
 

 

Abstract— In this paper, we introduce a model for managing 

abstract data structures that map to arbitrary distributed 

memory architectures. It is difficult to achieve scalable 

performance in data-parallel applications where the programmer 

manipulates abstract data structures rather than directly 

manipulating memory. On distributed memory architectures such 

abstract data-parallel operations may require communication 

between nodes. Therefore, the underlying system has to handle 

communication efficiently without any help from the user. Our 

data model splits data blocks into two sets -- local data and 

remote data -- and schedules the sub-block by availability at 

runtime. 

We implement the described model in DistNumPy -- a high-

productivity programming library for Python. We go on to 

evaluate the implementation using a representative distributed 

memory system -- a Cray XE-6 Supercomputer -- up to 2048 

cores. The benchmarking results demonstrate scalable good 

performance. 

Index Terms—HPC, NumPy, High-Productivity, Data-Parallel, 

DistNumPy  

 

I. INTRODUCTION 

High-productivity programming languages are very popular in 

the computational scientific community because they enable 

quickly prototyping of numerical problems. Common for most 

high-productivity languages is high-level operation on data 

structures such as vectors and matrices because they increase 

the productivity and remove a broad range of typical errors. 

Two high-productivity languages, MATLAB and Python, are 

popular in the scientific community precisely because of a rich 

set of high-level vector and matrix operations.  

It is possible to execute parallel applications written in a 

high-productivity language that make use of data parallelism 

without reducing the productivity[4, 11]. This is because data 

parallelism is ideal for high-level vector and matrix operations. 

Data parallelism refers to a parallel model where a single 

instruction is distributed between processes based on data 

locality. Therefore, data parallelism provides full knowledge 

of data distribution and parallelization to all participating 

processors, which makes it possible for the runtime system to 
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execute vector operations seamlessly in 

 
Fig.1, Matrix expression of a simple 5-point stencil 

computation example. See Figure 2 for the expression in 

MATLAB and Figure 8 for the expression in Python. 

 

 
Fig. 2, 5-point stencil application that uses Jacobi Iteration in a 

fixed number of iterations implemented in MATLAB. 

 

parallel without further assistance from the user. Additionally, 

the processors need not communicate when performing data 

dependency analysis and scheduling optimizations at runtime. 

However, the downside of data parallelism is that it reduces 

the programmability because the user is restricted to vector 

operations. 

When expressing algorithms through high-level vector and 

matrix operations, or simply array operations, the user needs a 

mechanism to specify a subset of an array. E.g., Figure 1and 2 

illustrate how one implements a 5-point-stencil computation in 

MATLAB by operating on views of arrays. In contrast, 

conventional programming languages would require using 

tedious scalar operations with for loops and index arithmetic.  

These array views are data structures that maps to arbitrary 

distributed memory and thus possible overlapping memory. In 

the context of this paper, we will use array views as a synonym 

for such abstract data structures that may refer to parts of the 

same underlying data. 

Array views gives rise to a number of important 

performance challenges when combined with data parallelism 

where the shared data is distributed across multiple processes. 

The problem is that operations on views may translate into 

non-aligned distributed array operations, which are difficult to 

handle efficiently. We define an aligned distributed array 
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operation as an operation on arrays that are distributed in a 

conformable manner, i.e. the arrays use identical data 

distribution. A non-aligned distributed array operation is then 

an operation without this property. 

In this paper, we will introduce a data model that provides 

efficient handling of overlapping data structures. We will 

concretize the data model by implementing efficient array 

views in the high-productivity language DistNumPy[11], 

which interprets NumPy applications as data parallel 

applications in a distributed memory environment. In order to 

achieve good scalable performance we leverage the work by 

[14] who introduce an efficient communication latency-hiding 

model.   

 

A. Related Work 

Libraries and programming languages that strive to support 

parallelism in a high productive manner is a well-known 

concept. In a perfect framework all parallelism introduced by 

the framework is completely hided from the user while the 

performance and scalability archived is optimal. However, 

most frameworks require the user to specify some kind of 

parallelism -- either explicitly by using parallel directives or 

implicitly by using parallel data structures.  

High Performance Fortran (HPF)[12] and ZPL[3] are two 

well-known examples of data-parallel programming languages 

that supports abstract data structures. HPF is a Fortran-based 

data-parallel programming language that requires static 

compilation for distributed-memory systems[10].  To obtain 

good parallel performance the user must align arrays together 

to reduce communication[1]. Our data model manages 

computation and communication of abstract data structures at 

runtime, which enables on-the-fly data dependency analysis. 

Using our model the user will not have to align arrays in order 

to obtain good parallel performance. 

Python extensions, NumPy[13] and SciPy[9], have been 

successfully used in scientific computing[6] because their 

high-level abstractions are very close to mathematical formulas 

and there exist a super rich set of Python packages for almost 

any common task. Similarly, MATLAB is very popular 

because of a high-level data structure abstraction support. 

NumPy, SciPy, and MATLAB are targeting single-node 

systems where as our model is targeting multi-node systems. 

There exists extension to MATLAB that targets multi-node 

systems. MATLAB*P[4] introduces data-parallelism in 

MATLAB with support for high-level data structure 

abstraction. 

 

II. TARGET DATA-PARALLEL APPLICATIONS 

Data-parallel applications are a class of applications that 

make use of data parallelism -- either explicitly handled by the 

programmer or implicitly handled by the programming 

language or library. In this work, we focus on data-parallel 

applications written in a high-productivity language where the 

programming language, scientific library, and/or runtime 

system handles the data parallelism seamlessly.  

We target applications with the following properties:     

 
Fig. 3, The Two-Dimensional Block Cyclic Distribution of a 

matrix on a 2 x 3 grid of processors. 

 

 The application uses high-level array operations 

instead of explicitly programmed for loops. 

 The application uses data parallelism to execute 

vector/array operation in parallel. 

 In order to utilize distributed memory architectures, the 

application distribute data evenly across process 

using a static distribution scheme. 

 

The application uses data structures that maps to arbitrary 

distributed memory, e.g. by using data structures, such as array 

views, that may refer to parts of the same underlying data.  

 

A. Data Distribution 

   Data parallelism is a classic approach to support distributed 

memory architectures. It clearly defines how data and 

computation is distributed across processes when combined 

with a static distribution scheme. Two-Dimensional Block 

Cyclic Distribution is a very popular distribution scheme and it 

is used in numerical libraries such as ScaLAPACK[2] and 

LINPACK[5]}. It supports matrices and vectors and has a 

good load balance in numerical problems that have a diagonal 

computation workflow e.g. Gaussian elimination. The 

distribution scheme works by arranging all processes in a two 

dimensional grid and then distributing data-blocks in a round-

robin fashion either along one or both grid dimensions (Fig. 

3); the result is a well-balanced distribution. 

 

B. Array Operations 

   High-level array operation is relevant for all kinds of 

computations. Some array operations are very domain specific 

and other array operations are very general. Element-wise 

operations on arrays are an elementary part of most high-

productivity languages and libraries.  It simplifies the 

programming because it replaces computation loops, including 

index arithmetic, with one single operation.  

   Element-wise operations take a fixed number of scalar inputs 

and produce a fixed number of scalar outputs. E.g., an 

element-wise addition takes three array-views as argument: 

two input arrays and one output array. For each element, the 

operation adds the two input arrays together and writes the 
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result into the output array. Applying an element-wise 

operation on a whole array is semantically equivalent to  

 
Fig. 4, Reference hierarchy between the two array data 

structures and the main memory. Only the three array-views at 

top of the hierarchy are visible from the perspective of the 

user. 

 

performing the operation on each distributed array block 

individually. This property makes it possible to perform the 

distributed element-wise operation in parallel.  

C. Array Views 

   Array views are essential when expressing algorithms 

through high-level array operations. It makes it possible to 

apply an operation on a subpart of an existing array without 

memory copying. Conceptually, array views form a hierarchy 

where each array view points to an underlying ``base''. This 

``base'' is then an array that maps directly to a contiguous piece 

of memory. We define the two terms, array-base and array-

view, as follows: 

 Array-base is the base of an array and has direct 

access to the content of the array in main memory. An 

array-base is created with all related meta-data when 

the user allocates a new distributed array, but the user 

will never access the array directly through the array-

base. The array-base always describes the whole array 

and its meta-data such as array size and data type are 

constant. 

  Array-view is a view of an array-base. The view can 

represent the whole array-base or only a sub-part of 

the array-base. An array-view can even represent a 

non-contiguous sub-part of the array-base. An array-

view contains its own meta-data that describe which 

part of the array-base is visible. The array-view is 

manipulated directly by the user and from the users 

perspective the array-view is simply a normal 

contiguous array. 

 

For simplicity, array-views are not allowed to refer to each 

other, which mean that the hierarchy is flat with only two 

levels: array-base below array-view. However, multiple array-

views are allowed to refer to the same array-base. This 

hierarchy is illustrated in Figure 4. 

III. NON-ALIGNED ARRAY OPERATIONS 

Managing overlapping data structures, aka array-view, for 

data-parallel applications on distributed memory architectures 

gives rise to a number of important performance challenges. 

 
Fig. 5, The data layout of the two arrays M and N and the 

three array-views A, B and C in the 3-point stencil application. 

The arrays are distributed between two processes using a 

block-size of three. 

 

The problem is that element-wise operations on array-views 

may translate into non-aligned distributed array operations, 

which are difficult to handle efficiently. That is, element-wise 

operations on array-views that does not map directly to the 

underlying array-base. 

 

For example, a 3-point stencil application uses three array-

views, A, B and C, to express a stencil. When executing on two 

processes the two underlying array-bases, M and N, are 

distributed according to Fig. 5. It is clear that A and C does not 

map directly to the underlying array-bases M and N. Thus, the 

result is a non-aligned array operation. In order to execute 

such an application the two processes must exchange data 

blocks, which mean commutation when executing on a 

distributed memory architecture. Therefore, an efficient data 

structure model that minimizes communication is vital for the 

parallel performance. 

IV. MANAGING NON-ALIGNED ARRAY OPERATIONS 

The main contribution in this work is a model for managing 

non-aligned array operations efficiently. We introduce a 

hierarchy of data structures that makes it possible to divided 

non-aligned array operations into aligned blocks at runtime 

while minimizing the total amount of communication.  

The model consists of three kinds of data blocks: base-

blocks, view-blocks and sub-view-blocks, which make up a 

three level abstraction hierarchy (Fig. 6). 

  Base-block is a block of an array-base and maps 

directly into one block of memory located on one 

node. The memory block is contiguous and only 

one process has exclusive access to the block. The 

base-blocks are distributed across multiple 

processes in a round-robin fashion according to the 

N-Dimensional Block Cyclic Distribution. 

 View-block is a block of an array-view and from the 

perspective of the user a view-block is a 

contiguous block of array elements. A view-block 

can span over multiple base-blocks and 

consequently also over multiple processes. For a 

process to access a whole view-block it will have 
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to fetch data from possible remote processes and 

put the pieces together before accessing the block. 

To avoid this process, which may cause some 

internal memory copying, we divide view-blocks 

into sub-view-block. 

 Sub-view-block is a block of data that is a part of a 

view-block but is located on only one process. The 

memory block is not necessarily contiguous but 

only one process has exclusive access to the block. 

The driving idea is that all array operation is 

translated into a number of sub-view-block 

operations. 

 

 
Fig. 6, An illustration of the block hierarchy that represents a 

2D distributed array. The array is divided into three block-

types: Base, View and Sub-View-blocks. The 16 base-blocks 

make up the base-array, which may be distributed between 

multiple processes. The nine view-blocks make up a view of 

the base-array and represent the elements that are visible to the 

user. Each view-block is furthermore divided into four sub-

view-blocks, each located on a single process. 

 

In this data model, an aligned array is an array that has a 

direct contiguous mapping through the block hierarchy. That 

is, a distributed array in which the base-blocks, view-blocks 

and sub-view-blocks are identical. A non-aligned array is then 

a distributed array without this property. 

It is straightforward to parallelization aligned array 

operations because each view-block is identical to the 

underling base-block and is located on a single process. On the 

other hand, when operating on non-aligned arrays each view-

block may be located on multiple processes. Therefore, we 

have to divide the computation into sub-view-blocks and even 

into aligned blocks of sub-view-blocks, which makes the 

operation more complex and introduces extra communication 

and computation overhead. 

At the user level, an array operation operates on a number of 

input array-views and output array-views. It is the user’s 

responsibility to make sure that the shape of these array-views 

matches each other. Since all arrays uses the same block size, 

this guaranties that all involved view-blocks match each other. 

Thus, it is possible to handle one view-block from each array 

at a time. In order to compute an array operation in parallel all 

available processes computes a view-block using the following 

steps: 

1) The process fetches all the remote sub-view-blocks that 

constitute the involving input view-blocks. 

2) The process aligns the sub-view-blocks by dividing 

them into the smaller blocks that are aligned to each 

other. If some output sub-view-blocks is not located 

on the process it will use temporary memory for the 

output. 

3) The process applies operation on these aligned blocks. 

4) The process sends temporary output sub-view-blocks 

back to the original locations. 

 
Fig. 7, The sub-view-block alignment of the first view-block in 

the three array-views A, B and C (Fig. 5). 

 

A. References 

To demonstrate how the model works we will walk through 

the execution of the first block in a small 3-point stencil 

application. Two processes are executing the stencil 

application with the two array-bases, M and N, using a block-

size of three elements. This means that three contiguous array 

elements are located on each process (Fig. 5). The application 

uses two input array-views, A and B, and one output array-

view, C, to compute the 3-point stencil.  

In order to compute the first view-block in the three array-

views, process 0 divides the computation into two parts (Fig. 

7). The first part, which consists of the first two elements, 

needs no communication since all elements are located locally. 

The process can therefore apply the operation directly on the 

first two elements of each array.  

The second part, which consists of the third element, needs 

communication. The two processes will transfer the third 

element in A from process 1 to process 0. Even though the 

third element in C is located remotely, no communication is 

need now because C is the output. Instead, a temporary 

memory location is used for the output element. The process 

will apply the operation when the communication the element 

is finished. When process 0 finishes the computation of part 2 

the process transfer the third element back to process 1.  

 

B.  Latency-Hiding 

It is essential to the performance of non-aligned array 

operations that the execution hides communication latency 

behind computation. In order to accomplish this we make use 

of the Latency-Hiding model introduces in [14]. Using this 

model, we initiate non-blocking communication at the earliest 
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time and only do computation after all communication has 

been initiated. Furthermore, we check for communication 

completion between multiple computation operations to make 

sure that there is progress in the communication layer. The 

execution flow is as follows: 

 

1) Initiate all non-depended communication operations. 

2) Check if any communication operations has been 

finished in a non-blocking manner and insert 

operations that have no dependencies into the ready 

queue. 

3) When only computation operations are ready, execute 

one of them and move new operations that have no 

dependencies into the ready queue. 

4) Go back to step one if there are unfinished operations 

or else terminate. 

 

The algorithm maintains the following three invariants: 

1) All ready operations are in the ready queue. 

2) Computation operations are executed only when there 

is no communication operation in the ready queue. 

3) Communication operations are checked for completion 

when there is no computation operation in the ready 

queue. 

 

Table 1. Cray XE-6 Supercomputer 
Processor AMD Opteron 6172 

Clock 2.1 GHz 

Peak Performance per Core 8.4 Gflops 

Cores per NUMA Domain 6 

NUMA Domains per Node 4 (packaged in 2 sockets) 

Total Cores per Node 24 

Private L1 Data Cache 64 KB 

Private L2 Data Cache 512 KB 

Shared L3 Cache per Socket 12MB 

Memory Bandwidth 25.6 GB/s 

Memory per Node 32GB DDR3-1066 ECC 

Compiler PGI 11.3 

Math Library Cray Scientific Library 10.5 

Interconnect Gemini 3-D Torus 

Peak Bandwidth (per direction) 7 GB/s 

MPI Cray MPI 5.1.4 

 

V. DISTRIBUTED NUMERICAL PYTHON 

In order to demonstrate the efficiency of our model for 

managing abstract data structures, we optimize the numerical 

Python library Distributed Numerical Python (DistNumPy) 

[11] using our model. DistNumPy is a new version of 

NumPy[13] that parallelizes array operations in a manner 

completely transparent to the user -- from the perspective of 

the user, the difference between NumPy and DistNumPy is 

minimal. DistNumPy can use multiple processors through the 

communication library Message Passing Interface (MPI)[7]. 

However, DistNumPy does not use the traditional single-

program multiple-data (SPMD) parallel programming model. 

Instead, the MPI communication in DistNumPy is fully 

transparent and the user needs no knowledge of MPI or any 

parallel programming model.  

The only difference in the API of NumPy and DistNumPy is 

the array creation routines. DistNumPy allow both distributed 

and non-distributed arrays to co-exist thus the user must 

specify, as an optional parameter, if the array should be 

distributed. The following illustrates the only difference 

between the creation of a standard array and a distributed 

array: 

 
#Non-Distributed 
A = numpy.array([1,2,3]) 
#Distributed 
B = numpy.array([1,2,3], dist=True) 

 

The first version of DistNumPy does not support efficient 

non-aligned array operations. Its focus was scientific 

applications that uses aligned distributed array operations, 

such as Monte Carlo and N-body simulations. To address this 

shortcoming we introduce our model for managing abstract 

data structures efficiently. We expect good performance and 

scalability when combining this implementation with the 

latency-hiding model introduced in [14].  

The implementation of DistNumPy is open-source and 

freely available (http://code.google.com/p/DistNumPy). 

 

 
Fig. 8, 5-point stencil application that uses Jacobi Iteration in a 

fixed number of iterations implement in DistNumPy. 

VI. EXPERIMENTS 

In this section, we will evaluate the performance impact of 

our model for managing non-aligned array operations. We 

conduct all experiments on an Cray XE6 supercomputer 

(Table 1). The system systems consist of multi-core Non-

Uniform Memory Access (NUMA) shared-memory nodes 

where each node has multiple NUMA domains.  CPU cores 

within the same NUMA domain have uniform data access 

latency to the local memory while CPU cores of different 

NUMA domains would have non-uniform data access 

latencies. We will focus on the MPI communication overhead 

associated with non-aligned array operation and we will 

therefore only execute one MPI-process per NUMA domain.  

To evaluate the performance, we will compare aligned array 

operations with non-aligned array operations. We use a 5-point 

stencil application that uses Jacobi Iteration in a fixed number 

of iterations. Figure 8 is this application implemented in 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

149 © 2012 GSTF

http://code.google.com/p/DistNumPy


 

Python using the DistNumPy library. It expresses the 5-point 

stencil using five array views that are shifted one element in 

each direction and thereby non-aligned operations (Fig. 1). In 

order to benchmark the efficiency of the data structures 

hierarchy we introduce in this work, we compare this 

application with a synthetic version where all operations an 

aligned and do the same amount of computation. Because 

 
Fig. 9, Weak scaling of aligned and non-aligned array 

operation. 

 

 
Fig. 10, Weak scaling of aligned versus non-aligned array 

operation. 

 

of the exclusively use of aligned operation the synthetic 

version requires no communication. It should be emphasize 

that the synthetic version is purely for benchmark purposes 

and do no meaningful work. 

The unfavorable computation-communication ratio in the 5-

point stencil application makes it difficult to achieve good 

scaling performance. The asymptotic computational 

complexity is O(n) thus increasing the problem size does not 

improve the scaling performance significantly.  

For the experiment, we calculate the FLOPS based on the 

floating operation counts of the ideal sequential algorithm and 

the measured execution times. Additionally, we compare the 

results with the linearly scaling performance, which we 

calculate by extrapolating the sequential FLOPS performance 

of NumPy. We use this comparison as an upper bound of the 

achievable scalable performance.  We perform weak scaling 

experiments, in which the problem size is scaled with the 

number of CPU-cores in the executions. The experiment goes 

from 8 to 2048 CPU-cores where the CPU-cores and problem 

size doubles between each execution. 

A. Results 

Figure 9 shows the result of the experiment. Overall the 

result is very promising, we see a linear increase of 

performance in both the aligned and non-aligned version. The 

aligned version demonstrates a speedup of 1514 at 2048 CPU-

cores compared to a sequential execution, which translates into 

a CPU utilization of 74%. The non-aligned version 

demonstrates a speedup of 948 at 2048 CPU-cores compared 

to a sequential execution, which translates into a CPU 

utilization of 46%.  

To analyze the experiment result further we divide the 

execution time into three categories in Figure 10. The 

execution time in each category is the average timing from 

each process. 

 Computation is the time used on actually computing 

element values. It should be fairly static through all 

the executions. However, variations in the data 

distribution may result in different execution times. 

 Blocking is the time used on waiting for 

communication to finish. Each process will do as 

much work as possible before interring a blocking 

state. However, as the number of CPU-cores 

increases the chances that the job scheduler on the 

Cray system allocates distant nodes to a job also 

increases. Furthermore, the torus network 

performance may suffer from the communication 

traffics caused by other jobs. 

 Overhead is the time used on handling the data 

structures associated with array operations. The 

overhead is proportional with the number of sub-

view-blocks involved in the computation. Since the 

number of sub-view-blocks increases with the 

problem size, the overhead also increases. In 

addition, the number of sub-view-blocks increases 

even more when executing non-aligned operations. 

 

As expected the blocking time is relatively small for all the 

aligned operation executions. Even at 2048, the blocking time 

is less the 2% of the total execution time. On the other hand, 

the blocking time for the non-aligned version is not as good. 

At 2048, the blocking time is 18% of the total execution time. 

This increase in blocking time is primarily because of an 

increase in communication, but also because of the MPI 

implementation by Cray. Currently, the Cray MPI for the Cray 

Gemini network has limited overlapping support for non-

blocking MPI communication. 

In the aligned operation version, the overhead time 
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increases from 0.4% to 24% of the overall execution time. 

This overhead incensement is a direct result of the increased 

problem size. In the non-aligned operation version, the 

overhead increases more drastically -- going from 6% to 34% 

of the overall execution time. This is because the non-aligned 

operations results in four times the number of sub-view-blocks 

-- one sub-view-block per direction in the stencil computation. 

VII. CONCLUSION 

The single execution flow with abstract data operations is 

both the main strength and weakness of data-parallel 

programming models: two most notorious types of parallel 

programming bugs, data races and deadlocks, simply do not 

exist in data-parallel applications because there is only one 

execution thread. However, flexible abstract data operations 

for data-parallel applications require a very efficient runtime 

system in order to have good scalable performance.  

In this work, we have successfully shown that by splitting 

data blocking based on locality it is possible to efficiently 

managing abstract data structures that map to arbitrary 

distributed memory. We demonstrate scalable performance of 

a Jacobi Iteration application up to 2048 CPU-cores.  
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