

Figure 1. The Internet must reach the things through a local IP address

between ISP and home.

Parser as a Novel Reliability Implementation in the

Pervasive Computing

Erwin Adi, Michael Sunur, Kenrick Tjandrean, Minaldi Loeis

School of Computer Science, Binus International

Bina Nusantara University

Jakarta, Indonesia

eadi@binus.edu, michael.sunur@gmail.com, kenrick_92@yahoo.com, minaldi@binus.edu

Abstract—The ubiquity of mobile devices affects the way society

works beyond voice and text messaging. Smart phone capabilities

have become similar to those of computers. They promote users

to engage in social networking, flash reports, and other vital

applications. These mobile devices can also be used to control

other devices. However, the heterogeneity of operating systems,

hardware, and protocols has brought about the challenge of

ensuring that messages could be reliably transferred between

these mobile devices with different communicating equipments.

Hence in this paper, we showed how a parser could be used as a

reliability mechanism over our proposed system. Additionally, we

showed how message queue was used as a technique for the

pervasive computing to interoperate.

Keywords-Parser; message queue; reliability; distributed

systems; pervasive; ubiquitous

I. INTRODUCTION

The rise in the use of mobile devices has caused changes in
the way communication technologies are engineered. The old
paradigm of the client-server model in which a client would
request a computing service from a server has shifted to more
ubiquitous solutions in which all devices could communicate
with each other [1]. However, since mobile devices have
smaller memory and processing power than desktop computers,
programming techniques should consider a digestible
architecture for these small devices to interoperate with other
devices aside from computers. For example, turning on a home
light through a mobile device has become a reality rather than
fiction.

Integrating inanimate objects means increasing the degree
of pervasiveness of computing which is one of the important
challenges of the abovementioned distributed systems.

Interoperability among all devices is the utmost
requirement of pervasive computing [2]. However, this has
proven to be quite a challenge. For instance, it is difficult for
software applications to interoperate due to the lack of ability
of the current techniques to locate building objects [3]. New
middleware technologies require adaptation of standard
specification, which could be timely to implement [4].
CORBA, another interoperability implementation also poses
some ambiguity, does not guarantee substitutable
implementations [3], and is not an efficient solution for a fault
management system to implement reliability mechanisms [4].

We therefore, propose parsing as a reliability technique for
a remote device to reliably send messages to other internet-
connected devices, or things. The purpose of our research is to
show that reliability mechanisms on the pervasive computing
could be implemented over the proposed parsing technique.

The remainder of this paper is organized as follows:
Chapter II explains the motivation behind our research.
Chapter III breaks down the design of our experiment. Chapter
IV describes how testing was done, and Chapter V discusses
how we tested the reliability of our proposed system. Finally,
the paper is concluded in Chapter VI.

II. BACKGROUND MOTIVATION

Consider a mobile device that could turn a home light on or
off as described in Figure 1. The device needed to connect a
home light—described as “Things” in the figure—through the
Internet. The Data Terminating Equipment (DTE) at home
needed to connect to the Internet through a DTE at an Internet
Service Provider (ISP). However, this connection would
normally be transported over a local IP address. There was then
a need for the transported message from the device at the
public Internet to locate the home light behind a local IP
address. Hence an Inter Process Communication (IPC)
technique was required to enable both ends to interoperate. IPC
is a set of methods for the exchange of data among multiple
processes that run on different computers [5]. Several IPC
techniques are pipes, shared memory, memory-mapped file,
MQ, etc.

However, it is essential for the remote device to confirm
message delivery and execution. For example, it would be in

DOI: 10.5176/2010-3043_2.3.194

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

107 © 2012 GSTF

mailto:eadi@binus.edu
mailto:michael.sunur@gmail.com
mailto:kenrick_92@yahoo.com
mailto:minaldi@binus.edu

the best interest of the user of the remote device that a message
to “Turn on water heater” did not leave water heater off by the
time the user arrived home. Hence, a two-way communication
was required in this sense. A reliability mechanism should
enable the things at home to give feedback to the remote device
to confirm whether the command was carried out.

To illustrate and test this scenario, we implemented a home
automation system to determine which architecture enabled
mobile devices interoperate with remote things reliably.

III. DESIGN OF THE PROPOSED SYSTEM

A pipe is a unidirectional IPC. Hence, pipes were not
suitable for our implementation. Other IPC techniques such as
shared memory and memory-mapped file need the hardware,
i.e., the memory and the disk respectively, to be installed under
the same machine where the two processes communicate.
Hence, they were not suitable for the home automation system
where there were two DTEs—at the ISP and at home. MQ
served to solve the communications of the two DTEs.

To see how MQ could ensure reliability for the pervasive
computing, we designed a system that could control a relayed
I/O board remotely. Figure 2. shows that our system consisted
of five layers. It follows the naming order of Open System
Interconnection, i.e., the bottom or the physical layer being the
first layer.

The fifth layer was an application server. The server was
used to deploy a web application so that users could access our
system through the Internet. We used GlassFish 3.1 as a server,
while the web application was made out of JSP pages.

The fourth and the third layers, being the server and the
client respectively, carried the MQ which served as the inter
process communication mechanism between two machines—
the DTE at the ISP and the DTE at the subscriber. However,
we implemented these two layers under the same machine. All
the five layers in the diagram were implemented within one
computer. Our research did not intend to observe delay and
throughput caused by the communications channel between the
two DTEs, hence we viewed that this arrangement was
appropriate.

We hypothesized that one MQ technology could deliver a
more integrated solution over the others for our system.
Hence, we implemented the fourth and the third layer using
three different technologies: OpenMQ, ActiveMQ and
RabbitMQ, substituting one over the other during the testing.
We found no significant differences between these
implementations. However, OpenMQ was the easiest to
implement since its documentation was clear and examples

were plenty.

A lexer was used at the second layer to check the
vocabulary of a message that had been received by the system.
The token was at one-word level. After passing the lexer
checker, a parser was used to check the grammar. Our strategy
for parsing was to to look at the Predicate + Object
construction, which was suitable for home automation
scenarios such as “Turn on living room TV”. The following is
a snippet of code to illustrate our parser.

if(myArr.get(0).equalsIgnoreCase("open")){
 if(myArr.get(1).equalsIgnoreCase("the")){
 if(myArr.get(2).equalsIgnoreCase("living")){
 if(myArr.get(3).equalsIgnoreCase("room")){
 if(myArr.get(4).equalsIgnoreCase("door")){
 return 1;
 }
 if(myArr.get(4).equalsIgnoreCase("curtain")){
 return 2;
 }
 }
 }
 if(myArr.get(2).equalsIgnoreCase("room")){
 if(myArr.get(3).equalsIgnoreCase("door")){
 return 3;
 }
 if(myArr.get(3).equalsIgnoreCase("curtain")){
 return 4;
 }
 }
 if(myArr.get(2).equalsIgnoreCase("toilet")){
 if(myArr.get(3).equalsIgnoreCase("door")){
 return 5;
 }
 }
}
else
...

In order to transfer a series of messages to the board, the
first layer acted as the interface between the application
programs at the upper layers and the physical ports at the
board. Originally, we used Javacomm library for this layer.
However, after running well on the system for a while, the
board started to receive messages other than what had been
originally sent by the system. Migrating the library to RxTx
fixed this problem with no other change in the system. Hence,
we assumed that the problem we observed was due to an
undocumented phenomenon of Javacomm.

The board that we used was an Atmel-based
microcontroller board. The purpose of this board was to
continuously read a signal from the serial cable. The following
code was downloaded onto the board, which served to illustrate
its purpose:

while (1) {
 if (rx_counter > 0){
 x = getchar();
 switch(x) {
 case 'a': PORTA.0 = 1;
 printf("on\n");
 break;
 ...
 }
 }
}

Figure 2. The home automation system was a five-layered architecture

that controlled an I/O board.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

108 © 2012 GSTF

The microcontroller board was connected to an

Input/Output (I/O) board with eight relays that controlled

lights. These lights were used as test signals to tell if we could

turn them on and off remotely from a remote device.

IV. TESTING

Controlling the I/O board remotely was tested through three
client devices: A generic mobile phone, an iDevice, and a web
browser. Figure 3. shows how these testing devices were
connected to the board.

 Each of the three devices was able to successfully control
the board by turning a light on and off. These devices were
connected through the Internet to reach the home automation
system.

1) Mobile phone: We built an SMS gateway that
communicated with the home automation system. Hence, any
mobile phone was able to send a message through its
ubiquitous SMS capability. The SMS gateway essentially
consisted of a DCE to receive a GSM signal, a physical layer
to convert the signal into an API, a lexer and parser to
tokenize the SMS message, and an MQ client. Connection
between this part of the system and the home automation
system relied on the MQ mechanism over the Internet
Protocol.

2) iDevice: This client application designed to control the
home automation system had several other features, such as
scheduling switches according to different profiles. However,
the detailed discussion of what our iDevice application could
do was out of the scope of this paper. We ported the
application to an iPod Touch 4

th
 Generation, connected to the

home automation system through an HTTP connection.

3) Web browser: A JSP application could be requested
from any web browser, connected through an HTTP
connection. The JSP application showed a drop-down menu
that represented control messages such as “ Turn on living
room TV”.

In order to test the reliability of the messages sent from
these devices, we defined two scenarios: failure after the
bottom layer, and failure before the top layer. To test the first
scenario, we disconnected the cable between the home
automation system and the board. A reliable system should be
able to have a mechanism that fed this failure information back
to the client. If no message had been sent from a client device,
then the home automation system could simply reply to the
client that its request could not be fulfilled. The challenge
appeared when the line was cut after the client sent a message,
but the board had not yet executed the message. Under this
scenario, the messages from the MQ had been cleared.
Therefore, we implemented a buffer at the first layer of the
home automation system to hold the message from the MQ.
This buffer served to hold the message until the first layer
received a confirmation signal from the board that the message
had been executed.

The second scenario described a failure at the Internet
connection, preventing HTTP communication between the
home automation system and the client device. If this failure
happened before the client sent a message, then the user could

have simply detected that there was a problem with connecting
to the Internet. A more complicated situation would be had if
the client device had already sent a message, but the Internet
failed before the whole message was received by the home
automation system. This situation was anticipated through an
implementation at the parser. If the parser detected that the
message was not understood, i.e., the grammar did not match,
it informed the application server to give an appropriate error
message back to the client in its response packet. (Obviously
the client device could only receive this response message
when the Internet was reconnected.) Figure 4 illustrates that a
command had been successfully executed on the remote
device.

The limitation of our experiment was that it was impossible
to physically disconnect the line (any one of the two lines
described above) before the message was actually executed by
the board. The message traveled from the testing device to the
I/O board faster than our hand could physically cut the line.
Hence, we simulated this cut programmatically. We
implemented a user interface that had a “disconnect” button,
which essentially held the message to be forwarded. In reality,
connection between the devices and the things could be
separated by a wider magnitude, introducing a bigger chance
where failure happened before the message arrived. We viewed
that our methodology of cutting the line programmatically
could simulate this situation.

Figure 3. Three client devices used to test communication with the board.

Figure 4. A confirm message on iDevice.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

109 © 2012 GSTF

V. DISCUSSION

Our parser attempted to find the left-most derivations of the
user input, since the tokens were parsed from left to right to
mimic the human behavior of reading and writing. This is
known as a top-down parsing technique [6]. The drawback of
this methodology is that the parser may spend an exponential
complexity time when supplied by ambiguous inputs. However
web applications could provide all possible inputs through the
use of a dropbox which avoided this ambiguity (figure 5).
Critics may argue that the exponential time to parse may come
from SMS inputs, in which users could supply gibberish inputs.
While this is true, SMS is by definition a short message.
Regular users would not supply long and ambiguous inputs
through an SMS. Malicious users on the other hand could
attempt to overload the server’s memory space through
supplying long and ambiguous inputs, resulting a Denial of
Service. This was a scenario that we did not test, and was open
for further examination.

In addition, we tested the above implementation with IPC
through a hardware implementation. Other aspects of work [7]
[8] [9] were more focused on the software part of a distributed
system and its performance. Another work [10] actually tested
an MQ model through a hardware implementation, but it
focused on network accessibility. Our work emphasized
reliability mechanism. In this paper, we presented a novel
approach that the reliability mechanism was implemented
through parsing, and leveraging the reliability mechanism of an
MQ.

VI. CONCLUSION

We have demonstrated that a parser can be used as a novel
technique to implement a reliability mechanism between a
client and a server over the Internet. Other experiments on
parsers were to enhance the phrase finding performance itself
[11] [12]. This can be incorporated as one of our future
directions in order to reduce the shortcomings of our solution
in the event that a malicious user supply a series of ambiguous
inputs as discussed above.

Furthermore, we have shown that MQ effectively bridged
the gap for the two ends in the pervasive computing to
interoperate. It enabled things that were connected to a private
IP address to be located by devices on the Internet. We
demonstrated that a reliability mechanism could be
implemented over MQ. The parser and the MQ have been
presented as a novel fault detection mechanism.

VII. REFERENCES

[1] K. Kang, J. Lee, K. Beak, S. Park, and J. Kim, "A mobile

community service platofm promoting ubiquitous

collaboration," in IEEE 9th Int. Conf. Dependable,

Autonomic and Secure Computing, Sydney, 2011, pp.

939-946.

[2] E. Niemelä and J. Latvakoski, "Survey of requirements

and solutions for ubiquitous software," in Mobile

Ubiquitous Computing Conf., Washington DC, 2004, pp.

71-78.

[3] R. Bastide, P. Palanque, O. Sy, and D. Navarre, "Formal

specification of CORBA services: Experience and lessons

learned," in Proc. 15th ACM SIGPLAN Conf. Object-

Oriented Programming, Systems, Languages, and

Applications, Minneapolis, 2000, pp. 105-117.

[4] J. Wan and H. Liu, "A Web/CORBA based architecture

for network management with TCP connection," in 1st

Int. Workshop on Education Technology and Computer

Science, Wuhan, 2009, pp. 463-466.

[5] Wikipedia contributors. (2012, January) Wikipedia, The

Free Encyclopedia. [Online].

http://en.wikipedia.org/w/index.php?title=Inter-

process_communication&oldid=470765737

[6] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:

principles, techniques, and tools. Boston, USA: Addison

Wesley, 1986.

[7] Z. Huang, Shengxi Zhou, and Shengru Tu, "Java

communication interfaces for control systems," in Proc.

21st Int. Computer Software and Applications Conf.,

1997.

[8] M. Menth, R. Henjes, C. Zepfel, and S. Gehrsitz,

"Throughput performance of popular JMS server," in

SIGMetric/Performance, Saint Malo, 2006, pp. 367-368.

[9] R. Oechsle and T. Gottwald, "Disaster (Distributed

Algorithms Simulation Terrain): A platform for the

implementation of distributed algorithms," in ITiCSE’05,

Monte de Caparica, 2005, pp. 44-48.

[10] V. Narayan, "Application integration environment for

messaging/queueing model," in Proc. 2nd Int. Symp.

Autonomous Decentralized Systems, 1995, pp. 169-174.

[11] K. Zhang, J. Wang, B. Hua, and X. Tang, "Building high-

performance application protocol parsers on multi-core

architectures," in IEEE 17th Int. Conf. Parallel and

Distributed Systems, Taiwan, 2011, pp. 188-195.

[12] M. Lohuizen, "A generic approach to parallel chart

parsing with an application to LinGO," in Proc. 39th

Annual Meeting on Association for Computational

Linguistics, Stroudsburg, 2001, pp. 507-514.

Figure 5. Web applications could avoid ambiguous inputs.

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

110 © 2012 GSTF

http://en.wikipedia.org/w/index.php?title=Inter-process_communication&oldid=470765737
http://en.wikipedia.org/w/index.php?title=Inter-process_communication&oldid=470765737

Erwin Adi has a Master degree in
Telecommunications from University of
Strathclyde, Glasgow, UK. His Bachelor
degree was in Computer Science and
Applied Mathematics/Statistics from
State University of New York at Stony
Brook, USA.

He has about 14 years of experience in
computing technology. Early career includes being a Network
Engineer in some telecom companies in Belgium. During the
time he had gained experience in handling hands-on fiber
network on the field, controlling European-wide network from
the central operation under a wide range of platform,
troubleshooting IP-related problems, and mitigating high-
impact network failures. The complexity of the environment
demanded him to finally learn some European languages (with
some efforts).

He joined his family business in Indonesia for a couple of years
and was responsible for marketing activities, while at the same
time acted as the IT Solution and Infrastructure Manager. His
passion in computing technology brought him to join Bina
Nusantara University where he teaches, trains, and researches
the network and security topics.

Author’s Photo

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

111 © 2012 GSTF

