
 

  

Abstract—Modern adaptive optics systems represent a signifi-

cant challenge for automatic control. The output disturbance 

must be compensated in real time despite significant measurement 

noise and system delays. This paper presents the formulation of a 

discrete Linear Quadratic Gaussian controller with a realistic 

model of the measurement noise. The cases of high, medium, and 

low measurement noise are considered. The influence of the 

measurement noise on the discrete Linear Quadratic Gaussian 

controller in adaptive optics systems is discussed. The analysis of 

numerical stability of the discrete controller is provided. 

 
Index Terms— robotics, optimal control, numerical simulations 

 

I. INTRODUCTION 

DAPTIVE Optics systems aim to compensate for the in-

fluence of the Earth’s atmosphere on observations of 

space from ground-based telescopes. The continuous move-

ment of the atmosphere introduces inhomogeneity in the air re-

fractive index, which leads to blurring of astronomical images 

acquired by ground-based telescopes. Adaptive optics can 

compensate for the turbulence in real-time using wavefront 

sensors (WFS) and deformable mirrors (DM). This is a closed-

loop operation, which is performed by a controller that gener-

ates commands for the DM using noisy and delayed measure-

ments from a wavefront sensor. 

Usually the controllers are formulated as simple PI control-

lers [1], where the gain can be adjusted for each actuator [2]. 

More advanced controllers such as Linear Quadratic Gaussian 

(LQG) controllers have been designed and simulated for mod-

al wavefront correction [3, 4] in classical adaptive optics. The 

experimental demonstration of LQG controllers in adaptive 

optics was provided in [5]. The on-line parameter adjustment 

for LQG control was also proposed[6]. The experimental vali-

dation of optimal control[5, 7] was shown to outperform the 

classical control. 

Linear Quadratic Gaussian (LQG) control for adaptive op-
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tics systems is designed in simplified (no actuator dynamics) 

and unrealistic (no measurement noise) assumptions. This pa-

per provides the results of numerical simulations to assess the 

performance of an LQG controller using a realistic measure-

ment noise model. We use a comprehensive model of the CCD 

photosensor[8] to obtain the corresponding noise levels for the 

wavefront sensor in the adaptive optics system model. The 

correspondence between the photosensor noise in the WFS and 

the measurement noise is difficult to elaborate analytically. 

Various cases of photosensor ADC quantisation, signal and 

noise levels are considered in the numerical simulations pro-

vided in this paper. The numerical stability of the formulated 

LQR control was analysed. An alternative formulation of the 

optimal control with better numerical properties is discussed. 

The paper is organized as follows. The dynamic model of an 

adaptive optics is formulated in Section Error! Reference 

source not found., including models of a wavefront sensor, a 

deformable mirror, and a model of the output disturbance. The 

LQG control problem is formulated in Section Error! Refer-

ence source not found.. Then the initial parameters of the 

numerical simulations are presented in Section Error! Refer-

ence source not found.. The equivalent measurement noise 

derivation is described in Section Error! Reference source 

not found.. Results on simulation of the measurement noise 

influence on the performance of a discrete LQG controller are 

provided in Section Error! Reference source not found.. 

Discussion of simulation results is provided in Section Error! 

Reference source not found.. Finally, an important discussion 

of numerical stability of the optimal control is presented in 

Section Error! Reference source not found..  

 

II. THE FORMULATION OF THE CONTROL PROBLEM IN ADAP-

TIVE OPTICS 

From the control standpoint, the adaptive optics system is a 

Linear Time Invariant (LTI) multi-input-multi-output (MIMO) 

system that consists of a sensor (wavefront sensor), a control-

ler, and a corrector (deformable mirror) for the real-time sens-

ing and compensation of an output disturbance (atmospheric 

turbulence). The system is a subject to both an output disturb-

ance (atmospheric turbulence that must be corrected) and 

measurement noise from the CCD or CMOS photosensor in-

side the WFS. The aim of the controller is to track zero refer-
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ence (a flat wavefront) in the presence of output disturbances 

and significant measurement noise. 

 

A.  The model of the wavefront sensor 

The dynamics of the wavefront sensor (WFS) are character-

ised by the integration time T
f
 of the photosensor. The output 

of the sensor is the average of the signal from t  to fT+t  . 

The delay due to data processing is denoted by wfsτ  . There-

fore, the transfer function of the WFS can be represented in the 

Laplace domain as:  

sT

ee
G

f

sT

WFS

wfsf τ
)1( −

=            (1) 

The discrete data of the wavefront are contaminated by 

measurement noise from the WFS, which is described in detail 

in the Subsection A..  

 

B. The model of the Deformable mirror 

The dynamics of the continuous-faceplate deformable mir-

ror (DM) with piezoelectric actuators can be divided into two 

parts: the dynamics of the surface, and the dynamics of the ac-

tuators. In this paper, only the dynamics of the actuators are 

considered. The coupling between actuators and the surface 

dynamics is neglected. The dynamics of the actuators[9] in a 

DM is given by:  

1/

1
)(

+
=

as
sGDM             (2) 

where the parameter a depends on the specific equipment 

used in the adaptive optics system.  

 

C.  The model of the output disturbance 

The output disturbance in this system is due to atmospheric 

turbulence, which is essentially a wavefront phase distortion. 

The wavefront can be thought of as a surface of light rays 

coming from a distant star. If there is no atmospheric turbu-

lence, the wavefront surface will be flat, which means that all 

the rays have passed the same distance. The atmospheric tur-

bulence produces inhomogeneity in the air refractive index that 

leads to different path lengths for different light rays. Hence 

the wavefront will be non-flat, which causes the blur on astro-

nomical images. The goal of the controller in the adaptive op-

tics system is to counteract the non-flat (turbulent) wavefront 

by bending the DM in the opposite direction. 

The atmospheric turbulence can be represented by a dis-

crete-time state space model driven by a white noise. A state 

space model of the atmospheric turbulence (output disturb-

ance) is given by:  

][][]1[ kBkxAkx atmatmatmatmatm ξ+=+    (3) 

][][ kxCky atmatmatm =            (4) 

where [k]xatm  is the disturbance state and [k]ξatm  is a 

zero mean, unit variance white noise process.  

It was shown[10] that an autoregressive, AR(1), model pro-

vides limited performance due to the nature of the approximate 

model. On the other hand, an AR(5) model leads to a loss of 

performance due to increased sensitivity to variations of tem-

poral characteristics of the atmospheric turbulence. The AR(2) 

model provides a reasonable agreement with the Kolmogorov 

model [11] in good seeing conditions and is used in this paper. 

 

D.  The complete model of the Adaptive Optics system 

The complete model of the system consists of WFS dynam-

ics, actuators of the DM, and a non-integer time delay of the 

wavefront sensor. In order to account for the non-integer time 

delay, we divide the delay into an integer part n  and fraction-

al part ),[m 10∈  . Therefore, the complete system delay dτ  

will be represented as: fd Tm)(n=τ ⋅−  . Because n  is an 

integer, the term s]nT[ f−exp  will be transformed in the Z-

domain as 
nz−

 . The residual fractional delay s][mT fexp  

will be absorbed into the coefficients of the discretized model 

[12]. 

The discretized equivalent of the continuous system can be 

represented as a transfer function:  
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that can be converted into state space form:  

][][]1[ kBkxAkx syssyssyssyssys ξ+=+    (7) 

][][ kxCky syssyssys =             (8) 

 

III. FORMULATION OF THE LQG CONTROL PROBLEM FOR 

THE ADAPTIVE OPTICS MODEL 

The system is assumed to be LTI with state x[k], input u[k], 

and measurement y[k] given by:  

 

][][][]1[ kGkBukAxkx ξ++=+     (9) 

][][][][ kkDukCxky η++=        (10) 

here 
ξ [ k ]

 is the process noise and 
η [ k ]

 is the meas-

urement noise. The matrices A, B, and C must be augmented in 

order to account for both the plant dynamics and the output 

disturbance:  
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The Strehl ratio is typically used to derive a performance 

criterion for the controller. The Strehl ratio is the ratio of the 

peak intensity of a measured point spread function (PSF) to the 

peak intensity of a perfect diffraction-limited PSF for the same 

optical system. The Strehl ratio values are from S=0 to S=1, 

and the closer S to 1 the better (sharper) the image. The resid-

ual wavefront phase (uncompensated disturbance) reduces the 

Strehl ratio, which can be expressed using the Maréchal ap-

proximation[13]:  
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where λ  is the observation light’s wavelength (m), and 

rφ∆  is the residual wavefront phase (m). 

The objective of the controller is to minimise the wavefront 

phase variance (i.e., keep the wavefront flat), which is equiva-

lent to the maximisation of the Strehl ratio. The cost function 

for the infinite-horizon control problem can be formulated as:  
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The matrix Q can be chosen as Q=C
T

C. The matrix R is set 

R=0 since we do not penalise the control effort. 

 

A.   State feedback gain evaluation 

The feedback gain can be found using the solution of the 

discrete-time algebraic Riccati equations (DARE):  
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     (15) 

The solution of DARE in Eq. Error! Reference source not 

found. is the matrix KΩ , which is used for the state feedback 

gain calculation:  

ABRBBK K

T

K

T

gain Ω+Ω= −1)(      (16) 

where Q=C
T

C=[C
sys

   C
atm

]
T

[C
sys

   C
atm

] and R=0. The 

matrix Q contains zeros on the main diagonal. Zeros on the 

matrix diagonal may cause problems with finite precision 

computations for the DARE solvers (see Subsection Error! 

Reference source not found. for the discussion of this issue). 

 

B. State observer gain evaluation 

The observer gain is found from the dual DARE:  

L
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Ω=+Ω⋅

⋅Θ+ΩΩ−Ω −1)(
    (17) 

where 
T

GG=V  and 
T

atm ]B,[=G 0  as indicated in the 

Eq. Error! Reference source not found.. The choice of 

V=GG
T

 can lead to the same type of numerical problems as 

the case of the matrix Q in state feedback case (this issue is 

discussed in Subsection Error! Reference source not 

found.). 

Using the solution LΩ  of DARE in Eq.Error! Reference 

source not found., we can evaluate the observer gain:  

 
1)( −+ΩΩ= WCCCAL T

L

T

Lgain  (18) 

where W is the measurement noise covariance matrix. The 

feed-through gain L
ft

 can be found in the similar way. 

 

C. The formulation of the Discrete LQG controller 

By combining the solutions for the feedback and the observ-

er from the previous subsections, we can formulate the control-

ler as:  

])[ˆ][(][ˆ(][ kxCkyLkxKku ftgain −+−=  (19) 

])[ˆ][(][][ˆ]1[ˆ kxCkyLkBukxAkx gain −++=+ (20) 

A more convenient form for the implementation is:  

][][ˆ][ kyLkxku gain+Υ−=         (21) 

][][ˆ]1[ˆ kykxkx Γ+Ψ=+          (22) 

where:  

 CLK ftgain +=Υ            (23) 

 )( CLKBCLA ftgaingain +−−=Ψ   (24) 

  ftgain BLL +=Γ            (25) 

The controller can then be converted to the transfer function 

representation, which is easier for practical implementation:  

 ftLzIzC +ΓΨ−Υ= −1)()(      (26) 

In the numerical experiments, the controller is used in the 

form of Eq. Error! Reference source not found.. 

 

IV. INITIAL PARAMETERS OF THE NUMERICAL SIMULATIONS 

The goals of the numerical simulations are 1) to establish 

the correspondence between the noise in the WFS and the 

measurement noise and 2) evaluate the influence of the meas-

urement noise on the performance of the discrete LQG control-

ler. The cases of bright, medium, and dim guide star corre-

spond to high, medium, and low level photosensor signals, re-

spectively. The variance of the measurement noise is estimated 

using the optical simulator.  

 

A. Output disturbance (atmospheric turbulence) 

The atmospheric disturbance is simulated as an AR(2) pro-

cess. This model describes the atmospheric turbulence with a 

Kolmogorov-type power spectrum. A white noise process with 

a standard deviation of 500nm was used as an input for the 

output disturbance.  

 

B. Parameters of the simulated plant 

The model of a Shack-Hartmann WFS with 32x32 lenslets 
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is used in the numerical simulations. The sampling period of 

the WFS is 
310−

=T f  sec. The time delay introduced by the 

WFS is equivalent to 1 frame. Such parameters can be consid-

ered typical for adaptive optics systems. 

The DM was represented by the dynamics of the actuators 

according to Eq. Error! Reference source not found.:  

   
1/

1
)(

+
=

as
sGDM           (27) 

where the parameter a was 
310*2 . In the current simula-

tions, the SISO case of zonal control is considered and the 

coupling between the actuators in the DM is neglected. 

The discrete LQG controller was formulated as described in 

Section III. The wavefront sensor was assumed to have a delay 

equal to 0.9 of the sampling time, that is fd Tm)(n=τ ⋅−  , 

where n=1 and m=0.1. 

 

V. DERIVATION OF THE EQUIVALENT MEASUREMENT NOISE 

FROM THE PHOTOSENSOR NOISE 

The noise is added by the photosensor to the intermediate 

data that are used for the reconstruction of the signal. The 

noise is signal-dependent, which means that the amount of 

noise will vary depending on the ADC and the signal level. 

 

A. The relationship between the photosensor noise and the 

measurement noise 

The correspondence of the photosensor noise and the meas-

urement noise is difficult to elaborate analytically. This is due 

to the photosensor noise being added to the intensity image I, 

which is produced by the lenslets of the Shack-Hartman WFS. 

The intensity image I is used for the calculation of centroid 

coordinates )y,(x kk :  

 ∑
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where N is the photosensor noise; N
1

 is the centroid noise 

due to the noise in the intensity image I that is used for the cal-

culation of turbulent and reference centroid coordinates. 

Therefore, one needs to simulate the complete acquisition and 

reconstruction process in order to evaluate the measurement 

noise levels. 

 

B. The procedure for evaluation of measurement noise 

Many sources of noise contribute to the resulting image 

produced by photosensors. A simple noise model[14] can be 

established using photo response non-uniformity (PRNU), 

photon shot noise, read noise, dark current Fixed Pattern Noise 

and dark current shot noise. However, other noise sources 

must be considered to form a more comprehensive model. The 

comprehensive model of the CCD photosensor[8] was used to 

obtain the different noise levels in the signal from the photo-

sensor.  

We have considered the cases of bright, medium, and dim 

guidestars. The light noise, namely photon shot noise and pho-

to-response non-uniformity (PRNU), was considered. The 

equivalent measurement noise was evaluated for the case of ei-

ther 8 or 10 bit photosensor ADC’s in the WFS. 

The noise was generated as follows. First, one layer of tur-

bulence with Kolmogorov spectrum was generated and sensed 

with the model of the WFS; no noise was added by the photo-

sensor model at this time. Next, the same wavefront was 

sensed with the model of a photosensor that added the photon 

shot noise and the PRNU noise. After each “acquisition” by 

the model of the photosensor, the numerical model of the ADC 

performed the quantisation at either 8 or 10 bit. Then the two 

wavefronts were subtracted from each other, and the standard 

deviation of the remainder signal was calculated. Such a pro-

cedure was repeated 32 times in order to obtain an averaged 

noise level. 

 

C. Results on the evaluation of equivalent measurement 

noise 

The results for the measurement noise in cases of either 8 or 

10 bit photosensor ADC are summarised in Fig. 1. One can see 

that the measurement noise levels are similar in both cases. In 

the absence of the measurement noise, the residual signal (re-

sidual wavefront) is estimated as 46.2 nm in the case of 2 

frames delays and a turbulence standard deviation of 500 nm. 

 
Figure 1: The equivalent measurement noise versus light 

noise level for the case of 8 and 10 bit ADC in the wavefront 

sensor. 
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Figure 2: Probability density function of the measurement 

noise for the case of photon shot noise and PRNU 5% (worst 

case scenario).  

 

The probability density of the measurement noise, which is 

similar for both the 8 and 10 bit case, is shown in Fig. 2. These 

noise parameters are used for the evaluation of the influence of 

the measurement noise on the discrete LQG controller perfor-

mance in further Subsection Error! Reference source not 

found.. 

 

 

VI. RESULTS ON SIMULATION OF THE MEASUREMENT NOISE 

INFLUENCE ON THE PERFORMANCE OF A DISCRETE LQG CON-

TROLLER 

The equivalent measurement noise values were used for the 

numerical simulations in order to establish the impact on the 

residual signal in the LQG control system. The cases of 8 and 

10 bit ADC’s of the WFS photosensor were considered as the-

se are the usual choices in the design of a modern WFS. The 

duration of the simulation was set to 3 seconds, with 3000 data 

points collected for each run (16 runs were performed for each 

parameter set). 

 
Figure 3: The performance of the discrete LQG controller in 

the presence of the measurement noise: the residual signal (un-

compensated atmospheric turbulence) level versus the noise in 

the photosensor noise. 

 

The residual noise value, which is the standard deviation of 

the residual signal, is shown in Fig. 3. The probability density 

for the residual noise is provided in Fig. 4. These results can 

be interpreted as the remaining uncompensated atmospheric 

turbulence (output disturbance) that degrades the astronomical 

images. Ideally, the residual level of the signal should be zero; 

however, even in the absence of measurement noise, the resid-

ual signal (residual wavefront) is estimated as 46 nm due to the 

2 frame delay in the system. 

 

The results in Fig. 3 can be represented using the Strehl ratio 

from Eq. Error! Reference source not found.. As above, 

even in the absence of noise, the residual signal is about 46 nm 

which gives a Strehl ratio S=0.69. In the presence of measure-

ment noise, the residual signal will increase by the values that 

are presented in Fig. 1 (these values correspond to the photo-

sensor noise and do not include the noise due to time delays). 

 
Figure 4: Probability density function of the residual noise 

for the case of CCD photosensor with 10 bit ADC, photon shot 

noise and PRNU 5% (worst case scenario). 

 

The LQG controller reduces the noise to the levels, present-

ed in Fig. 3. The results are summarised in Table 1 in the form 

of the noise values and the corresponding Strehl ratio. The re-

sults summarised in Table 1 show that the LQG controller con-

siderably attenuates the measurement noise, even in the case of 

relatively strong noise (photon shot noise and 5% PRNU 

noise). 

  

Table 1: The performance of the discrete LQG controller: 

measurement noise influence on the Strehl ratio 

 

Noise Open-loop Closed-loop 

type  (LQG) 

 equivalent Strehl Residual Strehl 

 noise, nm ratio signal, nm ratio 

Bright guidestar���shot 

noise 

 

shot noise 49.5 0.65 46.9 0.68 
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shot + PRNU 55.6 0.57 47.1 0.68 

Medium brightness guidestar���shot 

noise 

 

shot noise 61.3 0.49 48.2 0.66 

shot + PRNU 63.3 0.46 48.7 0.66 

Dim guidestar���shot 

noise 

 

shot noise 111.3 0.01 73.5 0.33 

shot + PRNU 111.5 0.01 73.9 0.32 

  

 

VII.  RESULTS DISCUSSION 

The results on the performance of the LQG controller in this 

paper are presented for the decoupled system, that is, for the 

model of a deformable mirror (DM) where the influence of ac-

tuators on their neighbours is neglected. However, in a real 

continuous faceplate DM, the coupling can be considerable. 

The appropriateness of the decoupled model is discussed fur-

ther with the reformulation of the Linear Quadratic Gaussian 

(also called Infinite Horizon) controller in the Receding Hori-

zon Control fashion.  

 

A. Connection between Infinite and Receding Horizon Con-

trol 

The minimisation of the cost function (performance index) 

from Eq. Error! Reference source not found. can be per-

formed through Riccati equations as well as using the Reced-

ing Horizon Control formalism[15]. The cost function is:  

 RUUQXXCxCxJ
TTTT

2
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2
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2

1
++=  (29) 

where pN  is a state prediction horizon, and cN  is a con-

trol prediction horizon.  

We define matrices Γ  and Ω  as: 
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The state vector can be expressed as:  

 

xUX Ω+Γ=               (30) 

 

Substituting (Error! Reference source not found.) into the 

cost function (Error! Reference source not found.) we ob-

tain:  

FxUHUUVJ
TT ++=

2

1
 (31) 

where the term V  is independent of U. The Hessian matrix 

H and the matrix F are defined as:  

 

 ΩΓ=+ΓΓ= QFRQH
TT ,    (32) 

 

In the unconstrained case, the cost function in (Error! Ref-

erence source not found.) is minimised when:  

 

 xKFxHU gainMPC

opt

.

1 −=−= −
 (33) 

 

where x is typically replaced by the vector of estimated 

states obtained by a Kalman filter. 

It is easy to verify [16] that the eigenvalues of the discrete-

time MPC system are almost identical to those obtained from 

discrete LQR system. 

 

B.  Validity of the decoupled model in case of coupling be-

tween nearest neighbour actuators in deformable mirror 

In the case when there is no coupling between actuators, the 

Hessian of the decoupled problem is diagonal and therefore 

very sparse (98% of elements are zeros). The matrix is normal-

ised for illustrative purpose, and the zero elements are repre-

sented in white to stress the sparse structure. The coupling be-

tween the nearest actuators makes the dynamics more com-

plex, which is reflected in the structure of the Hessian matrix.  

The validity of decoupled control in the case of actuator 

coupling can be assessed by thresholding the Hessian matrix of 

the coupled model. We use the thresholded Hessian matrix to 

generate control signals for the coupled (un-thresholded) plant 

model (i.e., coupled actuators of the deformable mirror).  

We measured the standard deviation of the residual uncom-

pensated disturbance as a function of the threshold value to 

find a suitable threshold level. The value of the threshold was 

calculated as 
nHdiag −= 10*))(max(τ , where H is the 

Hessian matrix. The elements of matrix X that was less than 

the threshold was zeroed.  

 
Figure 5: The influence of the threshold level on sparsity of 

the Hessian matrix H and disturbance rejection performance. 

 

Application of a threshold up to 
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1

. 10*))(max( −= HdiagsafeHτ increases the sparsity of the 

Hessian from 79% to 92%. Such a threshold does not influ-

ence the disturbance rejection performance: the output disturb-

ance is rejected by 94%.  

However, starting from the thresh-

old
9.0

. 10*))(max( −= HdiagunsafeHτ , the performance of 

the RHC controller drops from 94% to 65%. This is because 

we try to control a coupled plant assuming a decoupled (exces-

sively thresholded) model[17]. Excessive thresholding of ma-

trices brings them closer to the decoupled case that leads to 

mismodelling (i.e., the coupled plant is controlled assuming a 

decoupled model). Such a mismodelling causes inferior per-

formance of the RHC controller. That is, although the decou-

pled model can be used to control the coupled plant, the dis-

turbance rejection performance of the controller will be inferi-

or. The decoupled model is used in the simulations to study the 

effects of the realistic measurement noise and the model mis-

match separately. 

 

VIII. NUMERICAL STABILITY OF THE OPTIMAL CONTROL FOR 

ADAPTIVE OPTICS SYSTEMS 

A typical deformable mirror for the adaptive optics system 

may consist of thousands of actuators, and therefore the matri-

ces of the LQG controller can be very large. Although most of 

the calculations are performed off-line, the evaluation of the 

control matrices can be difficult due to the finite precision of 

the computations.  

Consider the effect of a sensor delay. The state space model 

of a two cycle delay[12] in output y is the following:  

 

][][]1[ kuBkxAkx augaugaugaug +=+    (34) 

 ][][ kxCky augaugd =            (35) 

 

where the augmented matrices are: 
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Here y
d

 is the output y that is delayed by two cycles. 

Due to augmentation of the state matrices, there may be nu-

merical problems in solving of the corresponding DARE for 

the LQR. This issue is considered in the subsections below. 

 

A.  Numerical stability of the Riccati equations for Infinite 

Horizon Control 

In the standard LQR formulation, the weight matrix 

Q=C
T

C=[C
sys

   C
atm

]
T

[C
sys

   C
atm

], which is used in the 

cost function in Eq.Error! Reference source not found., may 

loose the positive semi-definiteness and become ill-

conditioned. This may cause problems with finite precision 

computations for the DARE solvers. The matrix elements that 

correspond to the output disturbance are small compared to the 

plant elements (see Fig. 6). The determinant of the matrix Q 

for the solution of Riccati equation can be close to zero and in 

turn leads to numerical problems in solving the Riccati equa-

tions.  

Consider the singular value decomposition (SVD) of the 

matrix Q . Define the condition number[18] as 

minmax=κ(Q) σσ / . Even in case of no time delays, the 

condition number for the matrix Q is of order 
15105 ⋅≈κ(Q) for the 5x5 actuator model (this value is ob-

tained with diagonal loading of 1 eps). This is not surprise 

since the matrix Q contains many zeros (or very small num-

bers) on the main diagonal.  

Similar problem occurs with the 
T

GG=V  , where 
T

atm ]B,[=G 0 . The matrix V is used for the calculation of 

steady-state Kalman estimator. The condition number for the 

matrix V is of order 
9105 ⋅≈κ(Q)  for the 5x5 actuator mod-

el (see Fig. 7). As before, the value is obtained with diagonal 

loading of 1eps, otherwise ∞+=κ(V) since the smallest ei-

genvalue is zero. 

 

 
Figure 6: The structure of the matrix Q for the LQR (the 

matrix is normalised for illustrative purposes. 
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Figure 7: The structure of the matrix V=GG
T

 for the LQR 

(the matrix is normalised for illustrative purposes. 

 

The algorithm that is implemented in the MATLAB’s 

DARE routine uses the QZ algorithm[19] to deflate the ex-

tended symplectic pencil and compute its stable invariant sub-

space. In case of poor conditioning, as described above, the 

algorithm often terminates with error: evaluation of eigenval-

ues is numerically unstable because the spectrum is too near 

the imaginary axis. 

Augmentation of the state matrices (see Eq. Error! Refer-

ence source not found.) for accounting the delays of two cy-

cles (typical for adaptive optics system) does not noticeable 

change the numerical properties of the matrices Q
aug

 and V. 

The problems with the conditioning remain the same: 
9101⋅≈)κ(Qaug  and 

9101⋅≈κ(V)  .  

 

A. Circumventing the numerical stability problem in case of 

LQR 

 Since the condition number κ(Q)  can be large, indicating 

possible numerical problems, the regularisation of the 

weighting matrix Q is therefore necessary. One can use the di-

agonal loading technique for the regularisation that is analo-

gous to Tikhonov regularisation[20]:  

 

 IQQ δ+=  (38) 

 

where δ  is the regularisation term, and I is an identity ma-

trix. By increasing the regularisation term in Eq. Error! Ref-

erence source not found. to 
710 , the condition number 

κ(Q)  has been reduced to 10
5

. However, by that point the 

calculated LQG controller becomes unstable.  

To summarise, we can say that the numerical properties of 

the augmented matrices Q and V, which are used for state 

feedback and state estimator respectively, are prone to numeri-

cal problems. Although the numerical problems can be allevi-

ated (e.g., diagonal loading), a better solution would be to use 

alternative formulation of the optimal control. The most attrac-

tive technique for the optimal control formulation is Receding 

Horizon Control formalism. 

 

 B.  Numerical stability of matrices in the Receding Horizon 

Control formulation 

Receding Horizon Control (RHC) in the standard formula-

tion uses two composite matrices to solve the quadratic opti-

misation problem, namely RQH T +ΓΓ=  and 

ΩΓ= QF T
. Therefore, the numerical stability of the solu-

tion for the optimal control will depend on the numerical prop-

erties of those matrices.  

In the case when no augmentation is performed for the time 

delays (undelayed case), the condition numbers for the are 

Hessian matrix H and F-matrix are 3.1=κ(H)  and 

3.1=κ(F)  for the case of 5x5 actuators. This is a considera-

ble improvement in the numerical properties of the matrices 

over the conventional LQR formulation (as seen in the subsec-

tion above). The structure of the matrices is shown in Fig.8 

and Fig.9 for the Hessian and F matrix respectively. 

The augmentation of the RHC matrices has been performed 

in the similar way as LQR matrices. The size of the F matrix 

enlarged accordingly, while the size of the Hessian remains the 

same. More important is that the condition number of aug-

mented matrices does not change; that is, the optimization 

problem remains strictly convex. This makes the formulation 

of the RHC preferable over the LQR for practical implementa-

tion of the optimal controllers in adaptive optics, particularly 

in a sense of numerical computations. 

 
Figure 8: The structure of the Hessian matrix H for the 

RHC. 
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Figure 9: The structure of the matrix F for the RHC. 

 

The observed numerical properties of the RHC matrices 

suggest that the problem is strongly convex and therefore the 

QP algorithms will guarantee the convergence to a unique so-

lution[17]. 

 

IX. CONCLUSIONS 

In this paper we presented the results of numerical simula-

tions for the optimal control of an adaptive optics system in the 

presence of realistic measurement noise. We used a previously 

developed comprehensive model of the CCD photosensor to 

establish the correspondence between the noise in the wave-

front sensor and the measurement noise in the control system. 

The influence of the noise on the performance of the LQG 

controller for the adaptive optics system was considered. The 

article also provides a discussion on the numerical stability of 

the discrete controller. 

The performance of the formulated LQG controller was es-

timated for the case of dim, medium and bright guidestars. Ac-

cording to the results of the numerical simulations, the equiva-

lent noise levels for 8 and 10 bit photosensor ADC are very 

similar. However, the impact of the photo-response non-

uniformity of the photosensor was expected to be more signifi-

cant: the Strehl ratio was about 0.66 (out of 1). The perfor-

mance of the LQG controller in case of strong measurement 

noise was expected to be worse, yet the Strehl ratio was esti-

mated as 0.33. This can be considered as reasonably good per-

formance, especially as the measurement noise is very large. 

From the implementation perspective, we found that the Re-

ceding Horizon Control (RHC) formulation is less prone to 

numerical problems than the classical LQR formulation. The 

Hessian matrix is very well conditioned and sparse, which can 

be exploited in many quadratic optimisation algorithms. 

The numerical simulations show promising results of the 

performance of the discrete LQG controller even in case of a 

strong measurement noise. The RHC formulation of the con-

trol problem seems to be preferable due to better numerical 

stability of the resulting matrices.  

 

REFERENCES 

[1] E. Gendron and P. Léna, “Astronomical adaptive optics. II. Experimental 

results of an optimized modal control.” Astronomy and Astrophysics Supple-

ment Series, vol. 111, p. 153, 1995. 

[2] C. Dessenne, P. Madec, and G. Rousset, “Optimization of a predictive 

controller for closed-loop adaptive optics,” Applied optics, vol. 37, no. 21, pp. 

4623–4633, 1998. 

[3] R. N. Paschall and D. J. Anderson, “Linear quadratic gaussian control of a 

deformable mirror adaptive optics system with time-delayed measurements,” 

Appl. Opt., vol. 32, no. 31, pp. 6347–6358, Nov 1993. 

[4] B. Le Roux, J. Conan, C. Kulcsár, H. Raynaud, L. Mugnier, and T. Fusco, 

“Optimal control law for classical and multiconjugate adaptive optics,” Jour-

nal of the Optical Society of America A, vol. 21, no. 7, pp. 1261–1276, 2004. 

[5] C. Petit, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, T. Fusco, J. Montri, and 

D. Rabaud, “Optimal control for multi-conjugate adaptive optics,” Comptes 

Rendus Physique, vol. 6, no. 10, pp. 1059 – 1069, 2005. 

[6] K. Hinnen, M. Verhaegen, and N. Doelman, “A data-driven H2-optimal 

control approach for adaptive optics,” IEEE Transactions on Control Systems 

Technology, vol. 16, no. 3, pp. 381–395, 2008. 

[7] C. Petit, J. Conan, C. Kulcsár, H. Raynaud, T. Fusco, J. Montri, 

F. Chemla, and D. Rabaud, “Off-axis adaptive optics with optimal control: 

experimental and numerical validation,” in Proceedings of SPIE, volume 

5903, pages 59030P, 2005. 

[8] M. V. Konnik and J. Welsh, “On numerical simulation of high-speed 

ccd/cmos-based wavefront sensors in adaptive optics,” in Proceedings of 

SPIE Optical Engineering + Applications, San Diego, CA, paper 8149-15, 

2011. 

[9] A. Wirth, J. Navetta, D. Looze, S. Hippler, A. Glindemann, and 

D. Hamilton, “Real-time modal control implementation for adaptive optics,” 

Applied optics, vol. 37, no. 21, pp. 4586–4597, 1998. 

[10] C. Petit, S. Meimon, T. Fusco, C. Kulcsár, and H.-F. Raynaud, “Hybrid 

LQG/integrator control for the VLT eXtreme AO system SPHERE,” in IEEE 

International Conference on Control Applications, Yokohama, Japan, Sep-

tember 8-10, 2010. 

[11] U. Frisch, Turbulence: the legacy of A.N. Kolmogorov. Cambridge 

University Press, 1995. 

[12] G. Franklin, D. Powell, and M. Workman, Digital control of dynamic 

systems. Addison-Wesley; 3rd edition, 1997. 

[13] A. Maréchal, “Study of the combined effects of diffraction and geomet-

rical aberrations on the image of a luminous point,” Rev d’Optique, vol. 26, 

pp. 257–277, 1947. 

[14] Gerald Holst, CCD arrays, cameras, and displays.JCD Publishing, 

1998. 

[15] Graham Clifford Goodwin, Maria Marta Seron, and José De Doná, 

Constrained Control and Estimation: An Optimisation Approach. Springer, 

Berlin, 2005. 

[16] L. Wang, Model predictive control system design and implementation 

using MATLAB. Springer Verlag, 2009. 

[17] Mikhail V. Konnik, José De Doná, and James Stuart Welsh, “On appli-

cation of constrained receding horizon control in astronomical adaptive op-

tics,” in Proceedings of SPIE Astronomical Telescopes + Instrumentation - 

Adaptive Optics Systems III, vol. 8447-110, 2012. 

[18] G. Stewart, Introduction to matrix computations.1em plus 0.5em minus 

0.4emAcademic press New York, 1973. 

[19] I. Arnold, W.F. and A. Laub, “Generalized eigenproblem algorithms 

and software for algebraic riccati equations,” Proceedings of the IEEE, 

vol. 72, no. 12, pp. 1746 – 1754, dec. 1984. 

[20] C. Lawson and R. Hanson, Solving least squares problems., Society for 

Industrial and Applied Mathematics, 1995. 

 

 

 

 

 

 

 

 

 

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

84 © 2012 GSTF



 

 

Mikhail V. Konnik was born in Moscow, Russia, 

in 1982. He received the M.S. degree in Physics 

from Moscow Engineering Physics Institute 

(MEPhI), Russia, in 2006. From 2006 to 2010 he 

was a Senior Engineer in Laser Physics Depart-

ment, MEPhI, Russia. His research interests include 

optical-digital systems and control problems in 

adaptive optics. 

He is currently working towards the Ph.D. degree in 

Electrical Engineering in the University of Newcas-

tle, Australia.  

 

 

 

James S. Welsh was born in Maitland, Australia, 

in 1965. He received the B.E. degree (Hons. I) in 

electrical engineering from The University of 

Newcastle, Callaghan, NSW, Australia, in 1997. 

Dr. Welsh received his PhD which focused on ill-

conditioning problems arising in system identifi-

cation in 2004 from the same university.  

 

During the last several years, he has been actively 

involved in research projects which include, 

Powertrain Control, Model Predictive Control and 

System Identification Toolboxes, with the Centre for Complex Dynamic Sys-

tems and Control, the University of Newcastle. His research interests include 

auto-tuning, system identification, and process control. Dr Welsh is currently 

employed as a Senior Lecturer in the School of Electrical Engineering and 

Computer Science at the University of Newcastle. 

 

GSTF Journal on Computing (JoC) Vol.2 No.3, October 2012

85 © 2012 GSTF




