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Abstract- An investigation based a finite element method 

(FEM) is carried out for the determination of confined 
turbulent flow with a one equation model used to depict the 
turbulent viscosity in a long straight channel. The effects of 
such flow in a zone close to a solid boundary has been 
investigated, by developing  a finite element modeling 
technique based on near wall zone in which replaces the 
traditional techniques. The validity of the imposed technique 
is shown by comparison with other techniques. 

 

Index Terms- FEM, incompressible turbulent flow, pressure 
flow, wall element technique. 
 
 

I. INTRODUCTION 
Fluid dynamics is one, among many important topics in 
applied computer science as well as engineering. 
Applications of fluid dynamics are continuing to grow as 
this advanced technology takes advantage of the increasing 
speed of computers and hardware capabilities and therefore, 
computational fluid dynamics (CFD), has became the 
interest of many researches. This development of CFD can 
offer a cost-effective to many problems one of them is the 
turbulent flow. 

It is well known that when a fluid enters a prismoidal 
duct the values of the pertinent variables change from some 
initial profile to a fully developed form, which is thereafter 
invariant in the downstream direction. The analysis of this 
region, which is known as developing region, has been the 
subject of extensive studies. Numerous theoretical and 
experimental works are available on laminar flow [1-3], but 
this is not the case of turbulent flow. Since it has not been 
possible to obtain exact analytical solutions to such flows, 
an accurate numerical approach would be very beneficial to 
researchers. The finite element method [4] is one of these 
methods that have recently emerged as a powerful tool for 
solving the N-S equations. Within the main domain, the 
finite element method used to discretise the equations 
governing the fluid motion. A factor of consideration if that 
when using a numerical approach to analyze confined 
turbulent flow, an effective technique is required to model 

the variation of the pertinent variables near a solid 
boundary, where the variation in velocity and kinetic 
energy, in particular, is extremely large near such surfaces 
since the transfer of shear form the boundary into the main 
domain and the nature of the flow changes rapidly. 
Consequently, if a conversational finite element subdomain 
is used to model the near wall zone (N.W.Z.), a significant 
grid refinement would be required. Indeed, in most 
situations this would be so fine as to be impractical. 

Several solution techniques have been suggested in order 
to avoid such excessive refinement [5-7]. A more common 
approach is to terminate the actual domain subject to 
discretisation (main domain) at some small distance away 
form the wall, where the gradients of the independent 
variables are relatively small, and then use another 
technique to model the flow behavior in the near wall 
element. In this paper, a different near wall zone modeling 
techniques is used to simulate turbulent flow in a smooth 
straight channel. 

Within the computational domain, the finite element 
method is used to discretise the equations governing fluid 
motion, namely continuity and the Navier-Stokes (N-S) 
equation. For present purposes the analysis is approached 
via a time averaged form of N-S equation with a spatially 
varying viscosity. For closure additional equations are 
required in order to evaluate local values of the turbulence 
kinetic energy, k, and Prandtl’s mixing length. The 
additional equations must, therefore, depict the variation of 
both k and the mixing length. In the present work, the one 
equation model of turbulence is used, and a transport 
equation is derived which can be used to evaluate k. 
 

 
II. MATHEMATICAL DESCRIPTION 

 

The current investigation relates to steady - state 
incompressible two dimensional turbulent flow of a 
Newtonian viscous fluid with no body forces acting. For 
such a situation, the Navier-Stokes (N-S) equations 
associated with this type are, 
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 Where i, j = 1,2. ui, p are the time - averaged velocities and 
pressure respectively, ρ is the fluid density, µe is the 
effective viscosity which is given by µe = µ + µt,  µ and µt 
are the molecular viscosity and turbulent viscosity 
respectively. The flow field must satisfy the continuity 
equation, which may be written as: 
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Equation (1) and (2) cannot be solved unless a turbulence 
closure model can be provided to evaluate the turbulent 
contribution to µe . The simplest model is via an algebraic 
formula [8] which has limited application and therefore this 
model is not adopted in the present work, but an alternative 
(Prandtl [9]-kolmogorov [10]) model is used in which, 
 
  µµρµ 12/1kCt =   ………….……......................... (3) 

1µ  is the length scale of turbulence which is given by  

1µ = 2.5 1m, 1m is the mixing length based on the prandtl 
hypothesis which has been specified algebraically for the 
present purposes as 0.4 times the normal distance from the 
nearest wall surface, Cµ  is a constant and k is the time-
averaged turbulence kinetic energy. The µt given by 
equation (3) requires that k to be known. This can be 
evaluated via a further transport equation given by: 
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Where E= µρ 1/2/3kCD

, 
kt σµ /  is the turbulent 

diffusion coefficient, σk  is the turbulent prandtl or 
Schmidt number and CD is a constant. 
The turbulence model based on equations 1, 2 and 4 is 
called the one-equation (k-l) model. 

The above governing equations have been discretised by 
using the standard finite element method [11] and 
Galerking weight residual approach is adopted to solve the 
discretised equations. The flow domain is divided into 
quadratical 8-noded elements used to define the variations 
in velocities and turbulent kinetic energy, and linear 4-
nodded elements used for the pressure. Greens theorem is 
used then to reduce the order of the equations to unity 
resulting in a “weak formulation” which resulted in non-

linear equations matrix which is solved by either a coupled 
or an uncoupled method. Within the N.W.Z. universal laws 
concept [12], or one-dimensional parabolic elements, in a 
direction normal to solid wall is adopted. 

 
 

III.   NEAR WALL ZONE MODELING TECHNIQUES 
 

Within the main domain, conventional two dimensional 
isoparametric elements are used to discretise the flow 
domain, and within the near wall zone (Figure 1) different 
techniques were used, these are as follows, 
  i) Conventional finite elements (i.e. 2-D elements up to the 
wall) are used to discretise the N.W.Z. and the variable 
values, following analysis, are used as reference data. 
However an excessive mesh refinement was needed which 
is expensive in computer time and memory. 
ii) In order to avoid such excessive refinement, semi-
empirical equations, known as “Wall Functions” or the so-
called “Universal Laws”, are used to bridge from a solid 
boundary to the main domain. 
iii) In the present work, a finite elements technique has been 
adopted, using one-dimensional (3-noded elements) normal 
to the wall (Figure 2). 
In (iii) the momentum equations in direction normal to the 
wall surface, together with pressure equation and the kinetic 
energy equation are solved in the near wall zone. A 
pressure procedure, developed by Schneider [13], which 
implements the conservation of mass through the use of the 
pressure Poisson equation, in a direct manner has been 
utilized in this work. The inaccuracies associated with the 
use of one-dimensional elements in one direction normal to 
the wall, has also been investigated. 
 
 

IV.   BOUNDARY CONDITIONS 
  

The actual domain is taken as a straight channel of with 
D, which is taken as 1.0, and length L. Particular attention 
is given to the important aspect of studying the viscous 
flow. It is particularly important that the location and 
imposition of boundary conditions on a downstream 
boundary is considered. For such condition the boundary 
conditions applied are as follows: 
1. Velocities and pressure 
i. Forced boundary conditions such as,  

φ φ= Γ   on the boundary Γ1 ( )φ = velocity   

ii. Traction boundary conditions, where the traction’s are 
either defined or updated on boundary, 
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2. Turbulent kinetic energy (k) as per (i) above or updated 
Neumann conditions. 

In this work, poisiuille flow is considered only and the 
boundary conditions imposed were as shown in Figure 1. 
Compatible fully developed velocity and kinetic energy 
profiles which look like parabolic curve were imposed at 
the upstream section when fully developed turbulent flow 
was considered at the first stage and the traction’s were 
updated at downstream. These profiles were obtained by 
using the outlet values form each iteration as new 
approximations to the values at the inlet until a convergent 
condition is satisfied.  
 
 
 

V.   RESULTS AND DISCUSSION 
 

The validity of the wall element technique (1-D elements 
in one direction) is tested by analyzing fully developed 
turbulent flow. Different Reynolds numbers based upon the 
width of D was investigated. 

Convergent fully-developed turbulent velocity profiles 
are presented in Figures 3 which shows that the velocity 
values obtained by universal profiles have some 
discrepancy from those obtained from the advocated 
technique. Figures 4 clearly shows, the results obtained 
from the adoption of the presently advocated technique 
exhibits excellent agreement with the correct solution which 
resulted from the complete mapping. These are, superior to 
those obtained using universal laws. 

Also, an excellent agreement between the developed 
technique and experimental results [14] shown in Figure 5.  
Once more, the “correct” values are remarkably close to 
those obtained from the proposed technique, as shown in 
Figures 6-8 which refer to the velocity, kinetic energy and 
the turbulent viscosity. 
 

 
Figure 1: Boundary conditions when the mesh is terminated at 
small distance away from the wall. 
 

 
Figure 2: One-dimensional elements in one-direction normal to 
the wall used in the N.W.Z.  

 

 
Figure 3:  Turbulent velocity profiles for fully-developed flow, at 
8D downstream, L=8D, Re=50.000 
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Figure 4:  Turbulent velocity profiles for fully-developed flow, at 
8D downstream, L=8D, Re=12.000 
 

 
Figure 5:  Turbulent velocity profiles for fully-developed flow, at 
8D downstream, L=8D, Re=50.000 
 

Figure 6:  Turbulent velocity profiles for fully-developed flow, at 
1.4 D downstream, L=1.4D, Re=1.000 

 
Figure 7: Kinetic energy profiles for fully-developed turbulent 
flow, at 1.4 D downstream, L=1.4D, Re=1.000 
 
 

 
Figure 8: Viscosity distribution profiles for fully-developed 
turbulent flow, at 1.4D downstream, L=1.4D, Re=1.000 
 
 

VI.   CONCLUSIONS 
 
1. The utilization of empirical universal laws is not 
valid since these laws are only really applicable for 
certain one-dimensional flow regimes.  
2. The general use of 2-D elements up to the wall is 
not economically viable. Therefore to avoid such an 
excessive refinement, these methods have been 
replaced by introducing a wall element technique, 
based on the use of the F.E.M. 
3. The use of the wall element technique in one 
direction has shown an excellent results when the 
fully-developed flow considered.  
Therefore, this technique can be used with 
confidence for turbulent fully-developed case.   
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