


Abstract— The quality and reliability of safety critical

software systems are highly dependent on proper system
validation and verification. In model-driven software
development, semi-formal notations are often used in
requirements capture. Though semi-formal notations possess
advantages, their major disadvantage is their imprecision. A
technique to eliminate imprecision is to transform semi-formal
models into an analyzable representation using formal
specification techniques (FSTs). With this approach to system
validation and verification, safety critical systems can be
developed more reliably. This work documents early experience
of applying FSTs on UML class diagrams as attribute
constraints, and pre- post-conditions on procedures. The
validation and verification of the requirements of a system to
monitor unmanned aerial vehicles in unrestricted airspace is the
origin of this work. The challenge is the development of a system
with incomplete specifications; multiple conflicting stakeholders’
interests; existence of a prototype system; the need for
standardized compliance, where validation and verification are
paramount, which necessitates forward and reverse engineering
activities.

Index Terms— model transformation; formal specification
techniques; requirements engineering

I. INTRODUCTION

N history, the uses of UAS technologies lie at the core of
military operations such as surveillance, target identification

and designation, mine detection, and reconnaissance [1].
Unmanned Aircraft Systems (UAS) technologies are
categorized as safety critical systems. This is due to their
being employed in high-risk tasks that require rigorous
development methodologies to assure its integrity. A system
that is defined as safety critical can have serious ramifications

Manuscript received February29, 2012. This work was partially funded
under the University of North Dakota - UAS Risk Mitigation Strategy Project.
Unmanned Aerial System Remote Sense, Department of Defense Federal
Initiative, Joint Unmanned Aircraft Systems Center of Excellence at Creech
Air Force Base, Nevada, DoD Contract Number FA4861-07-R-C003.

E. S. Grant is an Associate Professor with the Department of Computer
Science, University of North Dakota, Grand Forks, North Dakota, ND 58202
USA, phone: 701.777.4133, fax: 701.777.333., email: grante@aero.und.edu.

V. K. Jackson is a graduate student at the Department of Computer
Science, University of North Dakota, Grand Forks, North Dakota, ND 58202
USA..

S. A. Clachar is a graduate student at the Department of Computer
Science, University of North Dakota, Grand Forks, North Dakota, ND 58202
USA..

if a fault occurs. These implications include the risk of injury,
loss of life, data, and property. Therefore, designing these
systems require: 1) thorough understanding of their
requirements, 2) precise and unambiguous specifications, and
3) metrics to verify and validate the quality of software
produced. Safety critical aviation systems must adhere to
standards such as the United States RTCA DO-178B [16] to
foster its acceptance by the Federal Aviation Administration
(FAA) and other interested parties. The DO-178B focuses on
all aspects of round trip software engineering and
requirements based testing as key elements of software
verification to uncover errors [9].

The University of North Dakota (UND) – UAS Risk
Mitigation Project was awarded a contract to develop a proof-
of-concept air truth system, which monitors the operation of
UAVs in the US National Airspace. The project started with
minimal requirements. This resulted in the rapid development
of a prototype to assist in exploring and developing additional
requirements.

The Unified Modeling Language (UML), developed in the
early 1990s, is the ISO standard for designing and
conceptualizing graphical models of software systems [2].
Graphical software models, such as UML models, possess
simplistic designs and promote good software engineering
practices. However, they are not without flaw as they are
often imprecise and ambiguous. In addition, they are not
directly analyzable by type checkers and proof tools. This
makes it difficult to evaluate the integrity and correctness of
graphical software models.

Formal Specification Techniques have been advocated as a
supplementary approach to amend the informality of graphical
software models [3] [4]. They promote the design of
mathematically tractable systems through critical thinking and
scientific reasoning. FSTs use a specification language, such
as Z notation, to describe the components of a system and
their constraints [8]. Unlike graphical models, formal models
can be analyzed directly by a proof tool. Detractors of FSTs
claim, they increase the cost of development, require highly
trained mathematicians, and are not used in real systems [5].
However, they have been used in case studies which unveiled
that, FSTs facilitate a greater understanding of the
requirements and their feasibility [6] [7] [13]. Although the
use of FSTs is sometimes controversial, their benefits to

Towards a Formal Approach to Validating and
Verifying Functional Design for Complex

Safety Critical Systems

Emanuel S. Grant, Vanessa K. Jackson, and Sophine A. Clachar

I

DOI: 10.5176_2010-2283_2.1.151

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

202 © 2012 GSTF

critical systems offset the disadvantages.
In the traditional approach to software engineering,

graphical models would precede code generation. However, it
is common for a prototype to preexist. In such scenarios,
reverse engineering activities are used to derive the graphical
models. This approach was undertaken in this research; along
with forward engineering tactics, which ensured the derived
models were abstract and susceptible to evolution.

II. PROJECT DESCRIPTION

An obstacle to field-testing of UAS is integrating their
flight with manned aerial vehicles (MAV) in national air
spaces (NAS). In order for this integration to be possible
there is the requirement for a system that ensures the
possibility of a mid-air collision or near-collision is the same
as or better than that which now exists for MAVs operation
[1]. Towards this goal the UND – UAS Risk Mitigation
Project was started. This project will provide support to UAV
experimentation and training, and defense assistance to
civilian authorities.

The UND – UAS Risk Mitigation Project architecture is
composed of three main components: a radar system, a data
computation unit, and a display system. The display system
software is the focus of the work presented herein. The
project had a strict deadline for a series of deliverables over an
initial one-year Phase 1 timeframe, and successful completion
of the first phase would result in a subsequent two-year Phase
2 timeframe for the project. At the heart of Phase 1 efforts
was the development of the system architecture, and the
agents assigned to the architectural components. The
development of a prototype display system was stated at the
outset, with the intent of identifying the requirements of the
proposed project. This report documents the effort and initial
results of the system validation and verification effort, and its
relationship to the system requirements specification. Work
on the system requirements specification, and validation and
verification is being conducted by the same project sub-team.

A project sub-team made significant progress with the
development of the display system, which was viewed as the
core of the project, from the point of demonstrating to the
various stakeholders the viability of a system to monitor
airspace and facilitate safe operation of both MAVs and
UAVs. Consequently the validation and verification team
were forced into conducting both forward and reverse
engineering activities at an early stage in the project life cycle.
The diagram below captures the dual-approach software
engineering being carried out on the project.

Fig. 1 outlines the concurrent approaches in use on the
project, for formally verifying and validating the software
system, specifically for the display component. The solid
arrow lines of Fig. 1 depict the forward engineering path of
the process. A set of graphical design models (in this case
UML class diagram [2]) are developed beginning with the
system specification. The graphical models are transformed
into a formal specification (in this case the Z notation [8])

representation for analysis. From the formal analysis, the
decision is made whether to modify the graphical models or
proceed with code generation from the models, based on the
presence or absence of identifiable errors. The dotted arrow
lines of Fig. 1 depict the reverse engineering part of the
process. This begins with reverse engineering of the graphical
design model (in this case UML class diagram), from the
source code (in this case the display system). Once the
models have been recovered from the code, the process
follows the path of the forward engineering steps. The
exception is that code is not generated, but modified (as it
already exists); this is depicted by the dashed arrow line from
“Error Reported” to “Program Code”. The aspects of the
work documented in this report are, the formalization steps
defined to transform the graphical models into the formal
specification notation, and the early lessons learnt in carrying

out the work.
Figure 1. Forward/Reverse Engineering for System V & V

III. BACKGROUND

The focus of Model Driven Engineering (MDE) is to
transform, refine, and integrate models into the software
development life cycle to support system design, evolution,
and maintenance [12]. Models serve many purposes and their
use varies from stakeholder to stakeholder. The purpose of
modeling, from a developer’s standpoint, is to represent the
proposed system. Models should be a coherent, cohesive, and
abstract means of showing how the proposed system will
address the user’s needs. They can be derived through
forward or reverse engineering. Forward engineering is the
process of moving from high-level abstractions and
implementation independent designs to the implementation of
a system [11]; while reverse engineering is the process of
recovering design decisions, abstractions, and rationale from a
source code [10].

The UML is an object-oriented modeling language for
specifying, visualizing, constructing, and documenting the
artifacts of software systems [2]. Diagrams in UML are
categorized as structure or behavior diagrams. Structure
diagrams represent the static framework of the system,
whereas behavior diagrams depict the dynamic features of the
system. These informal models have an advantage of being
expressive – which makes them easily conveyed to both
technical and nontechnical stakeholders. However, UML

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

203 © 2012 GSTF

lacks precise semantics, which results in its models being
subject to multiple interpretations. This is exacerbated by the
use of natural language annotations – as a means of
clarification and explanation of the modeling techniques
adopted.

Formal specification has been in existence decades before
the inception of UML, and employs mathematical concepts
and principles to describe software models with precision
through rigorous analysis [3]. Employing FSTs is not a
substitute for graphical software models; they are
complementary. While formal models reveal inconsistencies
and omissions, the informal model is an explicable version of
the formal models [13]. The specification language chosen in
this work is Z notation. A specification written in Z notation
models the proposed system by naming the components of the
system and expressing constraints between those components
[8]. Its formal basis enables mathematical reasoning, and
hence proves that desired properties are consequences of the
specification [8]. From these proofs, one can prove the
specification is accurate and complete.

System behavior should always be deterministic in the
domain of safety critical systems. These software systems
encompass numerous highly complex processing components
and have high demands for reliability and accuracy. Due to
the continuous use of UML in software development, there is
a need to resolve the informal semantics of the models it
produces [6]. Transforming UML models into Z equivalences
also provide formal analysis to accomplish validation and
verification of software systems.

IV. TRANSFORMATION METHODOLOGY

A. Deriving Graphical Models

The prototype of the air truth system was designed using
C++. There are many software tools, which have the
functionality of reverse engineering graphical software models
from source code; however, there is a sizable semantic gap
between UML and C++ [10]. Therefore, these tools often
derive differing abstract representations of the same source
code. Consequently, the use of an automated tool to assist in
deriving abstract representations of the safety critical system
was deemed inappropriate; since many of these tools were
closed source and one cannot understand or influence how
these tools interprets the prototype. Given that the DO-178B
is process oriented, one needs to have an existing
methodology, or familiarity with the workings of any
intermediary software, to establish compliance.

B. Identifying Classes, Attributes, and Operations

The UML class diagram is a graph of classifier elements
connected by their various static relationships [2]. In C++,
classes are usually preceded by the keyword “struct” or
“class” and followed by a class name and delimiters. The
declarations of attributes are preceded by its data type
followed by the attribute’s name. To define attributes in
UML, their respective data types were replaced with data

types that were platform independent. An alternative means
of identifying attributes is from the collection of accessors and
mutators [10]. An accessor is a function that returns a copy of
a member variable without modifying its value, whereas a
mutator is a function that modifies the value of member
variables. Since accessors and mutators are not always
present in the declaration of classes, this method was used to
reinforce that certain variables are, in fact, members of the
class.

Defining operation signatures in UML was synonymous to
their declaration in C++. The difference be is that platform
independent data types were used and all parameters were
stripped of pointer references and array tokens. The source
code in Table 1 is a simplified example that will be used to
demonstrate the process of deriving a UML class diagram.
From this source code, four classes were identified: Aircraft,
MAV, UAV, and Coordinate. If a class referenced another
class, e.g. the Aircraft class referenced the Coordinate class;
this was not represented as an attribute of the class. Both
Aircraft and Coordinate had methods and they were declared
in their respective classes in the appropriate sections.

TABLE I. AIRCRAFT DATA SOURCE CODE

class Aircraft
{
 string call_sign;
 integer roll;
 integer air_speed;
 integer heading;
 Coordinate coordinate;
 void print();
};
class MAV : public
Aircraft
{
 string MAV_ID;
 string MAV_class;
};

class UAV : public
Aircraft
{
 string UAV_ID;
 string UAV_class;
};
class Coordinate
{
 double longitude;
 double latitude;
 double altitude;
void
resolve_points(double
latitude, double
longitude);
};

C. Identifying Binary Class Relationships

A binary relationship is an association that connects exactly
two classifiers [2]. In UML, associations can be of three
different kinds: 1) ordinary associations, 2) composite
aggregate and 3) sharable aggregate [2]. C++ associations are
identified as member variables, which reference another UML
class [10]. An example of this was represented when the
Aircraft class referenced the coordinate class. Distinguishing
between general associations and aggregations was difficult.
Research has shown that the weak form of aggregation is
structurally equivalent to a general association between the
two classes [10] [14]. Therefore, domain knowledge was used
to determine whether a general association or aggregation is
suitable.

D. Identifying Inheritance

UML represents inheritance through the
generalization/specialization hierarchy. C++ clearly
represents this in the declaration of each class generalizable
class – where a sub-class declaration contains the signature of
the super-class from which it inherits. In Figure 2, both MAV

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

204 © 2012 GSTF

and UAV classes are sub-classes of Aircraft.

Figure 2. Reengineered UML Class Diagram

E. Identifying Multiplicities

A multiplicity is a specification of integer intervals; where
an interval represents a range of integers, in the format: lower-
bound..upper-bound [2]. Identifying multiplicities, in the
source code, was one of the most challenging aspects of this
work. According to [10], only three types of multiplicities can
be unambiguously identified from C++ source code: 1) only a
single instance of a class is declared, 2) a reference to a single
instance is declared, and 3) a fixed size array is declared.
Other cases may result in inaccurate upper and lower bounds
and requires further knowledge of the problem domain. From
domain knowledge, an aircraft can be associated with one or
more coordinates throughout its lifetime – since each aircraft
will have a path from its origin to its destination. Focus was
on the fact that an aircraft, at a given point in time, must have
at most one coordinate; and a coordinate is associated with
zero or one aircraft. Fig. 2 also shows the multiplicity that
was derived from the source code.

F. Transforming Graphical Models to Formal Models

There is a plethora of literature on transforming UML class
diagrams using FSTs. However, the disparity between these
works does not advocate a strict methodology that is
appropriate for automation. This work amalgamates the
works of J. Anthony Hall and Robert France to define a strict
set of sequential rules that will yield correct formal models.
After the UML models were designed, the attributes,
operations, and relationships of each class were analyzed
separately. This analysis highlighted patterns, which appeared
standard throughout the manual transformation of the UML
models. From these patterns, a set of rules were defined that
should yield representative formal models from their graphical
counterpart – provided the graphical models are well-formed
UML models. Some of the set of rules is as follows:

1. Declaration of Basic Types, Composite Types and Global
Variables: Data types in Z are often referred to as basic
types or given sets of the specification. A feature of
the Z notation is that it offers a calculus for building
large specifications from smaller components [4] – and
basic types facilitate this. Currently, identifying basic
types for a Z specification is a manual task. The
software engineer must examine the attributes of each

UML class to identify data types, which do not have an
equivalent representation in the Z mathematical toolkit.
To automate this process, an operation defined as a
‘Basic Type Parse’ can be performed on each UML
class. This process will scan the attributes of each
class to identify any data types that are not present in
the Z Mathematical Toolkit. The data types identified
can be declared as basic types. The result of a basic
type parse on Figure 2 will return two new basic types
– [STRING] and [DOUBLE].

2. Establishing Data Types for the Object Identity of each Z
Schema: The creation and manipulation of objects are
essential in the object-oriented paradigm. A class
along with its respective attributes and operations
embodies an object. Its framework may remain the
same; however, its state will change. To account for
this, each Z schema will have a property called an
object identifier. An object’s identifier makes it unique
and distinguishes it from all other objects within the
system [4]. A basic type will be declared to represent
the object identifier of each UML class. This step only
seeks to establish the basic types. Applying this step to
Figure 2 will produce the following: [AIRCRAFT]
[COORDINATE] [MAV] [UAV].

3. Define Attribute Schemata: Each UML class may contain
zero or more attributes and an arbitrary number of
operations. Therefore, two cases arise:

Case 1:- UML classes with zero attributes and one
or more operations. In case 1, the definition of an
attribute schema is unnecessary. However since there
are operations performed by the class; proceed to the
subsequent step – declaration of the class schema. In
the event that no attributes or operations are defined in
the UML class, a representative Z schema would be
invalid and rejected by Z/EVES.

Case 2:- UML classes with one or more attributes
and zero or more operations. The attributes of each
class will be declared in its attribute schema. A UML
class can be described in terms of its intension and
extension. The intension defines attributes and
constraints on the class; whereas the extension
describes characteristics that instances of the class
should have in common [2]. To obtain the attributes
and their respective initialized values, each class will
be subject to an ‘Intension Parse’. This task is
performed sequentially on each attribute of the UML
class, in two stages, to identify: 1) the attribute’s name
and data type; and 2) values, which initialize or
constrain the attribute. In the initial phase, there needs
to be a one-to-one mapping between the attribute and
one of the previously defined basic types or a data type
present in the Z mathematical toolkit. The second
phase will identify attributes and their respective
initialized values. This will be declared in the
schema’s predicate part.

Two categories of constraints were identified in this

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

205 © 2012 GSTF

work:
• Domain-specific constraints: - these constraints are based

on the problem domain e.g., headings are values
between 0 and 360 degrees. These constraints cannot
and will not change irrespective of the system being
designed.

• Operational constraints: - these are constraints that are
imposed on the system’s operation; e.g., an aircraft’s
air speed should not exceed 250 knots. Even though
these values can be exceeded, in the current system, if
that occurs it should be flagged as erroneous.

Domain constraints will be defined in the class schema
and system constraints will be defined in the attribute
schema.

4. Define Class Schemata: This step focuses on the
extension of UML classes. It is not mandatory to
separate the definition of the attribute and class
schemata; however, combining them may result in a
cumbersome schema. In addition, information hiding
allows one to focus on what is relevant to the extension
and intension of a class. A schema will be created with
the name of each UML class, which will comprise of
its attribute schema – via schema inclusion. Schema
inclusion does not link the schemata; it only permits
direct access to the contents of the included schema.
Therefore, a variable will be created which binds the
attribute schema to its class schema. The schema
binding is represented as a partial function – which
maps the schema’s given set to the attribute schema.

The final step in the definition of the class schema is to
establish a relationship between the object’s identifier and the
attributes of the class. This is represented in the schema’s
predicate part and states that object identifiers are associated
with data items – i.e. the attributes. The naming convention
for the class schemata is the UML class name followed by the
keyword ‘classifier’.

5. Define Identity Schema: The definition of this schema
will reinforce that an object identifier cannot change.
To capture this, an operation schema will be defined
which will indicate that any change in an object’s state
should not affect its identifier.

6. Define Relationship Schemata: A relationship schema
defines the types of relationships that exist between
classes. It also depicts the number of object
instantiations that are permissible for each class; these
are represented by their respective multiplicities.
Binary relationships and hierarchies are the focus of
this work.

7. Define Parameter Schemata: This step will be conducted
only if an operation accepts parameters. When creating
these schemata, each data item in the parameter list of
an operation is defined in a similar manner as the
definition of class attributes. Each parameter will be
identified by its name and corresponding data type,
mapping each parameter name to a Z data type or a
basic type, which was previously defined. The naming

convention used for parameter schemata is the name of
the class followed by the name of the method and the
keyword ‘parameters’.

8. Define Operation Schemata: Schema inclusion is
exploited when creating operation schemata. It is used
in the case where an operation has parameters – the
corresponding parameter schema for an operation is
included in the operation schema definition. Key
notational conventions are used in operation schemata
definition. They denote if the execution of a particular
operation changes the state of the system. These
respective notations will be included in the operation
schema declaration part, followed by the name of the
class schema which the operation execution has
produced some change. In addition, if other variables
are defined locally within an operation they will be
declared as well. All constraints existing on variables
and/or parameter values will be defined in the schema’s
predicate part. Most importantly, the pre – and post-
conditions of operation safe execution is specified in
these schemata.

9. Define a configuration schema: This schema will entail
all the previously defined relationship schemata, along
with the operation schemata.

Table 2 presents a portion of the schemata that were
developed from conducting the formalization technique
outlined above, on the class diagram of Fig. 2.
Aircraft_Classifier, Coordinate_Classifier and Aircraft_print
are two classes and one method, respectively, from Fig. 2.

V. I. RESULTS

At the project end, the requirement specification (forward
engineering) activities have been through a number of
refinement iterations. The reverse engineering activities have
resulted in the manual development of a UML class diagram
of the display system, as the first component to be reverse
engineered. This class diagram is composed of 174 classes,
including user-defined types, enumerations, and header file
functions. There are over 2,250 attributes across these classes,
which are linked by 383 associations
(generalizations/specializations, aggregations, compositions,
and regular associations). The model includes over 580
operations (methods) that specify 268 parameters.

In this paper, formal methods were applied on a simplified
example to demonstrate the transformation process. The
methodology was applied to the class diagram of component
from the UAS Risk Mitigation System. The class diagram for
this component contained 9 classes with a combined total of
455 attributes, 16 associations (including hierarchical
relationships) and their respective multiplicities. There were a
total of 56 operations that were analyzed; as well as the pre-
and post-conditions of their respective 63 local variables and
28 parameters were evaluated. This derived 206 paragraphs in
Z/EVES, which included the declaration of schemata, basic
types, and axiomatic definitions. Some errors which were

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

206 © 2012 GSTF

discovered included: improper use of data types to handle
data of a certain nature (for example, using strings to store
numerical values that may be used in calculations),
inconsistent data type declarations of similar variables,
improper variable assignments and storage across functions,
parameter/attribute conflicts, among other errors that are not
detected in typical software testing.

TABLE II. SUBSET OF Z SCHEMATA FOR FIGURE 2.
[STRING]
[AIRCRAFT]
[COORDINATE]

ÆMAV: P AIRCRAFT
ÆUAV: P AIRCRAFT
«_______________
ÆMAV U UAV z AIRCRAFT
»_Aircraft_Attributes________________
Æcall_sign: STRING
Æroll: P N
Æair_speed: P N
Æheading: P N
«_______________
ÆA air_speed: air_speed • air_speed ¯ 250
–__________________________
»_Aircraft_Classifier________________
ÆAircraft_Attributes
Æaircraft_instances: P AIRCRAFT
Æaircraft_attributes: AIRCRAFT ß Aircraft_Attributes
«_______________
Ædom aircraft_attributes = aircraft_instances
Æheading = 0 .. 360
Æroll = 0 .. 360
–__________________________
»_Aircraft_OID __________________
ÆAircraft_Classifier
«_______________
Æaircraft_instances' = aircraft_instances
–__________________________
»_Aircraft_print __________________
ÆAircraft_Classifier
ÆAircraft_OID
«_______________
ÆA a: air_speed • a Î 0
ÆA h: heading • h Î 0
–__________________________
»_Coordinate_Classifier______________
ÆCoordinate_Attributes
Æcoordinate_instances: P COORDINATE
Æcoordinate_attributes: COORDINATE ß Coordinate_Attributes
«_______________
Ædom coordinate_attributes = coordinate_instances
Ælongitude = - 180 .. 180
Ælatitude = - 90 .. 90

The application of the steps, outlined in the methodology,
enlightened us on pragmatic approaches to applying formal
methods in the validation and verification of other
components in the project. The work effort, however, was
very tedious which resulted in sporadic human errors in the
specification. Consequently, there is need for a tool to support
and simplify the formalization process. This will alleviate the
workload, as well as reduce the possibility of human errors in
the specification.

VI. CONCLUSION

Safety critical systems must adhere to stringent guidelines
on validation and verification. As a result, the work

documented in this report entails preliminary results and
experience in conducting system validation and verification,
via a formal specification technique. Due to the popularity
and the standardized use of graphical software modeling,
UML notation was for this system. The Z notation was
selected for formal system representation and analysis because
of the experience of the developers with this notation, and the
availability of open source support tools.

Experience gained on this project has reassured the
importance and benefits of FSTs to software development.
The process identified numerous errors in the system, which
was not detected during testing. These included design
anomalies that were also identified. A deeper understanding of
the system which FSTs forced the developers to attain as
discussed in [13], drove the discovery of these latent errors.

REFERENCES
[1] U.S. Dept. of Defense: FY2009-2034: Unmanned Systems Integrated

Roadmap, (2009)
[2] ISO/IEC 19501, Information Technology - Open Distributed

Processing,: Unified Modeling Language (UML) Version 1.4.2 (2005)
[3] France, R. B., Evans, A., Lano, K., Rumpe, B.: The UML as a Formal

Modeling Notation. In Computer Standards & Interfaces, vol 19, issue 7,
325--334 (1998)

[4] Hall, A.: Using Z as a Specification Calculus for Object-Oriented
Systems. In Proceedings of the Third International Symposium of VDM
Europe on VDM and Z - Formal Methods in Software Development,
290--318 (1990)

[5] Hall, A.: Seven myths of formal methods, Software, IEEE , vol.7, no.5,
11--19, (1990)

[6] Clachar, S. Grant, E.S.: A Case Study in Formalizing UML Software
Models of Safety Critical Systems. In Proceedings of the Annual
International Conference on Software Engineering. Phuket, Thailand
(2010)

[7] Jackson, V.: Verification & Validation of Object-Oriented Functional
Design Using Formal Specification Techniques, In Proceedings of the
44th Annual Midwest Instruction and Computing Symposium, Duluth,
MN (2011)

[8] ISO/IEC 13568, Information Technology: Z Formal Specification
Notation - Syntax, Type System and Semantics. First ed. ISO/IEC
(2002)

[9] Brosgol M. B.: Safety and security: Certification issues and
Technologies. CrossTalk: The Journal of Defense and Software
Engineering vol. 21 (10) 9--14 (2008).

[10] Sutton A., Maletic, J. I.: Recovering UML class models from C++: A
Detailed Explanation. Information Software Technology. 49, 3, 212--
229 (2007)

[11] Chikofsky, E. J., Cross II., J. H.: Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software. Vol. 7, 1, 13--17 (1990).

[12] Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation,
Electronic Notes in Theoretical Computer Science, vol 152, In
Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005), 125-142, ISSN 1571-0661 (2006)

[13] France, R.B., Bruel, J., Larrondo-Petrie, M.M.: An Integrated Object-
Oriented and Formal Modeling Environment. In Proceedings of JOOP.
25--34. (1997)

[14] France, R.: A Problem-Oriented Analysis of Basic UML Static
Requirements Modeling Concepts. In Proceedings of the 14th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Denver, Colorado, United States, 57-69
(1999)

[15] Potter, B., Sinclair J.: An Introduction to Formal Specification and Z.
2nd ed. Prentice Hall (1996)

[16] RTCA, Inc, EUROCAE: DO-178B, Software Considerations in
Airborne Systems and Equipment. SC-167 (1992)

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

207 © 2012 GSTF

