
GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 1

An Approach for Constraint Based Heuristic
Method of Generating Houses and Building

Blueprints for Real-time Applications
Daniel Sanchez, Elio Lozano, and Juan M. Solá-Sloan

Abstract—Most city-generation computer graphic algorithms
are focused on creating exteriors by extruding some random
shapes. The problem with this approach is that the interiors are
ignored. This paper presents a series of algorithms and heuristics
to generate building blueprints of single or multi-floor houses.
The type and cost of the building establish the lot space available
for it. In the case of a single floor, rooms with their corresponding
doors and windows will be placed on the space randomly by
following a set of conditions that dictate where the rooms can
be placed with respect to each other. In the case of multiple
floors, the first floor contains public rooms only; the upper floors
contain private rooms. The algorithm’s output consists of a two-
dimensional drawing of the floor plans and a three-dimensional
model of the generated house. The experiments show that this
algorithm can generate a large number of houses in a short
period of time.

Index Terms—blueprint, automatic interior design, procedural
generation

I. INTRODUCTION

Today’s hardware has the capability to create virtual en-
vironments at run time. Procedural generation is a method
used for generating artificial environments at run time, such
as structures, buildings and parts of cities, which are used in
computer games and animated movies[1]. An alternative to
procedural generation consists of hiring artists that design the
environment. Usually this environment follows an architectural
style based on the taste of the artist. However, this method
is time consuming. Artists have to modify the architectural
style every time it is required [2]. In contrast, procedural
generation uses fewer resources than applications that store
all pre-modeled content in memory [3]. There are games that
already use this approach such as The Elder Scrolls, Oblivion
[4] and Borderlands [5].

During the last decade, many researchers have focused on
procedural generation [6], [7], [1], [3]. In [8], [9], Martin
proposed an algorithm to dynamically generate plans for
single-level houses using procedural generation. This research
is focused in extending Martin’s work. Various algorithms for
generating basic floor plans for single- and multi-level houses
were created. First, the Non-Specific Room Placement (NSRP)
algorithm places rooms without any constraints on the type
of room to be included in the blueprint. Second, the NSRP
was extended to include the architectural patterns presented by

Daniel Sanchez is with Polytechnic University of Puerto Rico
Elio Lozano and Juan Sola-Sloan are with University of Puerto Rico at

Bayamón, 170 Road # 174, Parque Industrial Minillas, Bayamón, Puerto Rico

Alexander in [10]. This version of the algorithm was called the
Specific Room Placement (SRP) algorithm. These algorithms
are not primarily focused on constraint optimization [11],
however, they implement heuristic methods to determine the
placement of rooms. In addition, these algorithms have the
capabilities to place windows and doors. Another set of algo-
rithms that uses extrusion of a 2D blueprint has been included
for generating the 3D respresentation of the single- and multi-
level houses. Tests were conducted for the various placement
algorithms varying the type of house/building, the number
of houses/buildings, and the number of floors. Finally, ideas
that extend this research to generate different architectural
structures have been proposed. These structures vary from
houses to buildings.

This article is structured as follows. Section II contains
works related to research carried out. Section III presents the
algorithms used to generate the floor plans for single and
multiple story structures. Section IV shows the results for
the different floor plan algorithms. The main conclusions and
future directions of this research are presented in the final
section.

II. RELATED PREVIOUS WORK

Procedural generation is not new. Others have proposed
methods for the generation of content for computer games
and movies.

Lindenmayer and Prusinkiewicz [12], [13] introduced L-
systems which are formal grammar used to generate building
and cities dynamically. This grammar was used in [14].
However, this is not the only work that uses grammars. Shape
grammars are used in [15], split grammars in [16] and a
database of grammar rules in [17].

In [8], [9], Martin shows methods to procedurally generate
single-level houses based on architectural patterns presented
by Alexander in [10]. These architectural patterns (or rules)
advise how rooms, doors and windows are organized. Among
these rules are: lot space available must not be completely
filled by rooms; the bedrooms need windows and should
contain an outer wall; a bedroom must contain two set of
windows, hallways and staircase placement. These rules were
included in the development of the algorithm.

There are other classical methods used to generate architec-
tural structures at run-time. Extrusion of 2-dimensional poly-
gons is another technique used to generate three dimensional
models of terrains [2] and buildings [6]. In [6], [7], the building

DOI: 10.5176_2010-2283_2.1.154

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

220 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 2

facade is produced by choosing a random polygonal shape and
extruding it. An alternative method is using systems and agent-
based simulations to produce virtual cities [14], [18], [19], [6],
[20], [21].

III. BLUEPRINT GENERATION OF HOUSES

An initial configuration is ran before generating a blueprint
for all the algorithms. Figure 1 presents the flowchart of the
blueprint generation process. First, the house size, cost range
and number of rooms are chosen. The house cost is chosen at
random, but this parameter determines the number of rooms.
Table I shows the relationship between the house size and
the cost. After the cost is set, the dimensions of the lot are
calculated based on the house size and cost. Then a starting
point is chosen at the bottom part of the lot, and rooms are
ready to be placed.

Room/Door Placement

Room Assignment

Starting Point Selection

Setting Lot Dimension

Cost Determination

House Type Selection

?

?

?

?

?

?

?

� �

� �

�

�

START

END

Fig. 1. House Blueprint Development Flowchart

House Number Cost
Size of Rooms Range

2 10,000 - 25,000
Small 3 25,000 - 50,000

4 50,000 - 75,000
5 75,000 - 125,000

Medium 6 125,000 - 180,000
7 180,000 - 250,000

Large Over 10 Over 250,000

TABLE I
HOUSE SIZE CRITERIA

A. Non-Specific Room Placement

The first version of the placement algorithm is the NSRP
algorithm for single-floor houses. On this algorithm, all rooms
to be placed, except the front room, are symmetric. There is no
specification of the type of room to be placed (i.e. bathroom,
bedrooms, etc). The first step is to determine where the front
room is going to be placed. A random starting point is chosen
at the bottom most part of the lot1. Once the front room is
placed, the algorithm determines the available space to the
left, right, and top directions of the front room.

The remaining rooms are treated differently. These rooms
are represented on the 2D blueprint by rectangular shapes of
the same size. The area that constitutes a room is bound by
its walls. The leftmost wall is the leftmost x coordinate of the
room and the bottom wall the smallest y coordinate. These
coordinates are used to determine if the room can fit in the
remaining lot space.

It is very important to know where to start placing rooms. If
the only room that is placed on the blueprint is the front room,
this room is the base room or calling room. However, any of
the rooms already placed on the blueprint could be a calling
room. The calling room is an already placed room in which
all of the possible rooms to be placed could be connected to.
Let us call a room to be placed on the blueprint a candidate
room.

The algorithm uses the coordinates of the candidate room
to determine if it can fit on the remaining lot space on the
right, left or top of a calling room. Figure 2 shows the pseudo
code for the algorithm. Notice also that a candidate room
cannot intersect a room that has already been placed on the
blueprint. However, the NSRP implementation verifies if the
candidate room can fit in the available space by modifying its
dimensions. Moreover, the candidate room is not added if it
overlaps with another room that has been already placed on
the blueprint.

foreach c a l l i n g room of t h e house
s p a c e R i g h t = l o t R i g h t − roomRight ;
s p a c e L e f t = roomLef t − l o t L e f t ;
spaceTop = l o t T o p − roomTop ;

whi le (c a n d i d a t e rooms t o be p l a c e d)
i f room can be p l a c e d t o t h e r i g h t

i f room does n o t i n t e r s e c t o t h e r
p l a c e room t o r i g h t ;

e l s e i f room can be p l a c e d t o t h e l e f t
i f room does n o t i n t e r s e c t o t h e r

p l a c e room t o l e f t
e l s e i f room can be p l a c e d t o t h e t o p

i f room does n o t i n t e r s e c t o t h e r
p l a c e room t o t o p

e l s e
b r e a k

end whi le
make t h e n e x t room a c a l l i n g room

Fig. 2. Pseudo Code for the NSRP Algorithm

The generated blueprints are organically grown. This means
that the rooms are generated based on the available lot space.
Every house is build based on the lot’s size. Therefore the size

1on a two-dimensional plane

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

221 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 3

of the house is determined by the number of rooms that can
be placed on the lot.

B. Adding Doors and Windows

The Add Doors Algorithm (ADA) is integrated to the
placement algorithms. This algorithm determines where the
doors between the rooms must be located. It verifies which
wall rooms have in common. Then, the specified coordinates
of the door are calculated. If one of the rooms is smaller than
the other, then the door is placed at the center of the wall of the
smallest room. The door can also be placed randomly2. The
Add Windows Algorithm (AWA) begins after all the rooms
have been placed on the blueprint. The algorithm iterates room
by room and places a window in the rooms which have an
outer wall. A pseudo code fragment is presented in Figure 3.

foreach room of t h e house
i f no rooms c o n n e c t t o t h e r i g h t
x = r i g h t w a l l
y = m i d p o i n t (bottom , t o p) ;
i f no o t h e r room c o n f l i c t s w i th window
draw window

i f no rooms c o n n e c t t o t h e l e f t
x = l e f t w a l l
y = m i d p o i n t (bottom , t o p) ;
i f no o t h e r room c o n f l i c t s w i t h window

draw window
i f no rooms c o n n e c t t o t h e t o p
x = m i d p o i n t (l e f t , r i g h t) ;
y = t o p w a l l
i f no o t h e r room c o n f l i c t s w i t h window

draw window

Fig. 3. Pseudo Code for the AWA

Figure 4 shows the floor plan generated by the NSRP
with ADA/AWA algorithm. The rooms are placed without any
constraints. Notice that the room size is the same for all rooms
except for the front room of the house. Finally, we have a
blueprint that can be extruded to generate a 3D representation.
However, more realism can be added to the house by changing
features of some of the rooms that are placed on the blueprint.

Fig. 4. Blueprint generated NSRP/ADA/AWA

C. Specific Room Placement Algorithm

The SRP algorithm is an evolution of the NSRP algorithm.
This algorithm follows the rules discussed in Martin and
Alexander’s work [10]. The placement algorithm uses these
rules for classifying the rooms in two different types: public
and private. Public rooms can be accessed by multiple persons

2for the visual representation, the door is added on the center of the wall

Type Room Priority
Private Rooms Bathroom 1

Bedroom 2
Master Bedroom 3
Office 4
Master bathroom 5
Walk-in closet 6

Public Rooms Living room 1
Family room 2
Kitchen 3
Dinning room 4
Hallway 5
Garage 6
Laundry Room 7
Pantry 8
Stairway 9
Sun Room 10
Storage Room 11

TABLE II
PUBLIC AND PRIVATE TYPES OF ROOMS AND THEIR PRIORITY LEVELS

at any time (i.e. living room, kitchen, and family room). On the
other hand, private rooms can only be accessed by a particular
group of persons and, in some cases, by only one person at
a time (i.e. bathrooms, bedrooms, and personal offices). The
algorithm assigns a priority level to each public and private
room. Table II presents a list of the room types and their
priorities. The number of private and public rooms is divided
almost evenly for small and medium houses. However, this is
not true for large houses that contain over 10 rooms.

The SRP algorithm follows the same flowchart as the NSRP
for its initialization (see Figure 1). The difference is noticed
after placing the front room. Now this room is classified as
the living room. Notice that the living room is a public room.
The SRP algorithm chooses a candidate room based on its
type and the type of the candidate room3. Notice that this is
done before determining if a candidate room can fit next to the
calling room in a specific direction. A candidate room must
first be compatible with the calling room type to be placed in
the blueprint.

There are some room types that do not allow for another
room to be placed next to them. Among these are offices,
bathrooms, laundry rooms and bedrooms. A private room
cannot be connected via another private room except for the
master bathroom. A room type cannot be placed multiple times
on the same blueprint except for bathrooms and non-master
bedrooms.

The SRP algorithm is modified to alter the room di-
mensions. The shape of each room remains rectangular by
default; however, there are some situations in which these
dimensions are modified. On the SRP algorithm each type
of room accounts for a different percentage of the lot. Room
dimensions may change depending on the direction in which
the room is placed to help it fit inside the available space.
Since these dimensions can be changed, then, the shape of
the room can be modified to form a polygon. This means that
some "dents" from other room walls can invade the candidate
room area. These "dents" are known as intermediate walls in
this context . Intermediate walls are walls from previously

3private or public

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

222 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 4

placed rooms that are protruding into the newly placed room.
The SRP algorithm uses the intermediate walls to modify the
candidate room dimensions. Then the candidate room is placed
on the blueprint.

Another functionality of the SRP algorithm is the ability
to Add Closets (AC) to some room types. The algorithm that
places closets runs after all the rooms have been placed on
the lot. It is important to notice that the closet door does not
conflict with any room door. Figure 5 illustrates a floor plan
generated using the room, door, window, and closet placement
of the SRP algorithm. This figure shows the different types
of rooms indicated by its initials. Notice that the floor plan
generated has rooms with different sizes. The closets are
represented with dashed lines.

Fig. 5. Blueprint Generated Using the SRP/ADA/AWA/AC Algorithm

More realism has been added to the NSRP algorithm by
adding room types. Moreover, the SRP algorithm has been
modified to include closets and intermediate walls. This 2D
blueprint can be extruded to form a 3D representation. How-
ever, multiple floor blueprints can be generated to add more
realism to the algorithm.

D. Procedural Generation of Blueprints for Multiple Floor
Structures

A modified version of the SRP algorithm was used to
generate blueprints of multiple level houses. This version was
called the Multiple-Floor Placement (MFP) algorithm. The
MFP is used to generate houses that include more than 10
rooms in its blueprint . All other structures that do not fit this
criterion are considered single-floor houses. Most of the public
rooms are placed on the first floor for the MFP. Most of the
private rooms are located on the second floor.

A few requirements emerge when dealing with multiple-
level houses. First, the second floor boundaries need to be
determined. This is ascertained by obtaining the house area
within the lot. The algorithm constructs the second floor by
using the edges of the first floor as its new limits. Therefore,
rooms are placed on top of the outline of the first floor. Another
requirement is that a multiple floor structure needs a stairway.
This stairway is placed adjacent to the living room of the first
floor. A stairway is considered as a room. The position of
the stairway room on the second floor has to match the same

position as the stairway room of the first floor. After placing
the stairway on the second floor, the hallway is placed. The
hallway is used as the first calling room when the algorithm
starts to select candidate rooms to be placed on the second
floor. The ADA, AWA, and AC follow the same rules as on
the first floor.

1) Walk-in Closets and Balconies: The ability to add walk-
in closets and balconies are features added to the MFP
algorithm. The master bedroom is the only one that includes a
walk-in closet. This walk-in closet is an additional room as can
be seen in Figure 6. The MFP algorithm is capable of adding
balconies to the master and regular bedrooms. Bedrooms can
have balconies if they are attached to one of their outer walls.
A balcony can only be added if it does not interfere with the
placement of other rooms.

(a)

(b)
Fig. 6. (a) First Floor Blueprint. (b) Second Floor Blueprint

E. Three Dimensional Representation

The Three-Dimensional Placement (3DP) algorithm uses the
SRP and extrusion to form a three dimensional representation
of the structure represented on the blueprint. The first step
is running the algorithm that generates the blueprint. The
first floor of multiple-floor houses is the first one generated
by extrusion. Then, the algorithm similarly generates the
second floor. The algorithm also draws the ceiling4. The
doors and windows that were placed by the AWA, ADA,
and AC algorithms are also drawn by extrusion using their

4The only room in which a ceiling is not drawn is in the Sun Room

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

223 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 5

respective coordinates. Figure 7 presents a 3D representation
of the house. Notice that the algorithm could also be used
to generate three-dimensional representations of city blocks.
However, more specific rules for building and road placement
are needed for the representation of a city block.

Fig. 7. Three Dimensional Representation of the House

Finally, multiple buildings are generated using previous
algorithm. Figure 8 shows the result of this approach to
generate a virtual city environment.

Fig. 8. Three Dimensional Virtual City

IV. PERFORMANCE ANALYSIS

A. Research Testbed

The implementation was achieved using Visual C++ 2005
with OpenGL and GLUT libraries. The hardware consists of
an Intel’s q6600 quad-core processor with 4GB of RAM.
The video card consisted of an NVIDIA’s GeForce 8800
GTS 512MB. The operating system of the host computer was
Windows XP Professional.

The experiment consisted of two types of tests. The Five-
Minute Test (FMT) consisted of running the program for
five minutes to find out the number of houses that could be
generated. The second test was the Set House Test (SHT) that
consisted in determining the time that it takes the algorithm to
generate a predetermined number of houses. This test was run
from 1 to 10000 in increments of 1000. The SHT is similar
to the test run at [8]. All of the houses generated using these
tests were created randomly based on the house type.

Table III presents the results for the FMT test for all of
the configurations. The number of rooms is specified after the
algorithm name with a dash and the number of floors follows
with a slash. Notice that the SRP algorithm generates more
blueprints than the NSRP. This is due to the fact that the SRP

Algorithm Num. Of Houses
per second

SRP-10/1 3,376
NSRP-10/1 3,318
MFP-19/2 1,986
3DP-12/1 711
3DP-19/2 553

TABLE III
PLACEMENT ALGORITHMS IN FMT TEST LEVELS

places rooms based on its room type. The set of public and
the set of private rooms are subsets of the set that includes
all the rooms. The NSRP does not have that distinction. The
difference in the number of houses generated from the MFP
algorithm and the largest house of the SRP algorithm was
323,873 houses, 35% fewer houses generated. Overall, the
3DP algorithm generates approximately 75% fewer houses
than the previous ones.

Fig. 9. SHT for three configurations of the 2D Houses

The second test performed was the SHT. Figure 9 presents
the results for the NSRP, SRP in 2D and the MFP for 2 floors
in 2D. Notice that the SRP and the MFP are slower than
the NSRP when generating more than 1000 houses. Figure
10 presents the SHT for 3D blueprints of 1- and 10-story
buildings. Notice that the 3DP-10 algorithm generated a city
of 10,000 buildings in approximately 84 seconds.

Fig. 10. SHT for 3D Houses of 1 and 10 floors

Figure 11 shows the performance results for different types
of building-generation algorithms.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

224 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 6

Fig. 11. Performance results for different types of algorithms for building
generation

V. CONCLUSIONS

The algorithms presented on this article generate 2D and
3D representations of single and multiple floor houses. One of
the proposed requirements for these algorithms was that they
should be able to generate houses for real-time applications.
The 3DP algorithm generates 13,000 houses with ten floors in
approximately 2 minutes. Also, this algorithm generates 1,000
ten-floor houses in 4.17 seconds. The SRP algorithm generates
10,000 blueprints in 3.268 seconds. The results obtained from
the NSRP, SRP, MFP and 3DP algorithms are similar to
those obtained from previous investigations. This results are
acceptable for real-time applications 5.

The average loading times for current games vary from a
few seconds up to half a minute. All of the placement algo-
rithms presented except for 10 floor 3D houses can generate
up to 10,000 houses within that time frame. Therefore, the
loading time for the placement algorithms is suitable for these
applications.

VI. FUTURE WORK

The algorithms can be extended to include more types
of rooms such as study, game rooms, attics, basements and
nurseries. Also, the algorithms can be modified to include
other types of structures such as office buildings and condo-
miniums. However, more rules must be added to follow the
architectural patterns of these types of buildings. Also, cities
and neighborhoods could be generated using new architectural
rules to establish the location of the buildings.

Our algorithms generates organically grown structures.
Meanwhile, the performance is heavily dependent on the CPU
capabilities to handle polygonal complexity and implemen-
tation specifics. Producing a dramatically larger number of
houses would be another story and perhaps a good one if we

5Computer games

implement the algorithm using GPUs (i.e. CUDA). This is
envision as a future work.

REFERENCES

[1] B. G. laugsson, “Procedural Content Generation,” Reykjavík University
School of Science and Engineering, 2006.

[2] T. Roden and I. Parberry, “From Artistry to Automation: A Structured
Methodology for Procedural Content Creation,” in Proceedings of the
3rd International Conference on Entertainment Computing, 2004, pp.
151–156.

[3] G. Kelly and H. McCabe, “A survey of procedural techniques for city
generation,” Institute of Technology Blanchardstown ITB Journal, vol. 1,
no. 14, 2006.

[4] B. S. U. http://www.bethsoft.com/, “The elder scrolls IV: Oblivion,”
[DVD, DVD-DL, Blu-ray Disc, Download], 2006.

[5] G. S. U. http://www.gearboxsoftware.com/, “Borderlands,” [DVD, Blu-
ray Disc, Digital Distribution], 2009.

[6] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural
generation of ‘pseudo infinite’ cities,” in Proceedings of the 1st Interna-
tional Conference on Computer Graphics and Interactive Techniques in
Australia and South East Asia, ser. GRAPHITE ’03. New York, NY,
USA: ACM, 2003, pp. 87–94.

[7] S. Greuter and J. Parker, “Undiscovered worlds-towards a framework
for real-time,” in In Proceedings of the Fifth International Digital Arts
and Culture Conference, 2003.

[8] J. Martin, “The Algorithmic Beauty of Buildings: Methods for Pro-
cedural Building Generation,” Undergraduate Honor’s thesis, Trinity
University, 2004.

[9] ——, “Procedural House Generation: A method for dynamically gener-
ating floor plans,” Symposium on Interactive 3D Graphics and Games,
2006.

[10] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. USA: Oxford University Press, 1977.

[11] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. D. Kraker, “Rule-based
layout solving and its application to procedural interior generation,”
Proceedings of the CASA workshop on 3D advanced media in gaming
and simulation (3AMIGAS), Amsterdam, The Netherlands, 2009.

[12] A. Lindenmayer, “Mathematical models for cellular interactions in
development,” Journal of Theoretical Biology, vol. 18, no. 1, pp. 280–
315, 1968.

[13] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
New York, NY, USA: Springer-Verlag New York, Inc., 1990.

[14] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’01. New York, NY, USA:
ACM, 2001, pp. 301–308.

[15] P. Müller, P. Wonka, S. Haegler, A.Ulmer, and L. V. Gool, “Procedural
modeling of buildings,” ACM Transaction on Graphics, vol. 25, no. 3,
pp. 614–623, 2006.

[16] G. Stiny, “Introduction to Shape and Shape Grammars,” Environment
and Planning B, vol. 7, no. 3, pp. 343–361, 1980.

[17] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant architec-
ture,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 669–667, 2003.

[18] T. Lechner, B. A. Watson, U. Wilensky, S. Tisue, M. Felsen, A. Mod-
drell, P. Ren, and C. Brozefsky, “Procedural Modeling of Urban Land
Use,” North Carolina State University, Department of Computer Science,
Tech. Rep. TR-2007-33, 2007.

[19] U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo, 1999.
[20] B. Weber, P. Müller, P. Wonka, and M. Gross, “Interactive geometric

simulation of 4d cities,” Eurographics Workshop on 3D Object Retrieval
(EG 3DOR’09) in Cooperation with ACM SIGGRAPH Munich, Ger-
many, vol. 28, no. 2, 2009.

[21] C. A. Vanegas, D. G. Aliaga, B. Beneš, and P. A. Waddell, “Interactive
design of urban spaces using geometrical and behavioral modeling,”
ACM Transactions on Graphics, vol. 28, pp. 111:1–111:10, Dec. 2009.

[22] G. Whelan, G. Kelly, and H. McCabe, “Roll your own city,” in
Proceedings of the 3rd international conference on Digital Interactive
Media in Entertainment and Arts, ser. DIMEA ’08. New York, NY,
USA: ACM, 2008, pp. 534–535.

[23] G. Kelly and H. McCabe, “Interactive generation of cities for real-
time applications,” in ACM SIGGRAPH 2006 Research posters, ser.
SIGGRAPH ’06. New York, NY, USA: ACM, 2006.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

225 © 2012 GSTF

GSTF JOURNAL ON COMPUTING VOL.2 NO.1, FEBRUARY 2012 7

Dr. Elio Lozano received B.S. in mathematics at
National University of San Antonio Abad del Cusco,
Perú in 2000. He received M.S. in Scientific Com-
puting and Ph.D. in Computer and Information Sci-
ence and Engineering at University of Puerto Rico,
Mayagüez Campus in 2003 and 2006 respectively.
Dr. Elio Lozano is with the Department of Computer
Science, University of Puerto Rico at Bayamón, San
Juan, PR, 00959 USA. He has developed several
computer graphic programs to visualize high dimen-
sional data. His research interests include computer

graphics, data mining, and parallel computing.

Dr. Juan Sola-Sloan received B.S., Computer Sci-
ence Universidad de Puerto Rico en Bayamón, 1996.
He received M.S. in Computer Engineering and
Ph.D. in Computing Information Science and En-
gineering at University of Puerto Rico, Mayagüez
Campus in 1998 and 2009 respectively. Dr. Juan
Sola-Sloan is with the Department of Computer
Science, University of Puerto Rico at Bayamón, San
Juan, PR, 00959 USA. His research interests include:
Web Server Benchmarks, Data Communications,
Performance Evaluation and Modeling, Queueing

Theory, Web 2.0 Applications, Computer History.

MS. Daniel Sanchez received B.S., and M.S. in Computer Science in
Polytechnic University of Puerto Rico in 2005 and 2009 respectively. MS.
Daniel Sanchez is with the Department of Computer Science, Polytechnic
University of Puerto Rico P.O. Box 192017 San Juan, P.R. 00919-2017. His
research interests include: computer graphics, virtual city generation, first
person shutter games.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

226 © 2012 GSTF

