

Abstract—This paper focuses on Computer-aided Software

Engineering (CASE) tools that offer functionality for reverse

engineering into Unified Modeling Language (UML) models.

Such tools can be used for design recovery or round-trip

engineering. For these purposes, the quality and correctness of

the reverse engineering capability of these tools is of key

importance: Do the tools completely reconstruct the UML

diagrams? Are the reverse engineering results correct? What

kind of information is presented in the result? Based on these

questions, we compare eight UML CASE tools (six commercial

tools and two open source tools). We evaluate i) the types of

inputs that these tools can handle, ii) the types of diagrams that

can be reconstructed, iii) the quality of resulting diagrams.

Index Terms—Software Engineering, Reverse Engineering,

Software Design, Software Tools.

I. INTRODUCTION

he Unified Modeling Language (UML) has emerged as

the de facto standard for graphically representing the

design of object-oriented software systems [7]. While

UML diagrams are created in forward design, these diagrams

are poorly maintained. Maintaining correspondence (between

design and implementation) is particularly challenging

because over time an implementation tends to evolve

considerably from its initial design [14]. Design models

produced during the design phase are often forgotten during

the implementation phase-under time pressure usually-and

thus present major discrepancies with their actual

implementation frequently [3]. Timothy C. Lethbridge et al

[15] confirm the widely held belief that software engineers

typically do not update documentation as timely or completely

as software process personnel and managers advocate. At the

same time, software engineers working in software

maintenance express a need for better documentation. Tools

support during maintenance, re-engineering or re-

architecturing activities has become important to decrease the

time software personnel spend on manual source code analysis

and help to focus attention on important program

understanding issues [9].

Reverse engineering is the process of analyzing a subject

system to identify the system’s components and their

Manuscript received February 29, 2012. This work was supported in part

by the Public Service Department of Malaysia. The authors are with the

University of Leiden, Niels Bohrweg 1, 2333CA Leiden, The Netherland; e-
mail: hosman@liacs.nl or chaudron@liacs.nl.

interrelationships and create representations of the system in

other form or at higher level of abstraction [12].

Nowadays, a lot of commercial and open source CASE

tools support reverse engineering. CASE tools offer various

kinds of capabilities to provide the needed information to the

user. These tools provide the capability in generating package

and class diagrams based on source codes, object or

executable files. These tools provide an automated and semi-

automated analysis of the software system regarding the

software structure such as class, attribute and operation. Some

of the CASE tools extend the UML reverse engineering

capabilities by supporting sequence diagram generation based

on static analysis. They are also support various programming

languages such as C++, java, C#, Delphi, PHP5 and Visual

Basic.

For this study, our motivation is to discover to what extent

the CASE tools are able to reverse engineer UML diagrams

out of source code. We want to know the strengths and

weaknesses of the evaluated reverse engineering tools. In

order to find the answers, we examined and compared the

reverse engineering capabilities provided by the CASE tools.

Eight tools have been selected in this paper, namely Visual

Paradigm, Rational Software Architect, StarUML, Altova

UModel, MyEclipse, Enterprise Architect, MagicDraw and

ArgoUML. To understand how the tools analyze class

diagram, we have conducted three experiments. The first

experiment tried to discover whether tools could be used to do

round-trip engineering. In this experiment, we want to know

whether the forward code generation capability is compatible

with reverse engineering capability. In other words: whether

the code that a tool generates from a UML model can be used

by the reverse engineering capability to reconstruct to original

UML model.

For the second experiment, we tested the tools in

indentifying class relationship (association, aggregation and

composition) based on the code stated in [3]. This experiment

is done to find out whether the tools are capable of identifying

class relationships. In the third experiment, we tested the tools

of reverse engineering class diagram.

The paper is structured as follows. Section II briefly

describes the examined tools and properties used in this

evaluation. Section III describes the case study and Section IV

explains the approach on how we conducted the experiment.

Section V presents our results and findings. Our evaluation

Correctness and Completeness of CASE Tools

in Reverse Engineering Source Code into UML

Model

Hafeez Osman and Michel R.V. Chaudron

T

DOI: 10.5176_2010-2283_2.1.150

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

193 © 2012 GSTF

mailto:hosman@liacs.nl

will be discussed in Section VI. We suggest future work and

present the differences of this paper and other related research

in Section VII. This is followed by our conclusion in Section

VIII.

II. EXAMINED TOOLS AND PROPERTIES

This section describes the examined tools and properties

used in this experiment.

A. Examined Tools

The CASE tools were chosen based on the following

criteria: i) Capable of performing reverse engineering in Java,

ii) Capable to export UML Model to UML Metadata

Interchange (XMI) format. Eight well known CASE tools

were chosen as listed in TABLE I. For commercial CASE

tools, we use fully functional evaluation and academic

evaluation version.

TABLE I. LIST OF EVALUATED CASE TOOLS

No CASE Tools Information
Vendor License

type

1
Visual

Paradigm 8.1
http://www.visual-

paradigm.com/

Visual

Paradigm
Evaluation

2
MagicDraw
17.0

http://www.magic
draw.com/

No Magic Evaluation
(academic)

3
Altova

Umodel 2011
http://www.altova.

com/

Altova
Evaluation

4
Enterprise

Architect 8.0
http://www.sparxs

ystems.com.au

Sparx

System
Evaluation

5

Rational
Software

Architect

8.0.1

http://www-
142.ibm.com/soft
ware/products/my/

en/swarchitect-
websphere

IBM

Evaluation

6 MyEclipse 8.6 http://www.myecli
pseide.com/

Genuitec Evaluation

(academic)

7 StarUML 5 http://staruml.sour
ceforge.net/

StarUML Open

Source

8 ArgoUML http://argouml.tigri
s.org/

Tigris.org Open

Source

To support this evaluation, metrics software that is capable

of extracting UML model information from different versions

and different type of XMI files is required. SDMetrics[11]

fulfilled our requirement and version 2.11(academic license)

of this software were used in this evaluation.

B. Examined Properties

1) Reverse Engineering Capability: The reverse

engineering tools capabilities are evaluated from the following

perspectives:

a) UML Diagrams: Three UML diagram types are

selected for our evaluation. First, we evaluate the package

diagram. The package diagram is used to group the classes

together into high-level unit [1]. Second, we study the class

diagram. Class diagrams describe the type of objects in the

system and the various kinds of static relationships that exist

among them [1]. Third, we evaluate the sequence diagram.

Sequence diagrams describe an interaction between objects

and actors of the system by focusing on the sequence of

messages that are exchanged, along with their corresponding

occurrence specifications on the lifelines [2]. Reverse-

engineered sequence diagrams can be created through static or

dynamic analysis [5]. Only static analysis is used to generate

the sequence diagram in this experiment. We analyze all three

diagrams by evaluating the process of generating the diagrams

and the output in term of completeness and representation.

b) Supported Programming Language(s): Several

common programming languages are selected to study the

capability of the tools in reverse engineer source code. The

selected programming languages are PHP5, C++, Java, C#,

Delphi, Python and Visual Basic (V.B.).

c) Additional Types of Input formats: The supported

input-types for reverse engineering UML diagrams (in

addition to source code; e.g. binaries).

2) Class Diagram Properties: There are two types of basic

information about a class that are important for this

evaluation. The basic information is the following:

a) Class Attributes and Methods

 Number of attributes: We evaluate the tools’ ability to

reconstruct all attributes including the type of attribute

(public, private, protected) defined in the source code.

 Number of operations: We evaluate the tools’ ability to

reconstruct all methods (of all: public, private, protected,

constructor) defined in the source code. In addition, we

assess whether the tools can distinguish public from

private or protected methods.

 Getters and Setters: We evaluate the tools’ ability to

identify the difference between getters and setters and

other operations.

b) Class Relationship

 Number and type of Relationship: We evaluate whether

the tools reconstruct all relations between classes.

III. CASE STUDY

This section describes the case study used for this paper.

The case studies used in our evaluation are as follows:

A. Movie Catalog System (MovieCat)

This case study is a sample case study derived from [6]. We

modified the relationship of the classes in order to make sure

all types of relationship are presented in the case study. This

case study is used to test Class Diagram Properties.

B. Automatic Teller Machine (ATM) simulation system

This fully functional system has a class design and complete

implementation source code. The class design was made using

forward design. The case study is an ATM simulation example

developed by the Department of Mathematics and Computer

Science, Gordon College [4]. This simple simulation system is

used to show the overall process of UML usage in analysis,

design and implementation phase. The complete software

documents based on UML were provided that consist of 22

design classes. Some of the elements (especially relationship)

in this case study have been modified to suit our requirement

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

194 © 2012 GSTF

http://www.visual-paradigm.com/product/vpuml/
http://www.visual-paradigm.com/product/vpuml/
http://www.magicdraw.com/what_is
http://www.magicdraw.com/what_is
http://www.altova.com/documents/UModeldatasheet.pdf
http://www.altova.com/documents/UModeldatasheet.pdf
http://www.sparxsystems.com.au/products/ea/index.html
http://www.sparxsystems.com.au/products/ea/index.html
http://www-142.ibm.com/software/products/my/en/swarchitect-websphere
http://www-142.ibm.com/software/products/my/en/swarchitect-websphere
http://www-142.ibm.com/software/products/my/en/swarchitect-websphere
http://www-142.ibm.com/software/products/my/en/swarchitect-websphere
http://www-142.ibm.com/software/products/my/en/swarchitect-websphere
http://www.myeclipseide.com/
http://www.myeclipseide.com/
http://staruml.sourceforge.net/en/documentations.php
http://staruml.sourceforge.net/en/documentations.php

for the experiment. This case study is used to test the Reverse

Engineering Capability.

IV. APPROACH

This section explains the approaches that were used to

evaluate the tools. The evaluation is divided into two parts that

are: Round Trip Capability and Reconstruction of UML

Diagram types.

A. Round Trip Capability

To assess how well the tools can be used for round-trip

engineering, we conducted round trip experiment. The

experiment is done to compare the difference between the

forward design and the reverse engineering design. The

experiment begins by creating a sample UML Design (class

diagram) that consists of basic information such as attributes

and methods (private, protected, public) and class relationship

information (such as association, composition and

aggregation). Then, we performed forward engineering to

produce the source code. Based on forward-engineered-source

code, we performed reverse engineering to get the UML

Design’. Both UML Design and UML Design’ were then

compared. This experiment is illustrated in Figure 1.

Figure 1. Roundtrip Engineering Experiment

B. Reconstruction of UML Diagram types

(Package/class/sequence)

To assess the quality of the reverse engineering of UML

diagrams, we conduct the following experiments:

1) UML Diagram Reconstruction capability: Information

about the tools’ support for diagram types is gathered from the

tools’ manual. The results of each tested diagrams are

evaluated based on a three-level scale. The scale explanations

are the following:

 “+” - this scale is set if the tools are able to reverse
engineer the specified diagram eventhough there is/are
minor information that cannot be analyzed such as
aggregation and composition relationship for a class
diagram and dependency relationship for a package
diagram.

 “o” - this scale is set if the tools are able to reverse
engineer the specified diagram but present minimal or
basic information about the diagram, for an example, the

tool is capable in presenting the class name with attribute
and method only. No relationship is presented. Another
example is the tools need user intervention to generate
the sequence diagram.

 “-” - this scale is set if the tool are unable to reverse the
specific diagram.

The tool manuals are also used to collect (the) information

about the supported programming language and supported

type of reverse engineering sources.

2) Detection of Aggregation, Association and Composition

relationship: This experiment aims to test the reverse

engineering capability on various types of class relationship

based on code defines in [3]. We create different version of

source code based on relationship types defined in [3] and use

the tools reverse engineering functionality to generate the

class diagram. Then, the results were observed.

3) Correctness and Completeness (CnC) of Reconstructed

UML Diagram: This experiment aims to test the completeness

and the correctness of the result of reconstructed UML

diagram based on the CASE tools reverse engineering

capability. We begin this task by capturing the expected result

derived by the provided case study design document and

implementation source code. The expected result for all basic

information and relationship is gathered by manual and by

using software metrics tool. This evaluation is divided into

two sections as described below:

a) CnC of Basic Class Information: A new separated

project is created for each tool. All possible options in the

reverse engineering function were tested to get the best result.

The best reverse engineered class diagram from each tool is

exported to XMI or XML file format. Then, the software

metrics and evaluation results were recorded.

b) CnC of Reconstruction of Class Relationship: A new

project is separately created from the tasks mentioned above

and all possible options in reverse engineering function were

tested to have the best view of class relationship. Then,

manually, the relationships constructed by each tools were

evaluated and compared with the expected result. The

evaluations were then recorded.

V. RESULTS AND FINDINGS

This section, we present the result of our evaluation and

findings. The results are divided into two subsections’ which

are Reverse Engineering Capability and Class Diagram

Properties. Complete evaluation results and test diagrams are

shown in [16].

A. Reverse Engineering Capability

The assessment was done by using a three-level scale to

evaluate the tools in reverse engineering task. The three-level

scale are “+” good, “o” minimal and “-” not capable.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

195 © 2012 GSTF

Figure 2. Altova UModel Reverse Engineered Package Diagram

Most of the tools are capable of generating Package

Diagrams. Figure 2 shows an example of a reverse engineered

package diagram using AltovaUModel. Generally, all the

evaluated tools are good at automatically generating class

diagrams based on the source code except ArgoUML because

the tool is unable to reconstruct class relationship other than

inheritance. All CASE tools give an option to the user to

separately generate the class diagram using the “drag and

drop” function.

TABLE II. SUPPORTED UML DIAGRAM FOR REVERSE ENGINEERING

No Tools UML Diagram

Package Class Sequence

1 Visual Paradigm + + o

2 Altova UModel 2011 + + o

3 My Eclipse 8.6 o + -

4 Star UML 5 o + -

5 Magic Draw 17.0 o + -

6 Rational Software Architect
v8.0.1

o + o

7 Enterprise Architect 9 o + o

8 ArgoUML v0.32.2 o o -

There are only four tools in our evaluation that have the

capability of reverse engineering sequence diagrams. An

example of a reverse engineered sequence diagram is shown in

Figure 3. To generate the sequence diagram, the user is

required to choose a method in a class.

The support of different tools for reverse engineering

different UML Diagram is given in TABLE II.

Figure 3. Visual Paradigm Reverse Engineered Sequence Diagram

The supported programming languages results are presented

in TABLE III. It shows that the Enterprise Architect is able to

reverse engineer all the programming languages listed in this

evaluation. We also found that all evaluated tools are able to

reverse engineer source codes in Java.

TABLE III. SUPPORTED PROGRAMMING LANGUAGE

No Tools

Programming Language

P
H

P
 5

C
+

+

J
a
v
a

D
e
lp

h
i

P
h

y
to

n

V
.B

C
#

1 Visual Paradigm Y Y Y N Y N N

2 UModel Altova N N Y N N Y Y

3 My Eclipse N N Y N N N N

4 StarUML N Y Y N N N Y

5 MagicDraw N Y Y N N N Y

6 Rational Software Architect N Y Y N N Y Y

7 Enterprise Architect Y Y Y Y Y Y Y

8 ArgoUML N Y Y N N N Y

Overall, the evaluated tools are able to use source code files

such as .java, .cpp and .cs. They also offer an option to the

user to specify the source directory where the source code is

located and automatically determine the source code file from

the directory.

 For additional type of input format, Visual Paradigm,

Altova and Enterprise Architect are capable of decompiling a

java bytecode (.class), dynamic link library (.dll), execution

file (.exe) and java archive (.jar). The tools then generate class

information that enables the users to construct a class diagram.

The full results for other supported type of sources are shown

in TABLE IV.

TABLE IV. ADDITIONAL TYPES OF INPUT FORMAT

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

196 © 2012 GSTF

N
o

T
o
o

ls

Supported Type Of Source

S
o

u
r
ce

C
la

ss
/

O
b

je
c
t/

D
y

n
a
m

ic
 L

in
k

L
ib

ra
ry

E
x
e
c
u

ta
b

le

O
th

e
r

1 Visual

Paradigm

.Java, .cpp,

.h, .php

.dll, .class,

.inc

.exe,

.jar

Source

Directory,

.zip

2 Altova

UModel

.Java .dll, Global

Cache

(GAC),

MSVS

.Net, .class

.exe,

.jar

Source

Directory

3 MyEclipse .Java - - Source

Directory

4 MagicDraw .Java, .cpp,

.h, .cc, .cs

- - Source

Directory

5 Rational

Software

Architect

.Java, .cpp,

.h, .cc,

- - Source

Directory

6 Enterprise

Architect

.java, .h, .cs,

.hpp, .pas,

.php, .php4,

.inc, .py, .vb,

.cls, .frm, .ctl

.class, .dll .exe,

.jar

Source

Directory

7 StarUML .Java,.cpp,

.h, .cs

- - Source

Directory

8 ArgoUML Java, .cpp,

.cs

.class .jar Source

Directory

B. Class Diagram Properties

This subsection presents the assessment for the class

diagram properties. The result is divided into three subsections

which are Round Trip Findings, Class Relationship Test, and

Class Diagram Correctness and Completeness.

1) Round Trip Findings: We found that the CASE tools

can easily extract all the listed class attributes and operations.

However, the results vary for class relationships. All the tools

except ArgoUML show the same result that association and

inheritance were correctly reconstructed but aggregation and

composition are visualized as association. ArgoUML only can

reconstruct inheritance relationship. Rational Software

Architect shows the association, aggregation and composition

as dependency. Most of the tools declare the association,

aggregation and composition in the forward engineering code

as link declaration as stated in [6]. As shown in Figure 4, the

forward class diagram consists of multiple elements. It has

public, protected and private for attribute and method. It also

has aggregation, composition, association and inheritance for

relationships. The tool is able to reconstruct all information for

attribute and method but the aggregation and composition

relationships are reconstructed as association relationship.

a) Forward Engineered Class

Diagram

b) Reverse Engineered Class

Diagram

Figure 4. Round Trip Test Result

This is the reason why the tools were not able to differentiate

the type of class relationship.

TABLE V. CLASS RELATIONSHIP TEST RESULT

No Tools Association Aggregation Composition

1.
Visual

Paradigm

No

relationship
presented

Present as

association

Present as

association

2.
Altova

UModel

No

relationship

presented

Present as

association

Present as

association

3.
MyEclipse No

relationship

presented

Present as

association

Present as

association

4.
MagicDraw Present as

dependency
Present as
association

and

dependency

Present as
association

and

dependency

5.
Enterprise

Architect

No

relationship

presented

Present as

association

Present as

association

6.
Rational
Software

Architect

Present as
dependency

Present as
dependency

Present as
dependency

7.
StarUML No

relationship

presented

Present as

association

Present as

association

8.
ArgoUML No

relationship

presented

No

relationship

presented

No

relationship

presented

2) Class Relationship Test: Based on the source code that

was presented in [3], we found that all the evaluated tools are

unable to detect the required class relationship. Visual

Paradigm, Altova UModel, StarUML, MyEclipse, MagicDraw

and Enterprise Architect give the same result that all

association relationships were unable to be generated while

the aggregation and composition relationship was presented as

association relationship. On the other hand, Rational Software

Architect shows different result by generating all the class

relationship as dependency relationship. ArgoUML is unable

to reconstruct all aggregation, composition and association as

required. The detailed results of the test are shown in TABLE

V. Examples of diagram that test aggregation for four different

CASE tools is shown in Figure 5.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

197 © 2012 GSTF

Aggregation Expected Test Result

a) MyEclipse Aggregation Test

Result

b) Rational Software Architect

Aggregation Test Result

c) MagicDraw Aggregation Test

Result

d) ArgoUML Aggregation Test

Result

Figure 5. Examples of Diagram on Aggregation Test

3) Class Diagram Correctness and Completeness: Class

Diagram Correctness and Completeness evaluation is divided

into two parts; Class Attributes and Methods and Class

Relationship.

a) Class Attributes and Methods: This evaluation

presents the capability of the CASE tools in identifying and

differentiates class attributes and methods or operations.

Number of Attribute (NA): We expected the tools to extract

79 attributes (NA) from the case study. Visual Paradigm,

Enterprise Architect, ArgoUML and Rational Software

Architect successfully extracted all the attributes as shown in

Figure 4. Other tools like Altova UModel, MyEclipse,

StarUML and MagicDraw show some weakness in this

operation where they were unable to extract all the expected

attributes.

Figure 6. Number of Attributes and Operations

Number of Operations (NO): The number of operations

(NO) expected to be extracted by the tools is 91. However,

most of the tools found more. The additional operations come

from the operations that are derived from the superclass which

is also redeclared inside the inherited classes or subclasses.

This shows that the reverse engineering tools did not check for

the usage of superclass operations. StarUML did not

completely extract all operations because it is unable to extract

4 constructors of 4 classes. Visual Paradigm was only capable

to extract 77 operations. In addition, we also assess the

Number of Public Operations (NPO). The expected NPO of

the case study is 83. Overall, all the evaluated tools are

capable of identifying the NPO except Visual Paradigm and

StarUML. Visual Paradigm identified 63 NPO and StarUML

identified 79 NPO. This is a consequence of the weakness of

these tools in extracting operations.

Number of Setters (NS): All the tools are capable to identify

all expected NS.

Number of Getters (NG): All 32 expected getters were

successfully identified by six of the evaluated tools. Only

Visual Paradigm did not identify all the getters.

b) Class Relationship: From the Round Trip

Experiment, and Class Relationship test, we found that the

evaluated tools can only identify the association and

inheritance (generalization) relationship. In the code, the

proposed guidelines that enable recognizing different relation-

types describe in [3] were not used. Hence, we further

evaluate the relationship of the class by evaluating the tool

capability in extracting association and inheritance

relationship. We have extracted all the link declarations in our

case study and use it as the expected result.

From the case study, there are 37 association relationships

and 4 inheritance or generalization relationships that make it

41 in total. Of these relationships, 3 are bidirectional. The

result of this observation is shown in TABLE VI. By

completing this observation, we found that only Rational

Software Architect is capable of reconstructing bidirectional

relationship. Other tools except ArgoUML reconstruct

bidirectional relations by means of two separate links in

opposite directions. An example of bidirectional relationship

presented by Enterprise Architect is shown in Figure 7.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

198 © 2012 GSTF

TABLE VI. RELATIONSHIP CORRECTNESS

No Tool

T
o

ta
l

R
e
la

ti
o

n
sh

ip

C
o

u
n

t

Association Inheritence

A
ss

o
ci

a
ti

o
n

R
e
la

ti
o

n
sh

ip

c
o

u
n

t

A
ss

o
ci

a
ti

o
n

C
o

r
re

c
tn

e
ss

(%
)

In
h

e
r
it

e
n

c
e

R
e
la

ti
o

n
sh

ip

c
o

u
n

t

In
h

e
r
it

e
n

c
e

C
o

r
re

c
tn

e
ss

(%
)

1 Rational

Software

Architect

30 26 67.57 4 100

2 Visual
Paradigm

31 27 54.05 4 100

3 Star UML 31 27 54.05 4 100

4 Enterprise

Architect

31 27 54.05 4 100

5 MagicDraw 31 27 54.05 4 100

6 Altova

Umodel

31 27 54.05 4 100

7 MyEclipse 20 16 27.03 4 100

8 ArgoUML 4 0 0 4 100

The Rational Software Architect tool is also able to show

single relationship for source code that declared two separated

link relationships to the same class. Other tools show this kind

of relationships as two separated associations. With those

advantages, Rational Software Architect presented the highest

percentage of relationship correctness. Visual Paradigm, Star

UML, Enterprise Architect, MagicDraw and Altova UModel

show the same percentage of correctness where the result in

each extracted relationships are almost the same. However,

MyEclipse shows some weakness in extracting the association

relationship and ArgoUML was unable to reconstruct all listed

required relationship except Inheritance relationships.

Figure 7. Bidirectional Relationship with two Separated Links

VI. DISCUSSION

This section discusses about the experiment that has been

conducted and its result.

Strength: Most of the tools are excellent in presenting the

class attributes and methods. The tools are capable of

extracting source code, visualizing the class diagram and

enabling the user to manipulate the generated diagram. Some

of the tools such as Altova UModel and Visual Paradigm are

able to automatically generate the class diagram. Most of the

tools need user intervention to drag and drop the classes in the

project explorer-canvas to recreate a class diagram. This drag

and drop function can be useful to the user to select the

reverse engineered classes that they want to visualize in the

class diagram. Of course, user intervention requires additional

effort.

Weakness: All CASE tools are unable to correctly identify all

the class relationship. Most of the tools identify aggregation

and composition relationships as association relationships.

Rational Software Architect shows the result differently by

presenting dependency relationships for all class relationships

that were tested. For further investigation, we tested all

evaluated tools by generating the source code based on design

and then we reverse engineered the generated source code to

produce the design. This test shows that we are unable to

generate the same design that we created. We observed the

generated source code and it shows the tools did not

differentiate code generations between those types of

relationship. This may be the reason why the tools are unable

to produce the class relationship correctly. The tools’

weakness(es) in generating code (forward engineering) and

reverse engineer source code for class relationship have

mentioned by Ralf Kollmann et al. [7] in 2002 and Akehurst et

al. [13] in 2007. Although this paper is more recent, the tools

are still unable to generate correct class relationships and

present the relationship in reverse engineering functionality.

However, two tools (MagicDraw, Rational Software

Architect) give additional information by presenting

dependency relationships as an addition to class relationship

(association, aggregation and composition). These tools

present a lot of dependency relationships (some of which are

redundant) that make the resulting generated class diagram

appear disorganized and sometimes confusing. The

aggregation and composition relationship are crucial to show

how the software works. This relationship information may

give some hints for the software engineer or software

maintainer which classes are important based on the software

design before they browse the source code. The class

relationship knowledge (especially which class to initiate after

another) has to be discovered before the software engineer or

software maintainer touch the source code.

Today, CASE tools support the reverse engineering

capability by not only using source code as input but also

support object or class files and executable files such as .jar

and .exe. Some tools such as Altova UModel, Rational

Software Architect and Visual Paradigm offer more

functionality where they are able to present sequence diagrams

based on the reverse engineering result. Although they are not

able to automatically generate the sequence diagram, it at least

may help the software engineer or software maintainer to

understand the class interactions. Overall, from the user point

of view, the functionality to do reverse and forward

engineering are easy to access by the user and the tools give

good instruction and information to the user to use the

functionality and analyze the results.

The experiments that we conducted in this paper rely on

manual observation of the test result and from the support of a

software metrics tool. As we know that some of the inputs are

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

199 © 2012 GSTF

based on XMI files, we did not consider faulty XMI

generation by UML CASE tools. We also did not consider if

the software metrics tools used was unable to extract some of

the metrics from the XMI files.

VII. RELATED WORK AND FUTURE WORK

This section discusses works that are related to this paper

and present our proposed for future work.

Several evaluations and comparisons on reverse engineering

tools have been made [7, 10, 9, 8, 13, 17 and 18]. Ralf

Kollmann et al. [7] presented a study which examined the

reverse engineering capabilities of two CASE tools (Rational

Rose, Borland Together) and compare the result with two

academic prototype (Fujaba, IDEA). It shows the comparison

between commercial CASE tools and academic CASE tools

by presenting the strengths, weaknesses and similarities of the

tools’ capability. In our study, we examined six commercial

CASE tools and two open source CASE tools that we believe

are commonly used in the Industry. We extend the

examination by observing the capabilities of the tools in

reverse engineering the source code into package diagram and

sequence diagram.

Jussi Koskinen and Tero Lehmonen [10] analyzed ten

reverse engineering tools. The paper analyzed the capabilities

in term of four aspects: data structures, visualization

mechanisms, information request specification mechanisms

and navigation features. Their paper focused on the

information retrieval capabilities of the selected tools. Their

selected tools do not offer the same functionality as our tools

because not all tools are capable of reconstructing UML class

diagrams. In our paper, we have selected tools that support

reconstruction of UML models and support Java source code.

Bellay and Gall [9] presented a study to compare reverse

engineering tools for the C programming language. Four

reverse engineering tools were selected in the study. The study

aimed to show the differences of the strength and weakness of

the selected reverse engineering tools based on their usability,

extensibility and applicability for embedded software systems.

The tools selected in their study are different in functionality

and capability. In our study, our evaluated tools are

comparable because the functionality of the evaluated tools is

relatively similar.

Gahalaut and Khandnor [8] presented a study about reverse

engineering java code. The study aimed to compare byte code

reverse engineering tools (decompiler) with UML reverse

engineering tools (Altova UModel and Enterprise Architect).

The input for this comparison is java source and java class

files. They stated that the decompiler and the UML reverse

engineering tools generate the same class structures. However,

in our study, although the structure is about the same, the

detail in class information and relationship is different if we

compare reverse engineered class diagram based on the class

file and java source file.

D. Akehurst et al [13] focused on providing solutions to the

issues of mapping qualified associations and the UML 2.0

semantic variations of an association into the Java 5

programming. It presents a comparison of forward engineering

functionality to examine the capability of some CASE tools.

Our evaluation covered forward and reverse engineering of

class diagram based on user view. Their paper is centered on

how to generate code based on the design and our paper

evaluates and compares the tools’ capabilities on reverse

engineer basic class information and relationships.

Andreas Boklund et al [17] present a comparative study of

forward and reverse engineering in UML tools. The purpose

of their study was to test a selection of selected modeling tools

for a typical three-tier layered web service application. They

tested four modeling tools and the evaluation was done based

on UML-Modeling, UML-based Code Generation and

Reverse Engineering UML-diagram from code. From their

result, the evaluation was focused on code generation using

the tools especially method generation and data type. On the

other hand, we cover a wider area (attribute, method and

relationship) on reverse engineering output from the evaluated

tools. Not all tools that they have selected can be used in their

test. For instance, the Rational Rose did not support forward

and reverse engineering in C#. Furthermore, our selected tools

are comparable in term of the tools capability and

functionality.

Stefan Kearney and James F. Power [18] proposed a

framework and automated tool for benchmarking UML CASE

tools reverse engineering capabilities. The proposed

framework is to show the most accurate and reliable CASE

tools in reverse engineering capabilities. The automated tools

presented in this paper tightly rely on the input from software

metrics tools. The results of their tools are also based on this

software metrics. Although we did our experiment semi

automated, we present more information rather than

concentrate only on software metrics. As shown in our result,

to choose a reliable and accurate CASE tools for reverse

engineering UML diagram is not only based on software

metrics but also other element that able to be reconstructed by

the CASE tools such as relationship and the capability of the

tools to reverse engineer into multiple types of programming

language.

For future work, we propose this evaluation to be extended

to larger systems to evaluate the scalability and performance

of the tools. Also, future research in reverse engineering

should try to come up with abstraction mechanisms for leaving

out details and emphasize important information from reverse

engineered source code.

VIII. CONCLUSION

This paper has provided an assessment of the reverse

engineering capability of seven CASE tools (6 commercial

and two open source). We have assessed the tools by

evaluating the reverse engineering features that are provided.

Basically, all CASE tools are capable of performing reverse

engineering from source code to class diagrams and package

diagrams. Some of the tools can also reverse engineer

sequence diagram, but need a little help from the user to do

this. The tools also support various types of input formats

other than source code, such as class or object file and

executable file. Even though these input formats offer

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

200 © 2012 GSTF

additional options to the user, the resulting diagrams differ

from the results from using source code as input.

Generally, there are not many differences between the

capabilities of tools in reverse engineering into UML. Almost

all the evaluated tools have relatively the same strengths and

weaknesses: CASE tools do not completely show all class

information and CASE tools are also not capable of correctly

and completely presenting the class relationships – especially

aggregation and composition.

 With the state of the practice of current tools, details that

are omitted from relations in class diagrams can lead to

misinterpretations. The CASE tools providers could improve

their reverse engineering capabilities by better identifying the

association, aggregation and composition relationship. For user

that consider using reverse engineering using CASE tools as a

means of discovering their design should be aware of the

weaknesses of these tools: Even though the tools result present

a lot of UML diagrams, not all the result are correct or

complete.

ACKNOWLEDGEMENT

We would like to thank all the CASE tools and the software

metric tool providers for giving us the evaluation and

academic license for this assessment purpose.

REFERENCE

[1] Fowler, M.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd Edition Addison-Wesley, New York,(1997)

[2] http://www.uml-diagrams.org/

[3] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering Binary
Class Relationships: Putting Icing on the UML Cake. In Doug C.
Schmidt, editor, Proceedings of the 19th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages
301--314, October 2004.

[4] http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

[5] C. Bennett, D. Myers, D. Ouellet, M.-A. Storey, M. Salois, D. German,
and P. Charland. A survey and evaluation of tool features for
understanding reverse engineered sequence diagrams, J.Softw. Maint.
Evol.: Res. Pract., vol. 20, no. 4, pp. 291–315, 2008.

[6] Bruce E.Wampler. The Essence of Object-Oriented Programming with
java and UML,1st Edition, Addison-Wesley, 2002.

[7] R. Kollmann, P. Selonen, E. Stroulia, T.Systa and A. Zundorf. A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. Proc. IEEE Working Conference on Reverse
Engineering, Richmond VA, pp. 22-32, 2002.

[8] Asit Kumar Gahalut, Padmavati Khandnor. Reverse Engineering : An
Essence for Software Re-engineering and Program Analysis.
International Journal of Engineering Science and Technology, Vol. 2,
No. 06, 2010.

[9] B. Bellay and H. Gall. A Comparison of Four Reverse Engineering
Tools. 4th Working Conference on Reverse Engineering, pages 2-11, The
Netherlands, 1997.

[10] Jussi Koskinen, Tero Lehmonen. Analysis of Ten Reverse Engineering
Tools. International Joint Conferences on Computer, Information, and
Systems Sciences, and Engineering (CISSE) ,2008.

[11] http://www.sdmetrics.com/

[12] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and
Design Recovery: A Taxonomy. IEEE Software 1990.

[13] D. Akehurst, G. Howells, K. McDonald-Maier. Implementing
Associations : UML 2.0 to Java 5. Software and Systems Modeling, vol.
6, no. 1: 3-35, March 2007.

[14] Ariadi Nugroho, M. R. V. Chaudron. A Survey of the Practice of Design
- Code Correspondence amongst Professional Software Engineers,

Proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, p.467-469, September 20-21, 2007

[15] Timothy C. Lethbridge , Janice Singer , Andrew Forward. How
Software Engineers Use Documentation: The State of the Practice, IEEE
Software, vol. 20 no. 6, p.35-39, November 2003.

[16] http://www.liacs.nl/~hosman/Hafeez2011.pdf

[17] Andreaas Boklund, Stefan MankeFors-Christiernin, Christer Johansson,
Hakan Lindell, A Comparative Study Of Forward and Reverse
Engineering In UML Tools. IADIS International Conference Applied
Computing 2007.

[18] Stevan Kearney, James F. Power, REM4j – A Framework for Measuring
the Reverse Engineering Capability of UML CASE tools. 19th
International Conference on Software Engineering and Knowledge
Engineering, Boston, USA, pp. 209-214, 9-11 July, 2007.

Hafeez Osman received the BSc (2001) and MSc (2003) degrees in

computer science from University Technology Malaysia, Malaysia.
He spent 8 years in the IT Industry. Currently, he is a doctoral

candidate at the Leiden Institute of Advance Computer Science,

Leiden University, The Netherlands. His main research interests are software
evolution, software architecture and design, UML, reverse engineering, and

empirical research in software engineering.

Michel R.V. Chaudron received the MSc (1992) and PhD (1998)

degrees in computer science from Leiden University, The

Netherlands. He spent a couple of years working in the IT industry,
after which he worked at TU Eindhoven. Currently, he is an

associate professor at the Leiden Institute of Advanced Computer Science,

where he heads the ICT in Business MSc program. His main research interests
are software architecture, component-based software engineering, UML, and

empirical research in software engineering. He has published more than 80

refereed papers in these areas and is an active participant in conferences in
these areas.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

201 © 2012 GSTF

http://www.uml-diagrams.org/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.sdmetrics.com/
http://portal.acm.org/citation.cfm?id=1302972&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=1302972&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=1302972&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=1302972&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=950726&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=950726&CFID=16835304&CFTOKEN=58626811
http://portal.acm.org/citation.cfm?id=950726&CFID=16835304&CFTOKEN=58626811
http://www.liacs.nl/~hosman/Hafeez2011.pdf

