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Abstract—This paper proposes an encryption scheme secure
against chosen cipher text attack, built on the Niederreiter
encryption scheme. The security of the scheme is based on the
hardness of the Syndrome Decoding problem and the Goppa Code
Distinguishability problem. The scheme uses the techniques pro-
vided by Peikert and Waters using the lossy trapdoor functions.
Compared to the existing IND-CCA2 secure variants in standard
model due to Dowsley et.al. and Freeman et. al. (using the κ
repetition paradigm initiated by Rosen and Segev), this scheme
is more efficient as it avoids κ repetitions.

Index Terms—Standard Model, CCA-2 security, Neiderreiter
Cryptosystem, Syndrome Decoding, Code Indistinguishability.

I. INTRODUCTION

The strongest and commonly accepted notion of security for
a public key encryption system is that of indistinguishability
of messages under adaptive chosen ciphertext attacks. This is
denoted as IND-CCA2. Security in this setting means that an
adversary obtains no information about encrypted messages
provided, the corresponding ciphertexts are not permitted to
query the decryption oracle. Chosen-cipher text security, which
guarantees confidentiality of encrypted messages against any
adversary with polynomially bounded computing power, even
though the decryption oracle is provided, has become the de-
facto standard notion of security for public key encryption
under active attacks.
There are two models based on which the security of the cryp-
tosystem can be argued, namely (1) Random Oracle Model
and (2) Standard Model. Random oracle model guarantees
security in an idealized world where all parties get black box
access to a truly random function. Therefore a proof in random
oracle model can be a heuristic argument.The schemes that are
provably secure under standard model (without random oracle)
is highly prefered.
In the paper lossy trapdoor functions and its applications [12]
the authors presented a black box construction of IND-CCA2
secure encryption scheme based on lossy TDFs and all-but-
one trapdoor functions, with a witness recovering decryption
algorithm. The decryption first recovers the randomness that
was used to create the ciphertext, and then tests the validity
of the ciphertext simply by re-encrypting the message under
retrieved randomness. This paper investigates the usage of
code-based assumption for the witness recovery, to obtain a
IND-CCA2 secure encryption scheme in the standard model.
Code-based cryptography was initiated by the seminal paper
due to McEliece [13], who presented a cryptosystem, based
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on the hardness of both the Bounded Decoding problem
and the Goppa Code Distinguishability problem. Initially, the
scheme did not fascinated the crypto community because of
the large public and private key-sizes. Niederreiter proposed a
cryptosystem, that is dual of the McEliece Cryptosystem [8].
The number-theoretic schemes that shown to be weak against
an attack due to Shor [15], and McEliece and Niederreiter
cryptosystems are found to have resistance against such attacks
(when using Goppa codes). Therefore the above systems are
considered as the candidates for future cryptographic systems
that will resist quantum computer attack, which are termed as
Post-Quantum Cryptography.
Related Work: Recently Dowsley et al. [3] showed that
a randomized version of the McEliece cryptosystem is κ-
repetition CPA secure and obtain a CCA2 secure scheme
in the standard model. Rosen et al. [14] initiated the study
of the one-wayness under correlated products and Freeman
et al. [7] propose instantiation of lossy trapdoor functions
and correlation-secure trapdoor functions. They proposed a
correlation-secure trapdoor functions based on the hardness
of syndrome decoding, thereby, obtaining a CCA-2 secure
encryption scheme in the standard model.
Our Contributions: The currently existing variants of the
Niederreiter and McEliece cryptosystem that are IND-CCA2
secure in the standard model [3], [7], are based on the κ rep-
etition paradigm [14]. Such cryptosystems lead to extremely
large keys, encrypting time and ciphertext size. The scheme
by Freeman et al. [7], the parameters are chosen using the
deterministic version of Niederreiter. The parameters that are
generally used in deterministic Niederreiter-type cryptosys-
tems are vulnerable to an attack proposed by Håstad, [9].
Hence, the parameters that are generally used for the above
construction, requires a large (n, k) resulting in large key-
sizes. If randomised version of Neiderreiter is used, the κ-
repetition paradigm is required, which need 2κ pairs of keys.
Therefore, the cryptosystem due to κ repetition of Niederreiter
the key size is very very large and is similar to the system
proposed in [3].
Our scheme uses several ideas from [12]. We use strongly
unforgeable one-time signature (OTS) to handle malleability
related issues as in [12], [14]. Also there are two injective
functions on the verification key and the message. This novel
approach leads to the elimination of the κ-repetition. Note that
the instantiation of the protocol in [12] in a direct way leads to
the scheme similar to [3] and it will involve κ-repetition. Thus,
for practical code-based cryptosystems such a κ− repetition
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paradigm needs to be avoided.
Our contributions in this paper are:
(i) Proposal of efficient variant of the Niederreiter scheme, that
are not based on the κ repetition paradigm, and
(ii) formal argument of their security against IND-CCA2
adversary in the standard model.
An analogous idea for selective provision of trapdoor was
also used by Agrawal et. al. [1] in the lattice-based setup,
for simulation of the key-extraction phase in their proof of
CPA security of a (H)IBE in the standard model. They use
lattices built from two parts called right and left lattices. A
trapdoor for the left lattices is used as the master secret in
the real system and enables one to generate private keys for
all identities. A trapdoor for the right lattice is only used
to generate private keys for all identities. A trapdoor for the
right lattice is only used in the proof of selective security and
enables the simulator to generate private keys for all identities
except for one. They used right lattices to achieve the targetted
ID method of proving, where the key extraction simulation
extracts private keys for all IDs except the targetted ID. In our
case, f1, f2 are the two injective functions that achieve the
same purpose, but the details and computations are entirely
different from [1].
Organization of the paper: Section 2 provides the hard-
ness assumptions used in the paper and the basic code-
based cryptosystems (McEliece and Niederreiter). Section 3
gives the proposed scheme, the proof of security, the secure
parameters for the cryptosystems, and the comparison with
existing schemes. The paper is concluded in section 4.

II. PRELIMINARIES

A. Notation

If x is a string, then |x| denotes its length, while |S| represents
the cardinality of the set S. If n ∈ N then 1n denotes the string
of length n. s ∈R S denotes the operation of choosing an
element s from a set S uniformly at random. w ← A(x, y, ...)
represents the running of algorithm A with inputs x, y, ...
and producing output w. We write w ← AO(x, y, ...) for
representing an algorithm A having access to oracle O. We
denote by Pr[E] the probability that the event E occurs. For
a matrix M , its transpose is represented by MT , its inverse
is represented by M−1. If a and b are two strings of bits, we
denote their bitwise XOR by a⊕ b. Un is an oracle that return
a random element of {0, 1}n.
Since, the proposed cryptosystems are code-based, a few
notations regarding coding theory are introduced. A binary
linear-error correcting code of length n and dimension k or a
[n, k]- code is a k-dimensional subspace of Fn2 . If the minimum
hamming distance between any two codewords is d, then the
code is a [n, k, d] code. The hamming weight of a codeword
x, wt(x), is the number of non-zero bits in the codeword. For
t ≤ bd−1

2 c, the code is said to be t-error correcting if it detects
and corrects errors of weight at most t. The generator matrix
G ∈ Fk×n2 of a [n, k] linear code C is a matrix of rank k whose
rows span the code C. The parity-check matrix H ∈ Fn−k×n2

of a [n, k] code C is a matrix satisfying HGT = 0. Hence,
code C can be defined as {mG : ∀m ∈ Fk2} or {c : HcT = 0}.

B. Definition of the Security Notions

The IND-CCA2 security for any Public-Key Encryption
Scheme (PKE) is defined as follows:

Definition 1: (IND-CCA2 security). For a two -stage
adversary A = (A1,A2) against PKE we associate the
following experiment Expcca2PKE,A(n):
(pk,sk) ← Gen(1n)
(m0, m1, state) ← ADec(sk,·)

1 (pk) s.t. |m0| = |m1|
b ∈R (0,1)
c∗ ← Enc(pk,mb)
b′ ← ADec(sk,·)

2 (c∗,state)
if b=b

′
return 1 else return 0

The adversary A2 is not allowed to query Dec(sk,·) with c∗.
We define the advantage of A in the experiment as

Advcca2PKE,A(n) = |Pr[Expcca2PKE,A(n) = 1]− 1
2 |

We say that PKE is indistinguishable against adaptive
chosen-cipher text attacks (IND-CCA2) if for all probabilistic
polynomial time (PPT) adversaries A = (A1,A2) that makes
a polynomial number of oracle queries the advantage of A in
the experiment is a negligible function of n.
The security notion of One-time strongly unforgeable, or one-
time existentially unforgeable under chosen message attack
(EUF-1CMA) is as follows (based on [11]):

Definition 2: A signature scheme is said to secure under
EUF-1CMA, if there exists no PPT algorithm A, which has
knowledge of only the verification key vk and the public
parameters and access for just one query to the signature
oracle to obtain a tuple(m′, σ′) , outputs a valid signature
(m,σ) 6= (m′, σ′) with a non-negligible probability.

C. Security assumptions

The following are some of the hard problems on which the
security of the proposed cryptosystems is based.

Definition 3: Syndrome Decoding Problem. For some pa-
rameters [n, k, 2t + 1] given an a ∈ Fn−k2 and a matrix
H ∈ Fn−k×n2 , find a vector e ∈ Fn2 with weight wt(e) ≤ t
such that HeT = a.
The advantage of a PPT algortihm D of solving the problem
is denoted by AdvSD

D (n).
Assumption 1: For any probabilistic polynomial time algo-

rithm F , AdvSD
F (C) < ε1(n, k) where ε1(n, k) is a negligible

value with respect to n and k.
For Goppa codes, there is a polynomial time bounded decod-
ing/syndrome decoding algorithm. Thus, there is a preference
for most code-based cryptosystems to use the Goppa code as
a trapdoor.

Definition 4: Goppa code-distinguishability. For parame-
ters [n, k, 2t + 1] given a matrix H ∈ Fn−k×n2 , output 1 if
H is a parity check matrix of a Goppa code, 0 if H is not a
parity check matrix of any Goppa code.
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The advantage of a PPT algorithm D of solving the problem
is denoted by AdvCD

D (n, k).
Assumption 2: For any probabilistic polynomial time dis-

tinguisher D, AdvCD
D (n, k) < ε2(n, k) where ε2(n, k) is a

negligible function if it is not a high rate goppa code, [4].

|Pr[D(H) = 1]− Pr[D(M) = 1]| < ε2(n, k)

where H is the parity check matrix of the Goppa code and
M ∈R Fn−k×n2 .

D. Niederreiter’s Cryptosystem

Niederreiter’s cryptosystem [8] uses the hardness of syn-
drome decoding for its security. The scheme is given below,
•Secret Key:

–C a binary t error correcting linear code.
–a (n− k)× (n− k) non-singular matrix Q,
–a n× n permutation matrix P

•Public key: H̃ = QHP , where H is a parity check matrix
of C.
•Encryption: c = H̃mT , the message m is a word of length
n and weight t.
•Decryption: m = P−1DecodeH(Q−1c).

It has been proved that Niederreiter and McEliece cryptosys-
tem have equivalent security properties [10].

III. VARIANT OF THE NIEDERREITER CRYPTOSYSTEM

A. Proposed Scheme

The proposed system is based on the construction presented
by Peikert and Waters [12] for CCA-2 secure encryption
scheme in the standard model, using lossy trapdoors and all-
but-one trapdoor functions. This scheme uses two functions
that are injective Trapdoor functions (TDFS) which require
the decoding trapdoor for parity check matrices of the Goppa
codes.
The use of a one-time signature for non-malleability of the
ciphertext is a paradigm initiated by Dolev et al. [2]. Thus our
scheme uses the following:
•A one-time strongly unforgeable signature scheme
OS(KeyGenOS ,SignOS ,VerfiyOS), for the security pa-
rameter κ such that

–KeyGenOS(κ) outputs the key-pair (vk, sk), where vk
is the verifcation key, and sk is signing key. The size
of the domain of the keys |vk|, |sk| = κ

–SignOS(sk,M) outputs a signature σ on a message M
–VerfiyOS(vk,M, σ), verifies the signature σ on message
M using the verification key vk. If the signature is valid
then the verification algorithm outputs VALID, else it
outputs INVALID.

•The injective functions f1, f2, map the verification key,
to corresponding matrices. With the use of such functions,
we are in possession of a tool that makes the ciphertext
dependent on the verification key also, but without com-
promise in security. Such a setup, does away with most
malleability issues.

•The private-keys with regard to H̃2 & H̃3 are used in the
decryption oracle, just as in [12].

A more formal description of the scheme is as follows:

System Parameters. The system paramters are as follows: Let
Dvk denotes the domain of the signature and verification keys.
•Parameters of the code n, k, t for any [n, k, 2t+ 1] linear
code, with n, k determined by the security parameter κ,
and t = n−k

log2 n
.

•A hard-core predicate h : Fn2 → {0, 1}l, where l is the
length of the message, and l < n,
•A one-time strongly unforgeable signature scheme
OS(KeyGenOS ,SignOS ,VerfiyOS), for the security pa-
rameter κ.
•An injective function f1 : Dvk → Fn−k×n−k2 which takes
verification key as input, and gives the random matrix
Q2 that blinds the parity check matrix in the Niederreiter
cryptosystem.
•An injective function f2 : Dvk → Pn×n which takes the
verification key as input and output a n × n permutation
matrix P2, for the Niederreiter cryptosystem.

Key Generation. For the security parameter 1κ, the KeyGen
is as follows:
•(vk∗, sk∗)← KeyGenOS(1κ).
•Randomly select two distinct [n, k, 2t + 1]Goppa
codes,and a a [n, k, 2t+1] linear code whose parity check
matrices are H1, H3, R respectively.
•Randomly select Q1, Q3 ∈R Fn−k×n2 .Q3 should be
invertible,P1 ∈R Fn×n .
•Define H̃1 = Q1H1P1,H̃2 = Q2H2P2 ⊕R, H̃3 = Q3R.
•Compute Q2 = f1(vk∗) and P2 = f2(vk∗),.

Thus, we have :
•Public Keys: H̃1, H̃2, & H̃3.
•Secret Keys: H1, Q1, P1, (vk∗, sk∗)(hence
Q2, P2), H2, R, & Q3

Encryption: On an message m ∈ {0, 1}l, the following steps
constitute the encryption algorithm:
•Generate r ∈R Fn2 , with wt(r) ≤ t.
•(vk, sk) ← KeyGenOS(1κ), and compute Qvk = f1(vk)
and Pvk = f2(vk).
•Define K1 = QvkH̃1Pvk, K2 = QvkH̃2Pvk and K3 =
QvkH̃3Pvk .
•Define c1 = K1r

T , c2 = K2r
T , c3 = K3r

T and c4 =
m⊕ h(r), where h(r) 6= 0.
•Compute σ = SignOS(sk, (c1, c2, c3, c4)), i.e., the one-
time signature on (c1, c2, c3, c4) (where (c1, c2, c3, c4) is
denoted as M ) using the signing key sk.

The ciphertext that is sent is c = (vk, c1, c2, c3, c4, σ).
Decryption. The decryption on the ciphertext c =
(vk, c1, c2, c3, c4, σ) is done as follows:
if (VerifyOS(vk, (c1, c2, c3, c4), σ)→ INVALID))

return ⊥
else

Compute, Qvk ← f1(vk), Pvk ← f2(vk).

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

160 © 2012 GSTF



if (DecodeH1((QvkQ1)−1c1)→⊥)
return ⊥.

else
r ← PTvkP

T
1 DecodeH1((QvkQ1)−1c1)

if(c2 6= QvkH̃2Pvkr
T OR c3 6= QvkH̃3Pvkr

T )
return ⊥.

else
return m = c4 ⊕ h(r)

end
Correctness The reciever on getting the cipher text can verify
the signature as the the verification key is attached along with
the cipher text components, then decode the randomness with
which the message is encrypted. The receiver can verify the
consistency of the retrieved randomness using the components
c2, c3. The message can be retrieved by m = c4 ⊕ h(r)

B. Proof for the Security of the system

The proof of security follows a game-based approach.It is
claimed that every adversary has only a negligible advantage
in the CCA-2 games under the standard model, provided the
Computational Syndrome Decoding problem and Goppa Code
Distinguishability are hard to solve, and the signature is one-
time strongly unforgeable.

Theorem 1: The probability for any PPT adversary A of
winning the IND−CCA2 under the standard model for the
Niederreiter variant is within the range of,

1
2
± {Advcca2PKE,A(n, k) +

1
2κ

+AdvCD
A (n, k) +AdvSD

A (n, k)

+AdvSD
A (n, 3k − 2n)}

provided the signature is one-time strongly unforgeable and
the functions f1 and f2 are injective.

Proof: We build the proof as a sequence of games
Game0, Game1,· · · , where Game0 is the IND-CCA2 game,
as directly applied to the given scheme. Succesive games are
obtained by small modifications of the preceding games, in
such a way that the difference of the adversarial advantage
in consecutive games is easily quantifiable. For the proof
we assume two matrices Y and R, for which the syndrome
decoding trapdoor is not known to the challenger.The Setup
always first chooses a one-time signature key pair (vk∗, sk∗)
and in the Challenge using the encryption oracle it uses
the one-time signature pair (vk∗, sk∗) instead of the pair
(vk, sk).The games are mentioned as follows:
Game 0.The Setup, Decryption and Challenge are gen-

erated as per the defined IND-CCA2 experi-
ment. Setup uses, the setup algorithm as men-
tioned in the proposed scheme, to generate the
public keys H̃1, H̃2, H̃3, and the secret keys
H1, Q1, P1, vk∗, sk∗, R,Q3. The decryption oracle
uses the decryption algorithm, making use of the de-
coding trapdoor corresponding to H̃1. The challenge
ciphertext is generated by the challenger C on mb,
with b ∈R {0, 1}, using the encryption algorithm of
the proposed scheme, where m0 & m1 are sent by
the adversary A. Hence, the probability, of success

in game 0, is probability of success of breaking the
proposed scheme. Let, X0 be the event that A wins
the game. Then

|Pr[X0]−
1
2
| = Advcca2PKE,A(n, k) (1)

Game 1.Restriction on the Decryption Oracle. The de-
cryption oracle is restricted by the Challenger,
in the sense that, for the query ciphertext c =
(vk, c1, c2, c3, c4, σ), where σ is a valid signature on
c1, c2, c3, c4, if vk == vk∗ the Challenger aborts
the game. We can assume that, this occurs with
a probability of at most 1

2κ , due to the one-time
unforgeability assumption of the signature used. Thus,
for the event that A win the game Game 1,X1,

|Pr[X1]− Pr[X0]| ≤
1
2κ

(2)

Game 2.Simulation of the Decryption Oracle. In the current
game, the decryption oracle is simulated, without
using the trapdoor related to H̃1. The decryption
oracle uses the trapdoor related to the keys H̃2 and
H̃3. The simulation is as follows:
Input: The ciphertext c = (vk, c1, c2, c3, c4, σ)
Output: The message m.
if (VerifyOS(vk, c1, c2, c3, c4) == FALSE)

Return ⊥ /** signature not valid **/
else

if(vk == vk∗)
ABORT /** for challenge cipher creation key

is reserved **/
else

Qvk ← f1(vk), Pvk ← f2(vk)
Compute y = Q−1

vk c2 ⊕Q
−1
3 Q−1

vk c3
if(DecodeH2(Q

−1
2 y)→⊥)

Return ⊥
else /** invalid cipher cannot be decrypted **/

Compute r = PTvkP
T
2 DecodeH2((Q2

T
)
−1
y)

if (c1 6= H̃1r
T OR c2 6= QvkH̃2Pvkr

T OR
c3 6= QvkH̃3Pvkr

T )
Return ⊥

else
Return m = c4 ⊕ h(r).

end
The above decryption oracle, makes use of the de-
coding trapdoor corresponding to H̃2 & H̃3. To
elucidate on the computations of y and hence
r, the elements c2 is of the form K2r

T , i.e.
c2 = (QvkQ2H2(P2Pvk)rT ⊕ QvkRPvkr

T , and c3 =
(QvkQ3)RPvkr

T , thus, y = Q−1
vk c2⊕Q

−1
3 Q−1

vk c3 =⇒
y = Q2H2(P2Pvk)rT , from which r can be computed
as shown in the algorithm.
It can be shown that the decryption oracle in this
game exactly simulates the decryption oracle in
Game 1. The aborting cases of the game is same
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as that of Game 1. Therefore

Pr[X2] = Pr[X1] (3)

Game 3.Altering the Setup algortihm. For the key
generation, H̃1 = Q1Y P1, where Y ∈R Fn−k×n2 .
Hence, the Goppa code with partiy check matrix H1

is replaced by a randomly selected matrix Y .The
decryption oracle is same as that of Game 2. The,
adversary is able to identify the inconsistency, by,
the solution of the Goppa Code distinguishability
problem for H and Y . Let X3 be the event that the
adversary wins Game 3. Then,

|Pr[X3]− Pr[X2]| ≤ AdvCD
A (n, k) (4)

Game 4.Challenge ciphertext and Challenge In this case,
the selection of the keys of the one-time signa-
ture (vk, sk), is restricted. Instead, of generating
(vk, sk) ← KeyGenOS(1κ), the challenger C, selects
(vk, sk) = (vk∗, sk∗). The ciphertext is generated
randomly as, c1, c2, c3 ∈R Fn−k2 and c4 ∈R {0, 1}l.
The signature σ is generated on c1, c2, c3, c4 using
the signing key sk∗.
The adversary is not allowed to query the decryption
oracle for the challenge cipher text, and he is asked
to distinguish between the correctly generated cipher
text with the random cipher text. The decryption
oracle is same that of Game 3. If adversary succeeds,
implies that adversary is able to distinguish betweem
a syndrome and a random vector, as the message is
masked with the hard-core predicate of the code from
the syndromes c1, c2, c3. Therefore the distribution
in this game varies only if the adversary is able to
distinguish between a randomly generated challenge
ciphertext and the ciphertext generated using the
encryption oracle (as in Game 3). Fischer and Stern
[6] have proven that, as long as syndrome decoding is
hard, a syndrome is computationally indistinguishable
from a randomly generated vector from the same
space. Hence, to distinguish between the syndrome
and randomly generated vector, the adversary has
to solve the instance of syndrome decoding prob-
lem (i.e., the syndrome decoding assumption should
not hold for the adversary)or by concatenation of
c1, c2, c3 using the key obtained by concatenanating
the columns of K1,K2,K3 (a 3(n − k) × n ma-
trix), thus requiring the solution of an instance of
SDP(n, 3k − 2n). Hence, for the event of winning
the Game4 X4

|Pr[X4]−Pr[X3]| ≤ AdvSD
A (n, k)+AdvSD

A (n, 3k−2n)
(5)

Also, it can be seen that the challenge ciphertext is
completely independent of the target plaintext mb.
Hence,

Pr[X4] =
1
2

(6)

Adding and substituting (1) to (6) we obtain

Advcca2PKE,A(n, k) ≤ 1
2κ

+AdvCD
A (n, k) +AdvSD

A (n, k)

+AdvSD
A (n, 3k − 2n)

=⇒ Pr[X0] ≤
1
2

+ { 1
2κ

+AdvCD
A (n, k) +

AdvSD
A (n, k) +AdvSD

A (n, 3k − 2n)}

& Pr[X0] ≥
1
2
− { 1

2κ
+AdvCD

A (n, k) +

AdvSD
A (n, k) +AdvSD

A (n, 3k − 2n)}

Therefore we get the probability that an adversary wins the
game to be in the range
From the result, we obtain that the advantage of the
adversary, depends on the advantage of solving the
Goppa Code distinguishability problem and Syndrome
Decoding problem. For, parameters (n, k) for which
CD(n, k), SD(n, k), & SD(n, 2k − 3n) are hard, the
advantage for the adversary is negligible.

C. Parameters

From, the previous section, we have seen that the selection
of parameters is important in defining the negligible advantage
an adversary has in solving the syndrome decoding problem.
Clearly, for SD(n, 3k − 2n) to be hard, we have to select
a k > 2n

3 . Since, the required codes need not have a very
high rate, the distinguisher attack [4] does not hold. The table
I, presents the (n, k) parameters ( where the error-correcting
capacity is t = n−k

log2n
), and the binary work factor for

syndrome decoding for (n, k) and (n, 3k − 2n). Here binary
work factor, is log2(time taken). The work factors are taken
according to the lower bound complexity given in [5]. For, the
given parameters, Goppa codes are indistinguishable [4].

TABLE I
PARAMETERS FOR THE GIVEN SCHEME, AND CORRESPONDING WORK

FACTORS FOR SOLUTION OF SYNDROME DECODING PROBLEM

(n, k) Security factor for
(n, k)

Security factor for
(n, 3k − 2n)

(2048,1696) 86.8 100.79
(4096,3604) 128.5 292.53

D. Comparison with other schemes

The parameters given in the table I, are in fact the parame-
ters that are generally used for any version of the Niederreiter
cryptosystem. Hence, it can be seen that the proposed scheme
is IND-CCA2 secure in the standard model, without much
change in the parameters. The comparison of the proposed
schemes with existing schemers are presented in table II.

IV. CONCLUSION

In the paper, we propose an efficient IND-CCA2 secure
code-based encryption scheme in the standard model. The
scheme is the first such scheme, that does not use the κ
repetition paradigm [14]. Thus, the scheme has avoided the
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TABLE II
COMPARISON WITH OTHER CODE-BASED CCA-2 CRYPTOSYSTEMS.

Scheme Public
key
(bits)

Secret
key
(bits)

Cipher
text

Encrypt
Com-
plexity

Decrypt
com-
plexity

Dowsley
et al.

2κ×NP 2κ×NS κ× NC κ×NE 1 ND

Freeman
et al.

2κ×MP 2κ×MS κ×MC κ×ME 1 MD

Proposed
Scheme

3×NP 3×NS 3×NC 3×NE 1 ND

M - McEliece, N - Niederreiter, E - Encryption, D - Decryption
P - public-key size S - secret key size

inherent costs incurred by the existing schemes [3], [7] and is
more efficient, because it requires at most three repetitions of
the underlying Niederreiter encryption scheme and any one-
time strongly unforgeable signature.
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[4] J.-C. Faugére, A Otmani, L. Perret, and J.-P. Tillich. Algebraic Crypt-
analysis of McEliece variants with compact keys – toward a complexity
analysis. In SCC ’10: Proceedings of the 2nd International Conference
on Symbolic Computation and Cryptography, pages 45–55, RHUL, June
2010.

[5] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design
of code-based cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT,
volume 5912 of Lecture Notes in Computer Science, pages 88–105.
Springer, 2009.

[6] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random
generator provably as secure as syndrome decoding. In EUROCRYPT,
pages 245–255, 1996.

[7] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and
Gil Segev. More constructions of lossy and correlation-secure trapdoor
functions. In Phong Q. Nguyen and David Pointcheval, editors, Public
Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 279–295. Springer, 2010.

[8] Niederreiter H. Knapsack-type cryptosystems and algebraic coding
theory. Prob Contr Inform Theor 15, pages 159 – 166, 1986.
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