initially we keep solution set α, β, µ as empty.
3. We have used term

TRACK[D][D]=Track recursively starting from root
node , first going DOWN till find a node having no
DOWN and stop when no such path is exists.
TRACK[D][R]=Track recursively starting from root
node , first going DOWN till find a node having no
RIGHT and stop when no such path is exists.
TRACK[R][D] =Track recursively starting from root
node , first going RIGHT till find a node having no
DOWN and stop when no such path is exists.
TRACK[R][R] = Track recursively starting from root
node, first going RIGHT till find a node having no
RIGHT and stop when no such path is exists.

4. If for root node one of the tracks i.e. TRACK [D] or
 TRACK [R] does not exists then µ will be other track.

Where TRACK [D] means the path from root node to
DOWN word does not exists and TRACK [R] means the
path from root node to RIGHT word does not exists.

5. If both TRACKS exists form root node then we find
TRACK [D] [D] & TRACK[R] [R] and

 calculate
 α=

COMPATIBLE (TRACK [D] [D] TRACK [R] [R])
And then find TRACK [D] [R] & TRACK[R] [D] and
calculate

 β=
 COMPATIBLE (TRACK [D] [R] TRACK[R] [D])

6. Find union of α and β as µ.

OR

 NOR

 AND

V1

1
V2
1

V3
1

V4

1
V5
1

V6
1

V7
1

V8
1

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

7

 Y

 N

 Y

 N

 `

Fig. 4. Algorithm for finding test pattern

7. Now finally getting test pattern just calculates
COMPATIBLE (γ, µ).

V. EXAMPLES

This section explained generation of test pattern with the help
of different types of models, like “track missing” and “no track

missing”. The track missing means that all combinations of
TRACKs which are not existed in that SSBDD. All combinations
means TRACK [R][R], TRACK [D][D],TRACK [R][D] and
TRACK[D] [R].No track missing means all combinations of

tracks present in a given SSBDD. We explain one more case
called undetectable fault, for which the Boolean difference is ,
which means that even if the fault present in the Boolean circuit,
we cannot detect that fault.

A. Track is missing

Let the function F (A, B, C) = A (B+C) and A as stuck at fault
0 and 1.

The following steps are considered to find test pattern using
algorithm.

Step1. SSBDD for given function is shown in the figure 5.
 Here fault is assumed to be at A. So root node is
 taken as A.
Step2. Here A is stuck literal, so stuck at 0 can be taken as
 γ = A and stuck at 1 can be taken as γ= .
Step3. Here TRACK[R][D],TRACK[D][R],TRACK[D][D]
 are missing.
Step4. Boolean difference µ is TRACK[R] [R]

= {B, C}
 = B+ C

 = B+C
 = {B, C}.
Step5. Test pattern for A stuck at 0

= COMPATIBLE (γ, µ)
 = A {B, C}

 = {AB, AC}
 = {11Ф, 1Ф1}.
 Test pattern for A stuck at 1
 = COMPATIBLE (γ, µ)
 = {B, C}
 = { B, C}
 = {01Ф, 0Ф1}.

B. No track is missing

Let function F (A, B, C) = AB+ and B as stuck at fault 0
and 1.

The following steps are considered to find test pattern using
algorithm.
Step1. SSBDD for given function is shown in figure 6.
 Here fault is assumed to be at B. So root node is taken as
 B.
Step2. No TRACKS are missing in a given function F
 = AB+ .
Step3. All the TRACKs can be calculated as
 TRACK [D][D]={ }
 TRACK [R][R]={ }
 TRACK [R][D]={ }
 TRACK [D][R]={ }
Step4. α =
 COMPATIABLE (TRACK [D] [D] TRACK [R] [R])
 = COMPATIABLE {
 = { }.

 β =
 COMPATIABLE (TRACK[R] [D] TRACK [D] [R])
 = COMPATIABLE {
 = { }.
Step5. Boolean difference

µ = α β
 = { } { }
 = { }.
Step6. Test pattern for B stuck at 0
 = COMPATIBLE (γ, µ)

START

For input circuit or Boolean function draw
SSBDD having root as stuck literal (γ).

If TRACK
[R]does not

exists?

If TRACK
[D]does not

exists?

Find α =COMPATIABLE
(TRACK [D][D] TRACK[R][R])

 β=COMPATIABLE

(TRACK[R][D] TRACK[D][R])

Boolean Difference

 = α β

 =TRACK [D][D]

 =TRACK [R][R]

END

Set , Setα
Setβ

TEST PATTERN=COMPATIBLE (,)

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

8

 F

Fig. 5. SSBDD diagram for F=A (B + C).

[R] [R]

 F

 [R][D]

 [D][D]

 [D][R]

Fig. 6. SSBDD diagram for F= AB+

 = Bµ
 = B { }
 = {A , }
 = {110,011}.
 Test pattern for B stuck at 1
 = COMPATIBLE (γ, µ)
 = µ
 = { }
 = {A , }
 = {100,001}.

Let one more function F (A, B, C, D) = +A + C

and A as faulty literal.
The following steps are considered to find test pattern using

algorithm.
Step1. SSBDD for given function is shown in figure 7.
 Here fault is assumed to be at A. So root node is taken as
 A.
Step2. No TRACKs are missing in a given function F.
Step3. All the TRACKS can be calculated as
 TRACK [D][D]={ }
 TRACK [R][R]={ }
 TRACK [R][D]={ }
 TRACK [D][R]={ }
Step4. α =
 COMPATIABLE (TRACK [D][D] TRACK[R][R])
 = COMPATIABLE {
 = {Ф}.
 β =
 COMPATIABLE (TRACK [R][D] TRACK[D][R])
 = COMPATIABLE {
 = {Ф}.
Step5. Boolean difference

 µ = α β
 = Ф Ф
 = Ф.
Step6. Test pattern for stuck at 0 for A

 F

Fig. 7. SSBDD diagram for F= +A + C

S C

 (A) (B)

Fig. 8. SSBDD diagram for (A) Sum S = A
 (B) Carry C = AB+BC+CA.

 = COMPATIBLE (γ, µ)

= Aµ
 = Ф.
 Test pattern for stuck at 1 for A
 = COMPATIBLE (γ, µ)
 = µ
 = Ф.
Step7. It means the function F= +A + C is not
 sensitized with respect to the variable A. So the fault at A
 is undetectable and the given Boolean function of the
 circuit is not in optimized form. This Boolean function
 can be redundant. Now we can represent the function
 F= +A + C by the function F= + C
 and easily understand that this minimized function is
 totally independent of A. Due to that if any error occurs at
 A the fault from the primary output line is not observable
 and detectable.

C. Analyzing Multi-output Function

The proposed algorithm is also efficient for multi-output
function ABC. Consider the full adder circuit and corresponding
equations are

Sum S = A
 Carry C = AB+BC+CA

We can easily draw the corresponding SSBDD of Sum and

Carry functions as shown in the figure 8. If apply the proposed

A

D

C

A

C

B

C B

B

A

B

A

C

B

B A

C

0

1

1

0

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

9

algorithm on the SSBDD Sum, then the terms of Boolean
difference will be like {BC, C, B . Now without
computation of Boolean difference for function of carry, we can
easily determine the terms of its Boolean difference. Using
analyzing the SSBDD of Carry, The term C (Considering from
one of the term of sum) is also one of the term of Boolean
difference of carry with respect to A. Because, if we start from A
(Considering figure 8 (B)) and goes to RIGHT and check the
result searching the path C and again start from A and goes
DOWN to check the result using same path C. Using this way
different values come and then that can be considered as one of
the term of Boolean difference for Carry with respect to the root
node A. Same procedure will be used to determine all other terms
of Boolean difference for second function Carry.

VI. FUTURE WORK

Here we showed that it is easy to find test pattern for single stuck

at fault using SSBDD for any Boolean function. We are going to
use SSBDD for finding test patterns for multiple stuck at fault
model or other fault model like stuck-open fault, bridging-fault or
delay-fault.

VII. CONCLUSION

Here we showed that it is easy to find test pattern for single stuck

at fault using SSBDD for any Boolean function. The Boolean
difference is determined using tracing the paths of SSBDD of the
circuit. Proposed algorithm reduces the simulation time due to
two reasons, one is that algorithm uses the SSBDD model instead
of the other BDD model and another is that it reduces
mathematical manipulation due to searching the path of SSBDD to
find the Boolean difference instead of using classical Boolean
difference method.

REFERENCES

[1] Sunil K. Jain, Vishwani D. Agrawal “TEST GENERATION
 FOR MOS CIRCUITS USING D-ALGORITHM”, 20th
 Design Automation Conference, IEEE published on 1983,
[2] Michael H. Schulz, Erwin Trischler, and Thomas M. Sarfert
 “SOCRATES: A Highly Efficient Automatic Test Pattern
 Generation System”, IEEE Transactions On Computer-
 Aided design, VOL. 7, NO. 1, January 1988.
[3] F.F Sellers, m. y. Hsiao And L. W. Beannson, “Analyzing

 Errors With The Boolean Difference”, IEEE Transaction on
 Computers, Vol.C-17, July1968, 678-683.
[4] S.Minato, Binary Decision Diagrams and Application for VL
 SICAD. Kluwer Academic Publishers, 1996, 141p.
[5] R.Drechsler, B.Becker. Binary Decision Diagrams, Theory,
 Implementation Kluwer Academic Publishrs, 1998, 200p.
[6] R. Ubar, “Test Generation for Digital Circuits Using
 Alternative Graphs (in Russian)”, in Proc. Tallinn Technical
 University, 1976, No. 409, Tallinn Technical University
 Tallinn Estonia, pp.75-81.
[7] S.Akers, “Binary Decision Diagrams,” IEEE Trans. O Comp.
 ,Vol. 27, 1978, pp.509-516.
[8] Jutman,R.Ubar,“Design Error Diagnosis In Digital Circuits
 with Stack-at-Fault Model “, Journal of Microelectronics
 Reliability. Pengamonpresu, VOL 40, NO 2, 2002,pp307-
 320.
[9] H.-T.Liaw, C.-S.Lin. “On the OBDD representation of
 General Boolean functions”. IEEE Trans.on Comp., Vol.C-4

 1, No.6, pp.61-64, June 1992.
[10] A. Jutman, J. Raik, R. Ubar, “On Efficient Logic Level
 Simulation Of Digital Circuit Represented By The SSBDD
 Model” , PROC 23rd International Conference On Micro-
 electronics (MIFL 2002) VOL 2, pp621-624.
[11] R.Ubar, “Multi-Valued Simulation of Digital Circuits with
 Structurally Synthesized Binary Decision Diagrams,” OPA,
 Gordon and Breach Publishers, Multiple Valued Logic, 1998
 Vol. 4, pp141-157
[12] R. Ubar, A. Jutman, Z. Peng, “Timing Simulation of
 Digital Circuits with Binary Decision Diagrams”, in Proc.of
 date 2001 Conference, München, Germany,2001,pp.460-466.
[13] R.Ubar, “Parallel Critical Path Tracing Fault Simulation,” in
 Proc.of the 39.Int.Wiss. Kolloquium, Ilmenau, Germany, 19
 94, Band 1, pp. 399-404.
[14] A. Jutman, J. Raik, R. Ubar. SSBDDs: “Advantageous
 Model and Efficient Algorithms for Digital Circuit Modeling
 Simulation” & Test.5th Int. Workshop on Boolean Problems.
 Freiberg, Germany, September 19-20, pp.157-166.
 [15] H.-T.Liaw, C.-S.Lin. “On the OBDD Representation Of
 General Boolean functions. IEEE Trans. on Comp., Vol.C-
 41, No.6, pp. 61-64, June 1992.

Mousumi Saha was born at Durgapur in West
Bengal State, India on 21st December 1974. She
received her B.E degree (C.S.E) from the Regional
Engineering College (Now NIT), Durgapur in 1997
and M.Tech degree in C.S.E from Calcutta
University, West Bengal, India in 2001. She is
currently working at National Institute of
Technology, Durgapur as an Assistant Professor in
the Department of Computer Application. Her

primary areas of research include Switching Theory and VLSI Testing.

Naveen Singh Bisht was born at Senu Village in
Uttrakhand State, India on 17th June,1987. He
received his B.Sc degree from Chaudhary Charan
Singh University Meerut, Uttrakhand in 2006 and
Master of Computer Application degree from
National Institute Of Technology Durgapur ,West
Bengal in 2010. He is currently working in Tata
Consultancy Services as an Assistant System
Engineer in Pune, Maharastra.

Shrinivas Yadav was born at Harpur Village in
Uttar Pradesh State, India on 10th March 1986. He
received his B.Sc degree from University of
Allahabad, Uttar Pradesh in 2005 and Master Of
Computer Application degree from National
Institute Of Technology Durgapur ,West Bengal,
India in 2010. He is currently working in Huawei
Technologies Co. Ltd , as a Software Engineer in
Bangalore, Karnataka.

Praveen Kumar K was born at Panyam Village in
the Andhra Pradesh State, India on 2nd July, 1987.He
received his B.Tech degree (E.C.E) from Jawaharlal
Nehru Technological University, Hyderabad, India in
2009 and is currently pursuing his M.Tech degree in
Micro Electronics and VLSI at National Institute Of
Technology, Durgapur. His primary research
includes VLSI Testing.

GSTF INTERNATIONAL JOURNAL ON COMPUTING,VOL.1,NO.2,FEBRUARY 2011

©2011 GSTF

10

http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.tcs.com%2F&ei=9YPrTK_PLI6PcbzKjbwP&usg=AFQjCNFHzzN6PMubZm5R-gyVsSeV-ZOPsg&sig2=9D1IoaN5ip2EnmF7Z_bMpQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.tcs.com%2F&ei=9YPrTK_PLI6PcbzKjbwP&usg=AFQjCNFHzzN6PMubZm5R-gyVsSeV-ZOPsg&sig2=9D1IoaN5ip2EnmF7Z_bMpQ
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBsQFjAA&url=http%3A%2F%2Fwww.jntu.ac.in%2F&ei=F4frTIjxOcTJccSFifcO&usg=AFQjCNHSKToWirFNcdUlPi7P46eEH1elWQ&sig2=8eaZOCQlkvq9fIshR6wYfA
http://www.google.co.in/url?sa=t&source=web&cd=1&ved=0CBsQFjAA&url=http%3A%2F%2Fwww.jntu.ac.in%2F&ei=F4frTIjxOcTJccSFifcO&usg=AFQjCNHSKToWirFNcdUlPi7P46eEH1elWQ&sig2=8eaZOCQlkvq9fIshR6wYfA

