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Abstract---Conventional smart antennas create flexible beam patterns 

using weights that have both magnitude and phase. This requires 

expensive hardware in the form of individual receivers and 

transmitters, high-speed D/A and A/D converters and capable DSP or 

FPGA processors. This paper looks at the use of low-complexity spatial 

antenna arrays that can create reasonably complex antenna patterns 

using a phased array approach. Convex optimization is applied to solve 

the highly non-linear optimization problem. Square array geometries 

were studied in depth by applying various penalty functions. We found 

that convex optimization is a novel and effective way to compute the 

complex antenna weights, and that this low-complexity approach is an 

interesting alternative to more expensive smart antennas 

Keywords-convex optimization; spatial antenna; penalty functions; 

phased array; antenna weights 

I. INTRODUCTION 

We are investigating a hybrid analog/digital beam former 

(ADBF). Traditional analog beam formers (ABF) steer a single 

beam using a single transceiver, power splitter/combiner, and 

electronically controlled analog  phase shifters. In contrast 

modern digital beam formed arrays (DBF) or ‘smart antennas’ use 

separate transceiver chains, A/D and D/A converters, and DSPs 

[1]. This enables direct digital control of array weights to 

optimize criteria such as MSE. DBF technologies are effective but 

are not suitable for every application due to their relative high 

cost and complexity. The technique we are addressing is similar 

to ADBF approaches using a single transceiver and analog phase 

shifters, but phase shifters are digitally controlled to provide 

flexible multiple nulls and beams defined in real time.  

The synthesis and design of antenna arrays has been extensively 

studied over many years. Many fast and efficient methods for 

finding the antenna weights have been developed [1]-[6]. 

However, convex optimization techniques have rarely been used 

for these types of problems [2].  This paper illustrates its 

application to antenna array development and shows that it has 

some important advantages including ease of use and the ability 

to apply different penalty functions for solving the least squares 

problem. Although much previous research deals exclusively with 

Uniform Linear Arrays (ULAs), the convex optimization methods 

facilitate array solutions for spatial arrays as well. Geometries 

such as square, circular, or ‘Y’ arrays provide many advantages 

including maximum output power and high Signal-to-Noise Ratio 

(SNR) [1] and [3]. This paper focuses on solutions for square 

arrays, but results can be easily extended to other geometries 

including the ULA.  

Complex weights can be implemented by cascading digitally 

controlled variable gain amplifiers and phase shifters. (In this 

paper we refer to this as the ‘unconstrained’ case). However, 

bidirectional amplifiers add cost and complexity and should be 

avoided if possible. A simple alternative is to use stepping 

attenuators, which are bidirectional but constrain weight 

magnitude to be unity or less (we refer to this as the ‘constrained’ 

case).  This approach shown in Fig. 1. A possible disadvantage is 

that the attenuators may provide unacceptable losses in some 

systems that have tight power budgets. A third approach is to 

completely eliminate the attenuators and develop antenna patterns 

using  only phase shifters. However, this is not a convex problem 

[2] and is not addressed in this paper. 

II. CONVEX OPTIMIZATION PROBLEM AND CVX TOOLBOX 

A set is convex if for any pair of its points, the line joining these 

two points lies in the set. A function f is convex on a convex  

domain if ���� � �1 � ��	� 	 � 	����� 	 � 	�1 � ����	� for  

 
Figure 1. Hybrid system using attenuators and phase shifters 

This material is based upon work supported by the Air Force Research 

Laboratory, Tyndall AFB. 

DOI: 10.51762010-3043_2.3.195

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

112 © 2012 GSTF

RapidStart_PC01
Text Box
DOI 10.51762010-3043_2.3.195




�:	0	 � 	�	 � 	1. The convex optimization problem involves 

minimizing a convex function over its domain, which is always a 

convex set. The biggest advantage with convex functions is that 

the local minimum is always the global minimum. Many 

functions that we come across are convex functions. This includes 

functions such as affine functions, ��� � � where a and x are 

vectors and b is a scalar, as well as quadratic functions like ���� 

(given that R is a positive semi definite matrix). Norms of vectors 

like ||�|| (which includes all norms like 1-norm, Euclidian Norm, 

and infinity norm). Many combinations of all these functions can 

also be convex and this can be determined easily from convex 

function techniques as described in [7].The solutions developed in 

this paper were computed using CVX, which is a Matlab-based 

modeling system for convex optimization that allows constraints 

and objectives to be specified using standard Matlab expression 

syntax [8], [15]. In order to use CVX to solve optimization 

problems one must follow disciplined convex programming rules, 

the details of which can be found in [9]. Generally, the notation  

                        		��������	�����                                            (1)  

�������	��	����� � 0, � = 1,2, … , � 

																			ℎ� ��� = 	0,							� = 1,2 … , % 
 

is used to describe the problem of finding the minimizer for the 

function �� subject to the � inequality and	% equality constraints. 

This minimizing problem is called a convex optimization problem 

only if ��, �&, �', … , �(are all convex functions and ℎ� are all affine 

functions.  

III. PENALTY FUNCTIONS IN CONVEX OPTIMIZATION 

Penalty functions are simply cost functions that penalize errors. 

The use of penalty functions in antenna array design is a general 

idea and though there are many penalty functions available for 

use, the “2-norm” function is frequently used in antenna array 

design. This section introduces two important penalty functions 

other than the 2-norm and in the later sections the performance of 

an array based on these penalty functions is discussed. 

The simplest norm approximation problem is an unconstrained 

problem of the form 

 

                                   ��������		||)� � �||                               (2) 

 

where ) ∈ +(,- (� are the number of equations and � are the 

number of variables)and � ∈ +(  are the data available from the 

problem and � ∈ �-	is the variable. The solution obtained is 

sometimes called an approximate solution of )� ≈ �. The vector 

/ = )� � � is called the residual for the problem and the smaller 

the residual value is then the better the solution for the 

approximation problem.  

There is always at least one optimal solution for the norm 

approximation problem. The optimal residual value is zero iff 

� ∈ 	ℜ�)�, where ℜ�)� is the range space of	). The problem 

becomes interesting when	� ∉ 	ℜ�)�. When	� = �, the problem 

is said to be completely determined and the optimal point is 

simply )2&� if the matrix ) is invertible. For a system of linear 

equations (that is, a matrix equation	)� = �), the system is 

underdetermined if there is an infinite number of solutions.  If ) 

is ��� with	� < �, either there are free variables and an infinite 

numbers of solutions (underdetermined), or the system is 

inconsistent and there are no solutions. To solve this problem 

various penalty functions can be used. 

The penalty function approximation problem has the form 

 

                            ��������		4�/&� � ⋯ � 4�/(�                      (3) 

                               �������	��		/ = )� � � 

 

where, 4: +	 → 	+ is called the (residual) penalty function. When 

4 is convex, the above problem is a convex optimization 

problem. There are many convex penalty functions one of which 

is the 1-norm penalty function: 

 

                                            4��� = |�|                                      (4) 

 

As described in [10], 1-norm penalty function puts relatively 

larger emphasis on small residuals as compared to the 2-norm 

function. The optimal residual value found by 1-norm functions 

will tend to have more zero residuals or very small residuals. It 

therefore gives the sparse solution for the residuals and thus, in 

the context of estimation, is called a robust estimator.  

There is always the problem of outliers in any regression or 

estimation problem and when outliers occur, any estimate of x 

will be associated with a residual vector with some large 

components. We would like to actually remove the outliers to 

make the data more flawless and this can be done by choosing 

some threshold functions. The Huber function is one such penalty 

function: 

                     	4789��� = :�'																					, |�| � ;
;�2|�| � ;�	, |�| > ;                      (5) 

 

As indicated in (5), this function behaves like a quadratic penalty 

function for residuals lower than a fixed value, ;,	and it behaves 

like a 1-norm penalty function for residuals greater than the fixed 

value. This paper will demonstrate the use of these two important 

penalty functions for solving antenna array design problems. 

IV. OPTIMIZATION PROBLEM 

This paper considers the array to comprise N=4 antennas. 

However, the solution approach is valid for larger arrays.  If the 
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signal is arriving from direction θ, then the output is: 	�=� 	 =
	>	? ∙ ��=�. Here, ��=� is the steering vector, which, for a square 

array is: 

	[��%{��DE	���=�}, ��%{���DE	���=�}, ��%{��DE	���=�,
��%{���DE	���=�}]� 	       (6) 

The complex weight vector wH is given by 

 

>? 		 = 	 [�&��%��H&�, �'��%��H'�, �I��%��HI�, �J��%��HJ�]  (7) 

 

where, k=2π/λ is the wave number and d is the inter-element 

spacing. If we want to control the output in more than 

K	directions then the outputs are 

 

		 = 	 [	�=&�, 	�='�, … , 	�='�] 	 = >?	) � L               (8) 

 

where ) is an M�K matrix of steering vectors and L is white 

noise,  

 

)	 = 	 [��=&�, ��='�, … , ��=N�]                                   (9) 

  

To find the optimal weights for minimum MSE, the error is: 

O	? = 	 >?	) � 	�, where u is an 1xM vector of desired array 

responses and the squared error 
 O?O,  is the objective function to 

be minimized and H is Hermetian transpose.  

The minimum MSE solution is simply: >	 = 	�)P, where )P is 

the pseudo-inverse.  For the constrained case in Fig. 1, we seek to 

minimize  
 O?O 

 
 under the constraint that all	�Q � 1. This difficult 

non-linear problem can be solved using convex optimization as a 

2-norm function is a convex function. The completely determined 

unconstrained problem can be solved using 2-norm penalty 

function or using the Matlab’s mrdivide operator: ‘\’. The 

interesting use of penalty functions can be understood when the 

problem is underdetermined and then the unconstrained problem 

can be solved in CVX using the penalty functions discussed 

earlier or the Matlab’s mrdivide operator (which now finds the 

MSE solution by finding the pseudo inverse). We compare the 

results of all these methods in solving for the design parameters in 

an antenna array. The constrained problem is implemented in 

CVX as:	���(>) 	 <= 	1, which is a convex set. 

V. CONVEX SOLUTION TO THE OPTIMIZATION PROBLEM 

A. Underdetermined Problem 

Conventional adaptive arrays have no significant constraints on 

the magnitude or phase of the weights and so have greater control 

over beam forming. The optimized unconstrained array results are 

used for comparison with the constrained-weight arrays being 

studied here. With M = 4 elements, many geometries can be 

formed but as described in [1], a square array gives us good 

performance and is used to obtain all the results discussed in this 

paper. The degrees of freedom of an N-antenna array allow us to 

control the direction of � main beams and � nulls where	� +
� <= M. We will first try to see the performance of the array 

with one main beam in a desired direction and two nulls in the 

interference directions. Please note that this is an underdetermined 

problem. The unconstrained problem for a least squares problem 

is easy to solve using a pseudo-inverse. Since this is an 

underdetermined problem, we cannot use the 2-norm penalty 

function to solve for the unconstrained problem given by: 

        ��������		S��/�(O)T                              (10) 

Using 2-norm in CVX for this problem results in an error. The 

importance of penalty functions can be observed in solving this 

problem and as described earlier in this paper, 1-norm and Huber 

penalty functions can be used to solve for underdetermined 

problems. It is always easy to reduce the original problem of 

finding a solution to the underdetermined problem )� = � to a 

sub problem	)U�V = �, where )U is the �	x	� sub matrix of ) 

which can be obtained by selecting only those columns of 

)	which correspond to the � indices (out of	1, … , �) which are to 

be non zero components of � and �V is the sub vector of � 

containing the m selected components. As described in [10], if )U 
is nonsingular, then we can get the solution simply by 

inverting	)U:	�V = )U2&�. If )U is singular and � is not in the range 

space of	), then there is no feasible � with the chosen set of non 

zero components. If	� ∈ 	ℜS)UT, and )U is singular, then a feasible 

solution with fewer than m nonzero components exists. With 

simple knowledge of combinations, one can clearly understand 

the point drawn out of this in [10] that, this approach requires 

examining and comparing all �!/(�! (� − �)!) choices of 

�	nonzero coefficients out of � coefficients in �. Using 1-norm 

penalty function avoids all these complications and gives us a 

good heuristic for finding a sparse solution to the unconstrained 

underdetermined problem. 

We assume that we  have a-priori knowledge  about directions to 

signal and interference sources are and also the direction of main 

sources.	We attempt to find the optimal weights that give us a 

response close to the desired response. Similarly, the Huber 

penalty function can be used to frame a convex optimization 

problem for unconstrained case. An inter-element spacing of �/
2	is used as suggested by many authors for solving unconstrained 

problem [2], [3], [6], [11], and [12] .We sweep the whole space 

with the main beam from 0-360
0
 to evaluate the complete 

response of the antenna array Recall that we have a demand on 

our array to produce only two nulls. This paper studies a 

particular underdetermined problem where the demand is for a 

single main beam and two nulls at the interference directions. 

Radiation patterns in one of the cases, where a main beam must 
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be formed at 27.73
0
 and nulls at 63.73

0
 and 99.73

0
, for all the 

penalty functions discussed are given in Fig. 3. Ideally, one would 

like a single main beam in the direction of the source and nulls 

everywhere else. Fig. 3 indicates that there are directions where 

the array provides gain to those directions where there are no 

sources or interferences. This, at first, may seem a trivial issue but 

in applications where significant multipath or white noise is 

present, the side lobes are detrimental to the system. 

We tested the array for an inter-element spacing of		�/4, which 

has been suggested in [13] to decrease the effect of quasi-grating 

lobe, and the radiation plots for this spacing are given in Fig. 4. 

As can be clearly seen from the plots, the main lobes have been 

formed in the direction of source and nulls are formed in the 

direction of interferences using all methods. 

A useful measure to compare all the methods under discussion is 

SNR where the gain in the direction of main beam is used to 

calculate the signal power and the gain in all other directions is 

used for calculating the noise power. The mean SNR is calculated 

by averaging results from rotating the beams through 360 degrees.  

Results for both an inter-element spacing of �/2  and �/4 are 

given in Table I and Table II. Large negative SNR values are due 

to the unconventional definition, but are nevertheless useful for  

 

 
Figure 3.  Radiation pattern for the example with an inter-element spacing of 

λ/2. (Red line is direction of main beam and green is the direction of nulls) 

 

TABLE I. TABLE OF MEAN SNR VALUES FOR D= λ /2 FOR A PARTICULAR 

UNDERDETERMINED PROBLEM  

Method Mean SNR (in dB) 

Constrained -6.39 

Unconstrained case using Matlab -9.83 

Unconstrained case using 1-norm  

penalty function 

-8.05 

Unconstrained case using Huber  
penalty function 

-7.89 

 

The SNR values are negative because of the problem set up. 

spacing of �/2 are better than in the case of an inter-element 

spacing of �/4 and so if the user is applying this in a 

communication system, where multipath propagation must be 

taken care of, then we propose that an inter-element spacing of 

�/2 is better.  

 

The SNR values also emphasize the importance of the constrained 

case, which is the modified system discussed in this paper. The 

values for the constrained case are better than the unconstrained 

case in terms of SNR and also the difference in its performance is 

less than 3dB for the different inter-element spacing where as 

there is a difference of greater than 9dB for all other 

unconstrained methods. 

B. Completely Determined Problem 

A completely determined problem has also been studied where all 

the degrees of freedom of an antenna array have been completely 

utilized for its performance. Now, it is assumed that three 

interference sources are present and one desired source is present, 

which means three nulls in three different directions and one main 

beam in a desired direction. The problem has been studied in the 

same way as the underdetermined problem. Since it has already 

been determined that an inter element spacing of �/2 is better for 

a communications problem, this problem has been studied with 

 

 
Figure 4. Radiation pattern for the example with  an inter-element spacing of 

λ/4. (Red line gives the direction of source and green give the direction of nulls) 

 

 

TABLE II. TABLE OF MEAN SNR VALUES FOR D= λ /4 FOR A PARTICULAR 

UNDERDETERMINED PROBLEM 

Method Mean SNR (in dB) 

Constrained -7.60 

Unconstrained case using Matlab -16.21 

Unconstrained case using 1-norm  

penalty function 

-12.65 

Unconstrained case using Huber  

penalty function 

-12.45 
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this inter-element spacing. The same case as described in the 

underdetermined problem is used for the plots but now an 

additional null is requested at 135.730. The radiation patterns for 

all the cases under consideration are shown in Fig. 5. 

The SNR values are given in Table III. In the case of 

unconstrained adaptive weight vectors, theory suggests that an � 

element array can completely null � − 1 point interference 

sources [14]. The SNR values for the unconstrained cases are now 

worse than it was for the underdetermined problem and this is due 

to the fundamental theorem discussed earlier. In the 

underdetermined problem, the unused degree of freedom was 

helping the array to lower the noise power. In the completely 

determined problem all the degrees of freedom are being used for 

beam forming and so the SNR values have decreased by more 

than 10dB in all unconstrained cases. The constrained case still 

has the same mean SNR as it had with the underdetermined 

problem and this again underlines the importance of the modified 

system in terms of consistency in addition to low complexity. The 

SNR results as well as the radiation plots show that in case of 

completely determined problem, all the unconstrained cases 

perform similarly.  

 

Figure 5.  Radiation pattern plots for completely determined problem with an 

inter-element spacing of λ/2 

 

TABLE III. TABLE OF MEAN SNR VALUES FOR D= λ /2 FOR A COMPLETELY 

DETERMINED PROBLEM 

Method Mean SNR (in dB) 

Constrained -6.40 

Unconstrained case using Matlab -14.98 

Unconstrained case using 1-norm  

penalty function 

-14.98 

Unconstrained case using Huber  

penalty function 

-14.98 

 

This suggests the use of 1-norm and Huber penalty functions in 

the synthesis of antenna array performance as they led to results 

that were either better (in the underdetermined case) or equal (in 

the completely determined case) in performance, in the terms of 

SNR, as compared to a general penalty function like the 2-norm 

function.  

VI. CONCLUSION 

Convex optimization is shown to be a useful tool in antenna array 

design and can be used effectively for deciding many design 

parameters such as inter-element spacing. Penalty functions like 

Huber penalty function and the 1-norm penalty function are 

useful for improving side lobe performance, and they give better 

results than the commonly used 2-norm function in terms of SNR 

in the underdetermined case.  Finally, the convex optimization 

approach offers an interesting alternative for designing not only 

ULA’s but also arbitrary spatial arrays.  
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