
Locating Reusable Classes Using Dependency in 

Object-Oriented Software 

Young Lee and Jeong Yang 

Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 

 

Abstract—With automated measurement tool, a user can 

locate reusable classes, connected classes and independent 

classes. This paper describes how an automated tool can 

guide a programmer through measuring dependency of a 

program for software reuse. Automated identification of 

reusable software components based on dependency is 

explored. The case study demonstrates identifying the 

reusable units for software reuse and connected units for 

software package.  

 

Index Terms— Fan-in coupling, Fan-out coupling, 

Automated measurement tool, Software reuse, Dependency 

 

1. Introduction 

There are valuable open source programs written by 

other programmers, but it is desirable to have a tool 

that retrieves reusable software components.  

This paper describes the automated modularization 

technique implemented and integrated in JamTool 

(Java Measurement Tool) [1, 2]. With this automated 

measurement tool, a user can learn about the 

dependency information specifically for locating 

reusable codes. 

1.1 Software Reuse 

The primary motivation to reuse software 

components is efficiency.  It is achieved by reducing 

the time, effort and/or cost required to build software 

systems. The quality and reliability of software systems 

are enhanced by reusing software components, which 

also means reducing the time, effort and cost required 

to maintain software systems.  

When a reusable code is written, the intended users 

should be somewhat identified.  If a code is to include 

the functionality that every user would want, the 

resulting code would be too expensive to produce and 

too difficult to use.  Code reuse has been common in 

practice.  But, many difficulties are associated with 

code reuse: 

1. Code identification:  It is difficult to identify a 

piece of reusable code.  Many times, programmers 

reuse only a small fraction of their own or their 

colleagues’ code.    

2. Code validation and verification:  There is usually 

little assurance that the reused code is correct.   

3. Code dependency:  It is a nontrivial task to 

separate a desired piece of code from an entangled 

chunk of software with complex dependency. 

4. Code modification:  In addition to the necessary 

changes, the reused code may implicitly conflict with 

the new context.  

5. Execution environment: The reused code might 

assume things that are not true in the new environment.  

This may result in degraded performance.   

With careful planning and implementation, many of 

these difficulties can be avoided. A static analysis of a 

source code in any stage of development can provide 

instant feedback to the programmer, the quality of the 

code in the sense of reusability.  This would encourage 

programmers to ensure that the completed code 

provides good reusability before it is discovered too 

late.  The measurement can also allow the manager of a 

software project to evaluate the quality and reward the 

programmers accordingly. 

1.2 Fan-in/Fan-out Coupling  

Fan-out coupling measures the degree to which a 

class has knowledge of, uses, or depends on other 

classes [3]. To reuse a class with high fan-out coupling 

in a new context, all the required services must also be 

understood and reused together. Therefore, high fan-

out coupling can decrease the reusability of a class. 

Fan-in coupling measures the degree to which a class 

is used by, depended upon, by other elements [3]. 

Therefore high fan-in coupling can represent the how 

many other classes have reused the class. 

Coupling connections cause dependencies among 

classes, which, in turn, have an impact on reusability 

(to reuse a class may require reuse connected classes 

together). Thus, coupling metrics also greatly help 

identify problematic classes to be reused. 

DOI: 10.5176_2010-2283_2.1.140 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

134 © 2012 GSTF



2. Automated Measurement Tool 

Java Measurement Tool (JamTool) is a software 

measurement environment to analyze program source 

code for software reuse [2]. It is especially designed for 

object-oriented software. This tool measures attributes 

from Java source code, collects the measured data, 

computes various object-oriented software metrics, and 

presents the measurement results in a tabular form. The 

tabular interface of the tool provides software 

developers the capabilities of inspecting software 

systems, and makes it easy for the developers to collect 

the metric data and to use them for improving software 

reusability. By browsing dependency of class a 

developer can learn how to reuse certain software 

entity and how to locate problematic parts. The 

application of this easy-to-use tool significantly 

improves a developer’s ability to identify and analyze 

reusability of an object-oriented software system. 

The acceptance of Java as the programming language 

of choice for industrial and academic software 

development is clearly evident. The overall system 

architecture of the JamTool is shown in Figure 1, in 

which solid arrows indicate information flow. The key 

components of the architecture are: 1) User Interface, 

2) Java Code analyzer, 3) Internal Measurement Tree, 

4) Measurement Data Generator, and 5) Measurement 

Table Generator. 

Each key component works as a subsystem of overall 

system. The Java Code Analyzer syntactically analyzes 

source code and builds an Internal Measurement Tree 

(IMT) that is a low level representation of classes, 

attributes, methods, and relationships of the source 

code. Then the Measurement Data Generator takes the 

IMT as an input, collects the measurement data, and 

generates the size, complexity, coupling, and cohesion 

metrics of classes in the original source code. Those 

measurement results as well as the other metrics are 

displayed in a tabular representation through the 

Measurement Table Generator subsystem. With this 

interface of tabular form, software developers can 

easily analyze the characteristics of their own program.  

3. Locating Reusable Classes  

Connected unit is defined as the classes that are 

coupled together. In a connected unit table, all classes 

directly and indirectly coupled together are displayed 

in the same column, thus a set of classes in the same 

column is a connected unit. A connected unit is likely 

to be of interest to the user in finding software units 

 

Internal 

Measurement Tree 

Measurement Data 

Generator 

Measurement 

Table Generator 

User 

Fig. 1.  Architecture of JamTool 

Measurement Results Java Source Code 

Java Code 

Analyzer 

Editor 

ClassInfoVector 

CohesionMeasure 

CouplingMeasure 

ClassInfo 

ClassAttr 

ClassMethod 

(a) Dependency among Classes  

(b) Connected Classes 

ClassInfo 

ClassAttr 

ClassMethod 

Editor 

ClassInfoVector 

CohesionMeasure 

CouplingMeasure 

ClassInfo 

ClassAttr 

ClassMethod 

(c) Reusable Classes and Independent Class 

Fig. 2.  Classes for Software Reuse  

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

135 © 2012 GSTF



that can be reused.  Connected units are coupled 

classes in the coupling metrics and the connected 

attributes and methods in the cohesion metrics. A user 

should consider reusing the connected classes together 

in a new application. In that sense, the connected 

classes are a reusable unit.  

Reusable unit is a collection of a target class and its 

related classes should be reused together.  Identifying 

reusable components means that each class has its own 

reusable unit with other classes that the class depends 

on. The identification of a reusable unit of classes 

requires an understanding of the relation of classes in a 

software system. Reusable unit is necessary to 

understand software structure and more importantly, to 

serve as a source of information for reuse. 

Some important tables are reusable unit and 

connected unit tables. In a reusable unit table, each 

class in the first column depends on classes in other 

columns since the class uses the others. Thus the 

classes in the same row make a special reusable unit. 

Connected unit table identifies coupled classes in 

coupling metrics and connected attributes and methods 

in cohesion metrics. In this way of representation, 

programmer could easily recognize which classes need 

more/less effort when they are needed for reuse, 

modify, update or fix. This could definitely help 

programmer in developing and maintaining a program.  

Connected unit is defined as the classes that are 

coupled together. In a connected unit table, all classes 

coupled together are displayed in the same column. A 

connected unit is likely to be of interest to the user in 

finding software units that can be reused. Connected 

units are built by identifying coupled classes in the 

coupling metrics and the connected attributes and 

methods in the cohesion metrics. A user should 

consider reusing the connected classes together in a 

new application. In that sense, the connected classes 

are a reusable unit. Figure 2 shows the retrieved 

connected unit and the result of applying Connected 

Unit Search Algorithm to the class-to-class coupling. 

The connected unit search algorithm, shown in Figure 

3, computes a set of coupled classes (i.e., connected 

unit) and their position in a connected unit table based 

on a class-to-class coupling table.  

 

4. Case Study 

A case study investigates if the reusable components 

can be used to capture the difference between two 

consecutive versions on the evolution of JFreeChart 

[4]. According to the empirical study reported in the 

previous paper [1], there was a big change of coupling 

metric values from 0.9.3 to 0.9.4. These two versions 

are chosen to compare with metrics and the 

measurement result tables obtained by JamTool.  

 

A.   Reusable Unit Table 

Reusable unit table is to present how much a class 

depends on other classes. In Figure 2 (a), the first 

column, A, displays all classes in the selected project. 

A class in column A uses the classes in columns to its 

right.  The classes in the same row make a special 

reusable unit. 

For instant, in the second and third rows, class 

AbstractRenderer depends on a class ChartRe…, and 

class AbstractTitle depends on four classes 

AbstractT…, Spacer, TitleCh…, and TitleCh…. This 

dependency means that, for example, if programmer 

wants to use a certain class (AbstractTitle), then he/she 

must use the other classes in the reusable unit 

(AbstractT…, Spacer, TitleCh…, and TitleCh…) since 

they are used by the certain class (AbstractTitle).  

Therefore, if a class depends on too many other 

classes, it is obvious that such a class is difficult to be 

reused. 

 

Input: Class-to-class coupling measurement; 

Output: Connected units; 

 

Let classNames = all class names from a 

class-to-class table; 

foreach class in classNames do 

Let targetClass = a class in classNames  

   that has not been searched yet;  

if targetClass is empty then  

   return connectUnitsWithPosition;  

Search class-to-class table and let 

connectUnit = coupled classes to 

targetClass; 

Update connectedUnitsWithPosition with the 

connectUnit; 

end for 

 

Fig. 3. Connected Unit Search Algorithm 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

136 © 2012 GSTF



 

(a) Reusable unit in version 0.9.3 

 

(b) Reusable unit in version 0.9.4 

Fig. 4. Reusable unit 

Figure 4 shows the reusable units in versions 0.9.3 

and 0.9.4. From these unit tables, progression of the 

reusable units is captured.  Some classes like 

CategoryPlot, Chartfactory, and ChartPanel have too 

many classes in their reusable units in both versions 

and some have changed. For example, class 

AbstractCategoryItemRender depends on five classes 

in version 0.9.3, but seven classes in version 0.9.4.  

 

B.   Connected Unit 

Each class is displayed in a connected unit table 

according to its position and its coupling strength is 

displayed in the connected unit strength table in Figure 

5. For instance in Figure 5 (a), only three classes, 

StandardToolTipsCollection, ToolTip, and 

ToolTipsCollection, in column D are coupled to each 

other. Class DatasetChangeListener in column E could 

be a dead code because there is no relation to other 

classes in the project. By observing connected units, 

user may also discover connection patterns. For 

example, if a project is composed of an application 

program and libraries, an investigation of the 

connected unit will tell how the application program 

uses a library function. In that sense, this type of 

connection pattern is a use pattern. 

Figure 5 shows part of connected units of JFreeChart 

in two versions. From these connected units, version 

0.9.3 establishes a main connected unit which has 224 

classes out of a total of 257 classes as shown in column 

A in Figure 5 (a), and a minor connected unit with 3 

classes in column D of Figure 5 (a). Three classes 

(StandardToolTipsCollection, ToolTip, and 

ToolTipsCollection) belong to the same package named 

"com.jrefinery.chart.tooltips". There are also 11 

independent classes, e.g., DatasetChangeListener in 

column E, which have no relation to other classes.  

We also found that version 0.9.4 has a main 

connected unit with 254 classes out of a total of 275 as 

shown column A in Figure 5 (b), and a minor 

connected unit with 3 classes in column K of Figure 5 

(b).  

These three classes (Function2D, LineFunction2D, 

PowerFunction2D) belong to the same package named 

"com.jrefinery.data ". There are 18 independent 

classes, which have no relation to other classes in 

Figure 5 (b). The independent classes for both versions 

are listed in Table 1. 

C.   Summary 

The goal of this case study is to compare and analyze 

two versions of  JFreeChart at class level. Specifically, 

it aims to answer the following questions: 

 How can the differences between them be 

compared and detected in terms of reusable units?  

 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

137 © 2012 GSTF



Table I.  Independent classes in two versions 

0.9.3 (11 classes) 0.9.4 (18 classes) 

JFreeChartInfo, 

PlotException, 

DatasetChangeListener, 

Values, 

XisSymbolic,YisSymbolic, 

DataPackageResources, 

DataPackageResources_de, 

DataPackageResources-es, 

DataPackageResources_fr, 

DataPackageResources_pl 

DataUnit, JFreeChartInfo, 

PlotException, 

ChartChangeListener, 

LegendChangeListener,  

lotChangeListener, 

TitleChangeListener, 

JFreeChartResource, 

DatasetChangeListener, 

Regression, 

Values, XisSymbolic, 

YisSymbolic, 

DataPackageResources, 

DataPackageResources_de, 

DataPackageResources-es, 

DataPackageResources_fr, 

DataPackageResources_pl 

 

 How can the huge information of source code 

be filtered and compared in the context of software 

reuse?  

In this case study, we analyzed the differences 

between the metrics of two versions using JamTool and 

found overall trend of metrics of JFreeChart in 

versions 0.9.3 and 0.9.4. Followings are findings from 

the comparison and analysis of two versions of 

JFreeChart:  

 By comparing reusable units in version 0.9.3 

and version 0.9.4, we found newly added or 

removed classes to the reusable unit.  

 By analyzing connected unit, we found that 

most classes are directly or indirectly related to 

each other and they form one main connected unit.  

 11 and 18 independent classes that have no 

relations to other classes in versions 0.9.3 and 

0.9.4, respectively.  

5. Conclusion 

This paper presented an automated measurement tool, 

JamTool, for software reuse. The primary benefit of 

this tool is its ability to automatically capture the 

dependency among the classes and give informative 

feedback on software reuse by reusable units. 

We believe that various tabular techniques provide 

structural information for software reuse (e.g., reusable 

unit and maintainable unit). By inspecting these tables, 

software developers are able to detect reusable 

software components from libraries and existing open 

sources by using library documents or inspecting the 

source code. To reuse software components from 

exiting application source code, a user should learn the 

source code before using it. Measuring relationship of 

the software components is useful to overview the 

software and to locate the reusable software 

components. From the measurement results, the user 

may decide whether or not he/she should reuse the 

software. 

By browsing reusable units, a developer can learn 

how to reuse certain software entity and how to locate 

problematic parts. The application of this easy-to-use 

tool significantly improves a developer’s ability to 

identify and analyze quality characteristics of an 

object-oriented software system. 

 

 

 (a) Connected unit in 0.9.3 

 (b) Connected unit in 0.9.4 

Fig. 5. Connected unit 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

138 © 2012 GSTF



Measurement Result Tables produced by JamTool 

can be used in the following tasks: 

 To locate reusable units that should be reused 

together. 

 To locate connected units that should be 

packaged together.  

In the future, authors consider an empirical test to 

extract reusable units from the professional library 

programs (e.g., Java Foundation Class) and to 

determine whether these features can be used to 

classify the reusable software. 

 

REFERENCES 

[1] Lee, Young, Yang, Jeong, and Chang, Kai H. 

"Quality Measurement in Open Source Software 

Evolution", The Seventh International Conference 

on Quality Software, 2007, Portland, Oregon 

[2] Lee, Young, “Automated Source Code 

Measurement Environment For Software Quality”, 

Doctorial Dissertation, Auburn University, 2007 

[3] Briand, L., Daly, J., and Wust, J., “A Unified 

Framework for Coupling Measurement in object-

oriented Systems,” IEEE Trans. on software eng., 

vol. 25, no. 1, 1999 

[4] http://www.jfree.org/jfreechart/ 

 

 

Jeong Yang is a lecturer in the 

department of electrical 

engineering and computer science at 

Texas A&M University-Kingsville. 

She received her M.S. degree in 

computer science and software 

engineering from Auburn University. 

 

 

Young Lee is an assistant professor in 

the department of electrical 

engineering and computer science at 

Texas A&M University-Kingsville. He 

received his Ph.D. in computer science 

and software engineering from Auburn 

University. 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

139 © 2012 GSTF




