



Abstract—As RIA (Rich Internet Application) technologies

have been widely used, the compatibility problem has arisen:

they are hardly compatible with each other. To solve the

problem, we have proposed and implemented an automatic RIA

transformation system named Web-IR, which uses an

XML-based intermediate representation with a Java-based

framework. As concrete examples, Web-IR currently supports

Ajax, Flex, JavaFX, and OpenLaszlo as its input/output. Our

evaluations show that Web-IR can transform existing real

applications into other RIA technologies keeping almost the

same appearances. Finally, we conclude that Web-IR can solve

the problem sufficiently.

Index Terms—Software design, Software maintenance,

Software reusability, Web design

I. INTRODUCTION

As RIA (Rich Internet Application) technologies have been

widely used, the compatibility problem has arisen: they are

hardly compatible with each other. Since there are already a

large number of RIA technologies such as Ajax, Flex,

Silverlight, JavaFX [11], OpenLaszlo [9], and HTML5, we

can develop RIAs easily by using any of them. However, there

is no common specification among RIA technologies, which

means that they do not have compatibility with each other.

Although the lack of the compatibility may not be considered

problematic in personal use, it causes serious problems in

business use; if one of RIA technologies becomes obsolete,

the existing RIAs developed by the obsoleted technology will

be required to be redeveloped by using another RIA

technology in order to continue the support for the existing

users. It obviously consumes time and costs to redevelop

existing RIAs from scratch, especially in case of

redevelopment of business applications, because they tend to

have a large number of Web pages and UI (User Interface)

components.

The purpose of this paper is to solve the problem by

proposing an intermediate representation and a framework.

Although it is classical to use intermediate representations in

order to solve compatibility problems, few attempts have

been made in this area of RIA technologies. Here, we have

addressed the problem, especially focusing on UI information

of RIAs. Our proposed method is the following: transforming

an input RIA into an XML-based intermediate representation,

Manuscript received February 29, 2012.

Tomokazu Hayakawa, Shinya Hasegawa, Shota Yoshika, and Teruo

Hikita are with the School of Science and Technology, Meiji University,

Kawasaki, 214-8571, Japan (e-mail: {t_haya, s-hase, yoshika,

hikita}@cs.meiji.ac.jp).

and transforming the transformed intermediate representation

into another RIA; both the transformations are performed by a

Java-based framework that we have built. We have named the

intermediate representation IR and our system Web-IR.

Web-IR consists of the intermediate representation and the

framework, and it aims to realize any-to-any RIA

transformations. The framework of Web-IR can currently

transform Ajax and Flex into the intermediate representation,

and it can also transform the transformed intermediate

representation into HTML5, OpenLaszlo, and JavaFX. The

key ideas of Web-IR are the following: using the XML-based

intermediate representation to maximize extensibility and

interchangeability of the information of input RIAs, and

providing the Java-based extensible framework to help

developers easily transform RIAs into others through the

intermediate representation.

In this paper, we mainly describe the results of our

evaluations of Web-IR, because we already described in [8]

an overview of the design and implementation of Web-IR and

their details in [7]. The results show that Web-IR can save

developers' time and costs, especially when they redevelop

existing RIAs.

The rest of this paper is organized as follows. Section II

introduces related work. Section III outlines an overview of

Web-IR. Sections IV and V describe the intermediate

representation and the framework, respectively. Section VI

shows the results of our evaluations. Section VII presents the

conclusion.

II. RELATED WORK

In this section, we summarize previous works related to our

study. However, there seem few studies that solve the

compatibility problem by using a framework and an

intermediate representation in which all of the information of

an input RIA is held. Hence, we summarize relatively similar

works in the next two subsections, and explain the main

differences between them and our study in the subsection C.

A. RIA Related Frameworks

Yu, Kontogiannis, and Lau [13] proposed a Java-based

framework, which generates input-equivalent MVC

applications by applying reengineering techniques to solve

porting and adaptation problems of existing Web applications.

Zhang and Chen [14] proposed a Web application framework

based on MVC model, which uses XML to extend its

flexibility.

Maintaining Web Applications by Translating

Among Different RIA Technologies

Tomokazu Hayakawa, Shinya Hasegawa, Shota Yoshika, and Teruo Hikita

DOI: 10.5176_2010-2283_2.1.158

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

250 © 2012 GSTF

B. Existing RIA Translation Services

Adobe Systems has released a RIA transformation service

named Wallaby [1], which transforms Adobe Flash

Professional (FLA) files into HTML. In addition, Google has

also released a similar RIA transformation service named

Swiffy [5], which transforms Flash (SWF) files into HTML5.

C. Differences between Previous Works and Ours

One of the main differences between the previous works

and ours is that Web-IR is designed to be highly extensible

with less production costs. For example, our intermediate

representation can be extended by adding arbitrary XML

elements (e.g., <calendar>), and our framework can also

be extended by adding new classes or by extending the

existing classes.

III. SYSTEM OVERVIEW

A. Objectives

One of the main objectives of our system is to provide a

way of RIA transformation, especially that for UI information

of RIAs, with less production costs. This is so because recent

Web applications are implemented by using one or more of

RIA technologies, and we will need to update such

applications by using another RIA technology when a RIA

technology used for existing applications becomes obsolete.

We often meet such situations, especially in business. (For

example, Adobe Systems has decided to discontinue the

development of the Flash Player for mobile devices except for

bug fixes and security updates [2].)

B. Overview

Fig. 1 shows an overview of our system. As the figure

shows, it consists of two parts: an XML-based intermediate

representation and a Java-based framework; the framework

transforms an input RIA into supported RIAs as output

through the intermediate representation. Web-IR can

currently treat Ajax and Flex 4.5 as input, and it can also treat

HTML5, JavaFX 2.0 (beta), and OpenLaszlo 4.9 as output.

Moreover, Web-IR has extensibility to treat other RIA

technologies, if necessary.

C. Example of Usage

Fig. 2 and Fig. 3 show sample Web pages before the

transformation, which are rendered by different Web

browsers. Fig. 4 shows the corresponding JavaFX page

transformed by the framework. As these figures show, the

framework can transform a Web page into another only with a

slight UI difference. Fig. 5 shows a Java code fragment that

performs the transformation of this example, which shows

that we can transform RIAs into others with a few lines of

code by using Web-IR as long as the framework supports both

the input and the output RIA technologies.

IV. INTERMEDIATE REPRESENTATION

A. The Reason for Using Intermediate Representation

We have decided to design and use our original

intermediate representation; we have named it IR. The reason

is the following: existing RIA technologies are not seemed to

be suitable for our purpose because they are not that sufficient

Fig. 1. Overview of Our Proposed System.

Fig. 2. Sample Web Page Rendered by IE 9 (before Transformation).

Fig. 3. Sample Web Page Rendered by Firefox 6 (before Transformation).

Fig. 4. Transformed JavaFX Page (after Transformation).

// Get an ApplicationReader to read an Ajax as input.

ApplicationReader src = ApplicationReaders.newInstance("Ajax");

// Read an Ajax from the URI passed as the argument.

Application app1 = src.read("file://...(URI)");

// Get a Translator to translate the Ajax into IR.

Translator translator1 = Translators.newInstance("Ajax", "IR");

// Translate the Ajax into IR.

Application app2 = translator1.translate(app1);

// Get a Translator to translate the IR into JavaFX.

Translator translator2 = Translators.newInstance("IR", "JavaFX");

// Translate the IR into JavaFX.

Application app3 = translator2.translate(app2);

// Get an ApplicationWriter to write the translated JavaFX as output.

ApplicationWriter dst = ApplicationWriters.newInstance("JavaFX");

// Write the translated JavaFX to the URI passed as the argument.

dst.write(app3, "file://...(URI)");

 Fig. 5. Java Code Fragment (from Ajax to JavaFX via IR).

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

251 © 2012 GSTF

to represent other RIAs, since they are not designed as

intermediate representation; even if we choose one of existing

RIA technologies, it may lead our system to "vendor lock-in."

B. Overview

IR is based on XML to maximize extensibility and

interchangeability of the information of input RIAs, and it

consists of four parts: meta information, widget information,

style information, and behavior information. This is so

because we have considered that the information of a Web

application can be classified into the four parts. In case of

Ajax, for example, HTML, CSS, and JavaScript correspond

to the widget information, the style information, and the

behavior information, respectively; some HTML elements

(e.g., <title>) correspond to the meta information.

Fig. 6 shows the skeleton of IR. As the figure shows, IR has

<application> element as its root, and it also has four

elements (<meta>, <widget>, <style>, and

<behavior>) to store the four kinds of information

separately. The elements that can be used in each part are

explained in the next subsection.

C. Detail of Intermediate Representation

1) Meta Part

The meta part contains meta information of a RIA, which is

not to be included in the other parts. Table I shows the

currently supported elements.

2) Widget Part

Table II shows the list of the UI elements of IR (in which

minor elements and attributes are omitted). These elements

are chosen to be the intersection among the sets of the UI

widgets of the RIA technologies that are supported by

Web-IR.

3) Style Part

In the style part, IR uses CSS 2.1 as its description language,

because almost all RIA technologies use CSS to define their

styles. The CSS information is stored as XML to enable easy

transformation of the style information.

Fig. 7 and Fig. 8 show that how the style information is

treated in both format, CSS 2.1 and IR. As shown in the

figures, <rule>, <selector>, <property>, <name>,

and <value> elements are used to express the style rules.

4) Behavior Part

In the behavior part, behavior information such as a click

event of a button is stored as ECMAScript, because it is the

most common description language among the current RIA

technologies, which means that developers can easily

understand and change the behavior information of IR, if

necessary.

D. Examples: IR to OpenLaszlo, Flex, and JavaFX

Fig. 9, Fig. 10, and Fig. 11 show the appearances of the UI

widgets of Web-IR; they are automatically transformed from

the single IR shown in Fig. 12 into OpenLaszlo, HTML5, and

JavaFX, respectively. We can see from these figures that we

can easily develop multiple RIAs with a slight UI difference

from a single source by using Web-IR.

<?xml version="1.0" encoding="UTF-8"?>

<application>

 <meta>

 <!-- meta information -->

 </meta>

 <widget>

 <!-- widget information -->

 </widget>

 <style>

 <!-- style information -->

 </style>

 <behavior>

 <!-- behavior information -->

 </behavior>

</application>

 Fig. 6. Skeleton of Intermediate Representation.

TABLE II

WIDGET ELEMENTS OF INTERMEDIATE REPRESENTATION.

Element Name Description

anchor An anchor widget (such as <a> in HTML).

button A button widget.

checkbox A checkbox widget.

hbox An invisible box that aligns its children horizontally.

hr A horizontal line.

image An image widget that shows an image.

list A list widget that shows its child widgets.

menu A menu widget that shows its children as menu items.

radiobutton A radio button widget.

scrollbar A scrollbar widget.

select A selection box widget.

slider A slider widget.

space An invisible widget to reserve space.

table A table widget.

text A read-only single-line text widget.

textarea A text area with multiple lines.

textbox A text area with a single line.

tooltip A tooltip that shows a text when the cursor moves on it.

vbox An invisible box that aligns its children vertically.

TABLE I

META ELEMENTS OF INTERMEDIATE REPRESENTATION.

Element Name Description

title The title of an input RIA.

charset The charset of an input RIA.

<rule>

 <selector>text</selector>

 <property>

 <name>font-size</name>

 <value>10pt</value>

 </property>

</rule>

Fig. 8. CSS Representation

Corresponding to Fig. 7 in

Intermediate Representation.

text {

 font-size: 10pt;

}

Fig. 7. Sample CSS 2.1.

Fig. 9. Transformed OpenLaszlo Page from

Intermediate Representation Shown in Fig. 12.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

252 © 2012 GSTF

V. FRAMEWORK

A. The Reason for Providing Framework

Since we have decided to use our original intermediate

representation, we also need to provide a corresponding

framework to ease the transformation between RIAs and the

intermediate representation. We have designed our

framework to be extensible by using the SPI (Service

Provider Interface) pattern [10], which improves flexibility

and extensibility; then we can easily change the behavior of

the transformation, or add a support for a new RIA technology

to the framework, if necessary.

B. Overview

In the transformation process of the framework, all of the

RIA information is represented as DOM-like trees, and they

are transformed by using the visitor pattern [4]. Fig. 14

(shown in Appendix) is the class diagram of the framework,

which currently consists of 135 classes and 19,144 lines of

code. Some of the important classes and interfaces are shown

in Table III. This class design makes the framework flexible

and extensible.

C. Transformation Algorithm

Fig. 13 shows an overview of the transformation algorithm

used in the framework, which is based on the visitor pattern.

In the figure, we assume that the input and the output are of

type Ajax and IR, respectively. In the visit method, we can

see that each element of the input RIA (in this example,

checkbox and text) requires a few lines of code to

perform the transformation; other kinds of information except

the behavior information can also be transformed by the same

fashion.

When transforming the behavior information, the current

support of the framework is not that sufficient to transform the

information perfectly. This is so because RIA technologies

have their own features, syntaxes, and semantics. Hence, we

recommend providing a library that emulates the behavior of

the output RIA, as we have done for Flash; such emulation

libraries increase the accuracy of the behavior transformation.

D. Other Implementations

Hasegawa, Hayakawa, and Hikita [6] have developed a

system by using the framework of Web-IR, which can

transform Ajax pages into Flash pages directly by using

OpenLaszlo. One of the unique features of the system is that it

uses a newly written Ajax emulation library to realize easy

transformation with almost equivalent behavior and UI

appearances. The system consists of 9 classes and 1,300 lines

TABLE III

IMPORTANT CLASSES AND INTERFACES OF FRAMEWORK.

Class/Interface Name Description

Application Represents a RIA.

ApplicationReader Represents a reader that reads an input as an

instance of Application.

ApplicationWriter Represents a writer that writes an instance of

Application as an output.

Translator Represents a translator.

VisitorTranslator Implements Translator by using the visitor

pattern.

Visitor Represents visitor used in the visitor pattern.

Fig. 12. Sample Intermediate Representation.

<?xml version="1.0" encoding="UTF-8"?>

<application>

 ...

 <widget>

 <vbox>

 <text>Intermediate Representation Sample</text>

 <hr />

 <hbox>

 <button>

 <text>button</text>

 </button>

 <radiobutton>

 <text>radiobutton</text>

 </radiobutton>

 <slider />

 </hbox>

 <hbox>

 <textbox />

 <anchor><text>anchor</text></anchor>

 <select>

 ...

 </select>

 </hbox>

 <hbox>

 <image src="duke.jpg" />

 <list>

 ...

 </list>

 <table>

 ...

 </table>

 <scrollbar />

 </hbox>

 <hbox>

 <checkbox>

 ...

 </checkbox>

 <menu>

 ...

 </menu>

 <textarea />

 </hbox>

</vbox>

 </widget>

 ...

</application>

Fig. 10. Transformed HTML5 Page from

Intermediate Representation Shown in Fig. 12.

Fig. 11. Transformed JavaFX Page from

Intermediate Representation Shown in Fig. 12.

/**

 * Pseudo code to describe the transformation

 * algorithm of the framework. In this example,

 * the input type is Ajax and the output type is IR.

 * @param e0 An HTML tag to be transformed.

 * @return A transformed IR element that is

 * equivalent to e0.

 */

Element visit(Element e0){

 switch(e0){

 case "<input type='checkbox'>":

 Element e1 = new Element("<checkbox>");

 while(e0.hasMoreChild()){

 e1.appendChild(visit(e0.nextChild()));

 }

 return e1;

 case "<input type='text'>":

 Element e1 = new Element("<textbox>");

 return e1;

 ...

 }

}

Fig. 13. Overview of Transformation Algorithm (Pseudo Code).

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

253 © 2012 GSTF

of code. In addition, Yoshika, Hayakawa, and Hikita [12]

have developed another system by using the same framework,

which can transform Flex pages into HTML5 pages directly.

The system consists of 56 classes and 3,181 lines of code.

These implementations show that our framework provides

an efficient way of developing RIA transformation systems.

VI. EVALUATIONS

A. Conversion Rate of RIA Information

To evaluate our system, we measured the conversion rate

between our intermediate representation and RIA

technologies. First, we examined statistics of the kind of RIA

technologies by choosing the top 10 sites (shown in Table IV)

from Alexa [3], which ranks the top 500 sites by the traffic on

the Web (as of September 5th, 2011). As a result, we found

that all the top 10 sites use Ajax. Thus, we chose Ajax as input

for the evaluation, and we also chose Flex for the sake of

comparison. Second, we counted the number of occurrences

of HTML tags and CSS properties by using our original

crawler, because they represent the UI information of Ajax.

Finally, we calculated the conversion rate by comparing both

the number of HTML tags and CSS properties that can be

transformed into IR, and vice versa.

1) Number of Occurrences of HTML Tags and CSS

Properties

Tables V and VI show the number of occurrences of

HTML tags and CSS properties, respectively. Table V shows

that <div> and are widely used; this is so because

Ajax uses them to identify data areas that are manipulated by

JavaScript. Moreover, Table VI shows that simple properties

are more commonly used than complex ones.

2) Conversion Rate of Widget Information

Table VII shows the conversion rate of widget information

between the input RIAs and the output RIAs through IR. As

the table shows, considering into account the number of

occurrences of the widgets in the top 10 sites, Web-IR can

transform over 90% of information of widgets of the input

RIAs except Flex. This is so because Flex has more than twice

UI widgets than IR; we can increase the rate by adding the

corresponding Flex widgets into IR, if necessary.

3) Conversion Rate of Style Information

Table VIII shows the conversion rate of style information

between the input RIAs and the output RIAs through IR. As

the table shows, Web-IR can transform only the part of the

CSS properties of RIAs except Ajax. This is so because CSS

has a large number of properties; although many of them are

not commonly used. As well as the widget information, we

can increase the rate by the same fashion, if necessary.

TABLE IV

TOP 10 WEB SITES ORDERED BY TRAFFIC.

Ranking Site Name URL

1 Google http://www.google.com/

2 Facebook http://www.facebook.com/

3 YouTube http://www.youtube.com/

4 Yahoo! http://www.yahoo.com/

5 Blogger.com http://www.blogspot.com/

6 Baidu.com http://www.baidu.com/

7 Wikipedia http://www.wikipedia.org/

8 Windows Live http://www.live.com/

9 Twitter http://www.twitter.com/

10 QQ.COM http://www.qq.com/

Source: Alexa Internet (www.alexa.com)

TABLE V

NUMBER OF OCCURRENCES OF HTML TAGS IN TOP 10 TRAFFIC SITES.

Ranking Tag Name
Number of

Occurrences
Rate (%)

1 a 1,482 27.15

2 div 1,290 23.63

3 span 828 15.17

4 img 376 6.89

5 li 313 5.73

6 br 298 5.46

7 button 146 2.67

8 script 106 1.94

9 p 70 1.28

10 option 67 1.22

11 input (hidden) a 54 0.98

12 ul 53 0.97

13 h3 30 0.54

14 h2 29 0.53

15 td 26 0.47

… … … …

 5,457 100.00
a
<input> with the type named "hidden" is used to send a text to Web

servers; it is not visible on the screen.

TABLE VII

CONVERSION RATE OF WIDGET INFORMATION.

Input

RIA

Output

RIA

Conversion

Rate (%)

Conversion Rate

Considering

Number of

Occurrences (%)

Ajax IR 80.6 93.8

Flex IR 44.0 N/A a

IR OpenLaszlo 100.0 100.0

IR HTML5 90.0 N/A b

IR JavaFX 100.0 100.0
a This cannot be calculated because we cannot count the number of

occurrences, since Flex applications are compiled as binary files.
b This cannot be calculated because the occurrences of IR are not available.

TABLE VIII

CONVERSION RATE OF STYLE INFORMATION.

Input

RIA

Output

RIA

Conversion

Rate (%)

Conversion Rate

Considering

Number of

Occurrences (%)

Ajax IR 100.0 100.0

Flex IR 33.3 N/A
a

IR OpenLaszlo 42.6 54.8

IR HTML5 100.0 100.0

IR JavaFX 62.3 95.8
a
 This cannot be calculated because we cannot count the number of

occurrences, since Flex applications are compiled as binary files.

TABLE VI

NUMBER OF OCCURRENCES OF CSS PROPERTIES IN TOP 10 TRAFFIC SITES.

Ranking Property Name
Number of

Occurrences
Rate (%)

1 width 1,235 7.44

2 padding 919 5.53

3 height 902 5.43

4 display 902 5.43

5 color 842 5.07

6 background 692 4.17

7 margin 605 3.64

8 font-size 575 3.46

9 background-
position

575 3.46

10 position 559 3.36

… … … …

 16,592 100.00

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

254 © 2012 GSTF

B. Comparison of Production Costs

We estimated the number of man-hours by developing

prototypes in order to evaluate our system in the following

two subsections.

1) Comparison of UI Development Costs

First, we estimated the man-hours with/without using

Web-IR. The conditions of the test are the following: the

testers developed sample UI pages that correspond to Fig. 9

and Fig. 11 from scratch by using OpenLaszlo and JavaFX,

and the testers are new to the RIA technologies. The results

show that JavaFX cost 1.0 man-hour as a learning cost, and

3.5 man-hours as a development cost. Likewise, OpenLaszlo

cost 1.0 man-hour as a learning cost, and 9.5 man-hours as a

development cost. On the other hand, by using Web-IR, the

testers completed the development in fifteen minutes.

Through this evaluation, we can say that even a simple

development of a RIA costs not a small number of man-hours

if developers are new to the RIA technology.

2) Comparison of Development Costs of UI

Transformation Systems

Table IX shows the production costs of our sample

development of RIA transformation systems, which indicates

that the man-hours and the lines of code are reduced to

approximately 2/3 by using the framework of Web-IR. We

consider this reason as follows: the framework provides an

efficient way for developers to develop RIA transformation

systems, since it is well-designed by using the well-known

design patterns such as the visitor pattern and the SPI pattern.

VII. CONCLUSION

In this paper, we have proposed the method that uses the

XML-based intermediate representation with the Java-based

framework in order to solve the RIA compatibility problems.

The results of the evaluations show that our method is

sufficient to solve the problem. On the other hand, our current

implementation provides limited support for the

transformation of behavior information; it remains as a matter

to be studied further to provide an effective way to overcome

the limit.

APPENDIX

REFERENCES

[1] Adobe Labs, “Wallaby,” Available:

http://labs.adobe.com/technologies/wallaby/

[2] Adobe Systems, “Flash to focus on PC browsing and mobile apps;

Adobe to more aggressively contribute to HTML5,” Available:

http://blogs.adobe.com/conversations/2011/11/flash-focus.html

[3] Alexa the Web Information Company, “Top Sites,” Available:

http://www.alexa.com/topsites

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:

elements of reusable object-oriented software,” Addison-Wesley

Professional, 1995.

[5] Google, “Swiffy,” Available:

http://www.google.com/doubleclick/studio/swiffy/

[6] S. Hasegawa, T. Hayakawa, and T. Hikita, “Implementation and

evaluation of Flash translation method for Ajax applications by RIA

translation framework,” The 74th National Convention of IPSJ, 2012

(in Japanese).

[7] T. Hayakawa, S. Hasegawa, S. Yoshika, and T. Hikita, “Design and

evaluation of intermediate representation and framework for

maintaining Web applications,” DPS-149(12), IPSJ SIG Notes, 2011

(in Japanese).

[8] T. Hayakawa, S. Hasegawa, and T. Hikita, “Design and

implementation of intermediate representation and framework for Web

applications,” 2nd World Congress on Computer Science and

Information Engineering (CSIE 2011), Changchun, China, 2011.

[9] Laszlo Systems, “OpenLaszlo,” Available: http://www.openlaszlo.org/

[10] Oracle Corporation, “Creating extensible applications with the Java

platform,” Available:

http://java.sun.com/developer/technicalArticles/javase/extensible/

[11] Oracle Corporation, “JavaFX,” Available: http://javafx.com/

[12] S. Yoshika, T. Hayakawa, and T. Hikita, “Execution of Flex

applications under the iOS platform by HTML5 transformation,”

FIT2011, 2011 (in Japanese).

[13] P. Yu, K. Kontogiannis, and T. C. Lau, “Transforming legacy Web

applications to the MVC architecture,” Software Technology and

Engineering Practice, 2003.

[14] P. Zhang and J. Chen, “The scheme to extending the Web application

frame with XML,” International Conference on Innovative Computing

and Communication and Asia-Pacific Conference on Information

Technology and Ocean Engineering, 2010.

Fig. 14. Class Diagram of Framework of Web-IR.

TABLE IX

PRODUCTION COSTS OF DEVELOPMENT OF UI TRANSFORMATION SYSTEMS

WITH/WITHOUT USING FRAMEWORK OF WEB-IR.

Input

RIA

Output

RIA

Using

Framework

Man-
Hours

Lines of

Code

Ajax OpenLaszlo No 10.0 1,450

Ajax OpenLaszlo Yes 5.0 960

Flex HTML5 No 24.0 1,818

Flex HTML5 Yes 18.0 1,231

Ajax JavaFX No 20.0 3,156

Ajax JavaFX Yes 12.0 1,627

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

255 © 2012 GSTF

Tomokazu Hayakawa was born in Ichikawa, Japan,

in 1982. He earned the B.Sc. and M.Eng. degrees in

computer science from Meiji University, Kawasaki,

Japan, in 2004 and 2007, respectively.

He joined TG Information Network Co., Ltd., where

he worked as a system engineer, as a UNIX engineer,

as a software developer, as an R&D engineer, and as a

technical trainer. Since 2010, he has been with the

School of Science and Technology, Meiji University,

where he is currently a research assistant and is pursuing his PhD in

computer science. His main areas of research are system engineering,

software engineering, and Web applications, especially RIA technologies.

Mr. Hayakawa is a member of the Information Processing Society of Japan.

Shinya Hasegawa was born in Kawasaki, Japan, on

December 30, 1987. He earned the B.Sc. degree in

2010 and the M.Eng. degree in 2012, both in

information and technology, Meiji University,

Kawasaki, Japan.

His most recent publication is: Implementation and

evaluation of Flash translation method for Ajax

applications by RIA translation framework (Nagoya,

Japan: The 74th National Convention of IPSJ, 2012).

He is interested in Web technologies and software development.

Shota Yoshika was born in Yamaguchi, Japan, on

November 14, 1987. He earned the B.Sc. degree in

2011 in information and technology, Meiji University,

Kawasaki, Japan, where he is currently in the master's

course.

His most recent publication is: Execution of Flex

applications under the iOS platform by HTML5

transformation (Hakodate, Japan: Forum on

Information Technology 2011). He is interested in

Web technologies and their translators.

Teruo Hikita (M'79) was born in Nishinomiya, Japan

in 1947. He earned B.Sc. in 1970, M.Sc. in 1972, and

D.Sc. in 1978, all from University of Tokyo.

He was at University of Tokyo and Tokyo

Metropolitan University, and now is at Dept. of

Computer Science of Meiji University in Kawasaki,

Japan for 20 years. His current research interests are in

Web technologies.

Professor Hikita is a member of ACM, IPSJ, and

SIAM.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

256 © 2012 GSTF

