
 

 

Abstract— Marine Control Source Electro-Magnetic 

(MCSEM) survey is a technique for remote identification of sub-

sea floor structures of the earth's interior using Electro-Magnetic 

(EM) signals.  Air wave signal is major problem associated with 

the data recorded by this technique in shallow water 

environment.  The air wave signals are parts of the EM signals 

that propagate from EM source via the atmosphere and induced 

along air/sea surface.  These air wave signals has the ability to 

limit and mask the electromagnetic response of a subsurface 

resistive body so that signals from subsurface, possibly containing 

valuable information about a resistive hydrocarbon reservoir is 

hardly distinguishable.  This paper presents the application of a 

feed forward multi-layer perceptron neural networks model for 

estimation of air waves in MCSEM survey data based on offset 

and sea water depth values.   The proposed model has 3 hidden 

layers with sigmoid activation function, an output layer with 

purelin transfer function and Levenberg-Marquardt (trainlm) as 

the training function.  Simulated airwave data for ten sea water 

depths from 1000m to 100m at interval of 100m were used as the 

training data.  Coefficient of multiple determination and Mean 

Square Error (MSE) obtained from the multi-layer perceptron 

model and the estimation with multiple linear regression model 

are compared.  Preliminary results demonstrate that multi-layer 

perceptron neural networks are a viable technique for the 

estimation of air waves in MCSEM data. 
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I. INTRODUCTION 

new application of the Controlled Source Electro-

Magnetic method (CSEM) for offshore oil exploration 

called Sea Bed Logging (SBL) has recently become an 

important complementary tool to seismic exploration 

technique to evaluate possible hydrocarbon-bearing prospects.  

This technique has the ability to provide information about 

resistivity variations beneath the seafloor which is crucial in 

off-shore hydrocarbon exploration.  Traditionally, 

measurements of electrical resistivity beneath sub-seafloor in 

the oil and gas industry were obtained almost exclusively by 

wire-line logging of wells [1, 2].  CSEM technique has 

provided encouraging results over the past few years [3, 4]. 

Theoretically, CSEM surveys is based on the knowledge 

that the propagation of an electromagnetic (EM) fields induced 

in a conductive subsurface is mainly affected by spatial 

distribution of resistivity [5].  The basis of the approach is the 

use of a mobile horizontal electric dipole (source) which is 

being towed approximately 30 ─ 40m above the seabed, and 

an array of electromagnetic receivers equipped with electric 

and magnetic sensors on the seabed to record both the 

amplitude and the phase of the received signals.  The 

transmitting dipole emits an ultra-low frequency (~ 0.1 ─ 5Hz) 

electromagnetic signal both into the seawater column and 

downward into the subsurface as shown in Fig. 1. 

The airwave component is predominantly generated by the 

EM signal component that diffuses vertically upward then 

propagates as a “wave” through the air at the speed of light 

with no attenuation before diffusing back down vertically 

through the water layer to the sea bottom, where it is picked up 

by the EM receivers [6]. 

The contribution of the airwave to the marine CSEM 

response is investigated by [7] in a numerical model study for 

marine CSEM exploration using an HED source.  They point 

out that the effect of the airwave component is important at 

large offsets, at low frequencies, or in relatively shallow water 

depths.  However, they do not give any method to compute the 

airwave effect other than by numerical modeling.  Numerical 

Multi-Layer Perceptron Neural Network for Air 

Wave Estimation in Marine Control Source 

Electromagnetic Data 

Muhammad Abdulkarim, Afza Shafie, Noorhana Yahya, Wan Fatimah Wan Ahmad and Radzuan 

Razali 

A 

DOI: 10.5176_2010-2283_2.1.139 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

128 © 2012 GSTF



 

calculations for a 1D model using the Hankel transform as 

developed by [8] yield a fast algorithm, but the algorithm does 

not give physical insight as to how the airwave component 

builds up and behaves in the water layer.  

 

Study by [6] has shown the effect of seawater depth would 

be important at large source-receiver separations, low 

frequencies, or in relatively shallow water.  It was also pointed 

out how the airwave component in principle can be suppressed 

by a modeling-and-subtraction approach.  The effect can be 

incorporated into the theory if both water depth and source 

location are accurately determined [8]. 

Features of the effect of the air wave on the amplitude and 

phase was described by [2] and reported that the range at 

which the air wave dominates the response, and information on 

seabed resistivity is lost, increases with decreasing frequency 

and water depth. 

The petroleum industry has also found significant use of 

neural networks to process seismic and potential-field data for 

oil explorations [9, 10].  The neural networks has been used in 

works such as interpreting well logs, processing of EM 

sounding data, recognizing seismic waveforms, function 

approximation, electromagnetic, magneto telluric and seismic 

inversion purposes and for many other problems [11, 12)] . 

 Artificial Neural Network (ANN) is a method of 

computation and information processing that emulates 

biological neural system.  The method is good at fitting 

functions and recognizing patterns.  In fact, there is proof that 

a fairly simple neural network can fit any practical function 

[10].  The applications of artificial neural network techniques 

have in recent times found wide potential use for geophysical 

data processing, e.g. prediction, inversion, feature 

classification and data compression [14 – 18]. 

 The ANN technique was applied to the control source 

electromagnetic data processing in a scaled model marine 

environment  as well as the classification of MCSEM data by 

[19, 20] with radial basis function neural network, and the 

results indicated superior accuracy, sensitivity and specificity 

in classifying the MCSEM data. 

The ANN technique has the advantage of firstly, ability to 

be used as an arbitrary function approximation mechanism 

which ‘learns’ from observed data.  Secondly, it has the 

advantage of not being constraint to satisfy any parametric 

assumptions.  These are two main reasons that forms the 

authors motivation in this study to apply this technique for the 

estimation of air waves in MCSEM data. 

The objective of this paper is to study the feasibility of 

using a Multi-Layer Perceptron (MLP) neural network model 

for the estimation of air wave in MCSEM data.  Synthetic data 

from ten different sea water depths (SWD) of CSEM set-ups 

were used.  The SWD is from 1000m to 100m at an interval of 

100m.  The paper is organized as follows; Section II describes 

the architecture of the MLP model, followed by the simulation 

set-ups in Section III. The results and discussion will be given 

in Section IV and the conclusions in Section V. 

II. ARCHITECTURE OF MULTI-LAYER PERCEPTRON 

In this study, a feed forward back propagation neural 

network was used.  The neural network is structured with two 

neurons in the input layer, five neurons in the hidden layer and 

one neuron for the output layer shown in Fig. 2. 

 

The activation function, logsig, is used in the hidden layer 

mentioned in equation (1) and purelin function is used in 

output layer mentioned in equation (2). 
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 The algorithm for the minimization of the error function is 

carried out using a gradient descent technique.  The necessary 

corrections to the weights of the network for each moment t 

are obtained by calculating the partial derivative of the error 

function in relation to each weight wij.  A gradient vector 

representing the steepest increasing direction in the weight 

space is thus obtained. The resulting weight update is then 

 
Fig. 1.  Schematic Diagram of CSEM Survey. 

  

 
 

Fig. 2.  Architecture of Multi-Layer Perceptron Neural Network. 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

129 © 2012 GSTF



 

computed [17].  The algorithm for the gradient descent is 

presented.  

Gradient Descent Algorithm 

Gradient descent algorithm also known as steepest descent is 

a process of making changes to weights and biases in order to 

find the global minimum of error for a network. The changes 

are proportional to the derivatives of network error with 

respect to those weights and biases. This is done to minimize 

network error.   The combine error measure, E, for n number 

of observation is defined as: 
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The error for the points n, and every individual error is defined 

as: 
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Where to is the target or desired output, yo is the actual 

output, o is the number of the different output unit that is 

existing in our neural network system and n is the number of 

point over which we are observing.  

 

The gradient is therefore given by: 
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 Where wij is the synaptic interconnection weight. 

 

Applying the chain rule of differentiation 
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From equation (2) 
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Therefore the gradient is: 
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Equation (6) is the correction that is applied to the weight. 

III. SIMULATION SET-UP 

 Computer Simulation Technology (CST) software was used 

to simulate the sea bed environment.  The area simulated is 

25Km.  The transmitter is modeled as a short 1250A AC line 

current segment of length 270m of frequency 0.125 Hz is 

located 35m above the sea bed.  At the external spherical 

boundaries, a scattering boundary condition absorbs outgoing 

spherical waves.  The Maxwell’s electromagnetic field wave 

equation in vacuum in the absence of electric or magnetic 

sources is solved for the electric field vector E inside the 

computational domain. 

 Fig. 3 is a 1D geo-electric model depicting "No Air Model" 

and "With Air Model" configurations that were simulated to 

obtain the wave data.  Note that the only difference between 

"No Air Model" and "With Air Model" is the changing of the 

sea water depth and replacing the space with air layer.  We 

changed the sea water depth at interval of 100m from 1000m 

down to 100m.  Table I present other physical values used for 

the simulation domains. 

TABLE I 

VALUES OF THE DOMAINS PHYSICAL PROPERTIES 

Domain Relative 

Permittivity 

(εr) 

Electric 

Conductivity 

(σ) 

Relative 

Permeability 

(μr) 

Air 1 1e-11 1 

Sea Water 80 3 1 

Sediment 30 1.5 1 

 

  The air waves data were computed by the method for 

removing the air wave effect as patented by [21] through the 

following steps: 

1) Constructing a CSEM geometric model of the region 

having a top air layer, a middle sea water layer, and a 

bottom earth layer, with the model reflecting known 

 
 

Fig. 3.  1D geo-electric model depicting No Air Model and With Air Model 

    configurations. 
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bathymetry of the  region and known conductivities of 

the air, seawater and earth; 

2) Using the model to compute the electromagnetic field at 

all receiver locations for each source location; 

3) Replacing the air layer in the model with sea water to 

create a no-air model; 

4) Computing the fields for the same source-receiver 

geometries for the no-air model; and 

5) Computing the air wave effect by subtracting the No-Air 

Model fields from the corresponding fields from the With-

Air Model. 

Training of the Neural Network 

 The two inputs parameters are offset distance (meters) and 

sea water depth (meters) and one output parameter is the 

computed air wave values.  Data normalization is important 

due to the nature of log sigmoid training function [10].  Range 

of the data after normalization is [0 1]. 

 Selected data is given to the network during the training 

session with log sigmoid training function.  Test data is not 

used in training session. 

IV. RESULTS 

 MCSEM Simulations was carried out along ten different sea 

water depths.  The plot of the normalized values of air wave 

versus offsets in the ten sea water depths are presented in Fig. 

4.   

 The trend of the plot for the air wave values versus offsets 

shows that the air wave values are increasing as the offset 

increases.  The pattern of the curves roughly suggest linearity 

in the relationship between the air waves values and the offset 

making it possible to the Multiple Linear Regression (MLR) 

model to the study data for performance comparison of the 

models. 

 In order to accomplish the Multiple Linear Regression 

(MLR) model for estimating the air wave.  We express air 

wave value (Y) as the response of the linear combination of 

the model terms f(Xij) (i = j = 1, 2) representing the 

corresponding offset and sea water depth values at each of the 

observations, i.e. (X1, X2,  Y1), …, (Xn, Yn) as shown in 

equation (8). 
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 Table II displays the parameters obtained for the multiple 

linear regression model. 

TABLE II 

MODEL PARAMETERS 

1
 -0.3431 

2
 0.7705 

 0.2916 

Mean Square Error 

(MSE) 
0.0011 

R-Square 0.9859 

Adjusted R-Square 0.9855 

 

 The air wave data are first divided into training set (70%), 

validation (15%) and testing (15%) for the ANN model.  

Training data were used to train the application; validation 

data were used to monitor the neural network performance 

during training and the test data were used to measure the 

performance of the trained application.  Fig. 5 and 6 shows the 

neural network performance plot and the training, testing, 

validation and the overall neural network regression plot 

respectively. 

 The neural network performance plot shown in Figure 5 

indicated that the neural network achieved the best 

performance of 0.0010 after only 3 epoch. 

  

 
 

Fig. 4.  Plot of the air waves values versus offsets for the sea water depths of 

    1000m to 100m. 

 

 
Fig. 5.  Artificial Neural Network Performance Plot. 
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Fig. 6(a) ‒  (d) displays the networks training, validation, 

testing and the overall networks performance with 0.99415, 

0.9925, 0.99274 and 0.99346 as the coefficient of multiple 

determination respectively.  The comparative results of MLP 

and MLR models are presented Table IV 

TABLE IV 

PERFORMANCE COMPARISON BETWEEN MLP AND MLR 

 Mean Square Error 

(MSE) 
R-Square 

MLP Model 0.00017 0.9935 

MLR Model 0.0011 0.9859 

 

The results from the neural network indicate a lower error 

Mean Square Error of 0.00017 compared to using the 

conventional statistical method of multiple linear regression 

method with Mean Square Error of 0.0011.  It is also observed 

that the overall coefficient of multiple determination for the 

MLP model is slightly better than that for the MLR model. 

 

V. CONCLUSION 

The purpose of this study was to investigate the applicability 

of Multi-Layer Perceptron neural networks in estimating air 

waves in MCSEM survey data.  Simulations were carried out 

along ten different sea water depths and the air waves were 

computed by subtracting the response of the no-air background 

model from the response of the with-air background model.  

The research data was divided into training set (70%), 

validation (15%) and testing (15%) for the MLP model.  

Coefficient of multiple determination and Mean Square Error 

(MSE) from the results of the MLP neural network and the 

conventional multiple linear regression model were used to 

compare the performance of the two models.  Performance of 

the MLP model having better coefficient of multiple 

determination and smaller mean square error demonstrate it 

potential to estimate air waves in MCSEM data.  

ACKNOWLEDGMENT 

This research is carried out under the Fundamental and 

Research Grant Scheme.  The authors would like to 

acknowledge Universiti Teknologi PETRONAS for giving the 

opportunity to carry out this research work. 

REFERENCES 

[1] L.O. Løseth, H.M. Pedersen, T. Schaug-Pettersen, S. Ellingsrud and T. 

Eidesmo, "A scaled experiment for the verification of the Sea Bed 

Logging method," Journal of Applied Geophysics 64 (2008) 47–55, 

December 2007. 

[2] T. Eidesmo, S. Ellingsrud, L. M. MacGregor, S. Constable, M. C. Sinha, 

S. Johansen, F. N. Kong and H. Westerdahl, " Sea Bed Logging (SBL), 

a new method for remote and direct identification of hydrocarbon filled 

layers in deepwater areas, " First Break, March 2002, Vol. 20.3. 

[3] E. M. SHOKIR, and El-M, “Prediction of the hydrocarbon saturation in 

low resistivity formation via artificial neural network” (SPE Technical 

Papers Series; 87001) 

[4] S.E. Johansen and T.A. Wicklund, “Interpretation example of marine 

CSEM data” Electro-Magnetic Geo-Services as (emgs), Trondheim, 

EPX, Oslo, Norway THE LEADING EDGE MARCH (2007). 

[5] S. Johansen, K. Brauti, S. Fanavoll, H. Amundsen. T. A. Wicklund, J. 

Danielson, P. T. Gabrielson, L. Lorentz, M. Frenkel, B. Dubois, O. 

Christensen, K. Elshaug and S. A. Karlsen, "How EM survey analysis 

validates current technology, processing and interpretation 

methodology," First Break, June 2008, Vol. 26. 

[6] J. I. Nordskag and L. Amundsen, "Asymptotic airwave modeling for 

marine controlled-source electromagnetic surveying "GEOPHYSICS, 

VOL. 72, NO. 6  NOVEMBER-DECEMBER 2007; P. F249–F255 

[7] A. D. Chave and C. S. Cox, "Theoretical numerical model study for 

offshore CESM exploration with a horizontal electric dipole source" 

Journal of Geophys. Res. 87, 5327-5338 (1982). 

[8] W. L. Anderson, "Numerical integration of related Hankel transforms of 

order 0 and 1 by adaptive digital filtering," Geophysics, 44, (1979), 

pp.1287–1305. 

[9] M. Brown and M. Poulton, "Locating buried objects for environmental 

site investigations using neural networks," Journal of Environmental 

and Engineering Geophysics 1, 179–188, (1996). 

[10] M. McCormack, D. Zaucha and D. Dushek, "First break refraction 

picking and seismic data trace editing using neural networks" 

Geophysics 58, 67–78, (1993). 

[11] A. Neyamadpour, S. Taib, W.A.T. Abdullah, “Inversion of 2D DC 

resistivity data for high resistivity contrast regions using artificial neural 

network” WSEAS International Conference on ENGINEERING 

MECHANICS, STRUCTURES, ENGINEERING GEOLOGY 

(EMESEG '08), Heraklion, Crete Island, Greece, July 22-24, 2008. 

[12] M. Van der Baan and C. Jutten (2000). Neural Networks in Geophysical 

Applications: GEOPHYSICS, VOL. 65, NO. 4; P. 1032–047 

[13] H. Demuth, M. Beale, M. Hagan, "Neural Network Toolbox™ User’s 

Guide "1992–2008 by The MathWorks, Inc.,3 Apple Hill Drive, Natick, 

MA: 01760-2098. 

[14] A. Raiche, "A pattern recognition approach to geophysical inversion 

using neural networks," Geophysical Journal International 105, 629–

648, (1992). 

[15] M. Poulton, K. Sternberg, and C. Glass, "Neural network pattern 

recognition of subsurface EM images," Journal of Applied Geophysics 

29, 21–36, (1992).  

[16] G. Roth and A. Tarantola, "Neural networks and inversion of seismic 

data," Journal of Geophysical Research 99, 6753–6768, (1994). 

[17] G. El-Qady and K. Ushijima, "Inversion of DC resistivity data using 

neural networks," Geophysical Prospecting, 49, 417–430, (2001). 

[18] U. K. Singh, V. K. Somvanshi, R. K. Tiwari, and S. B. Singh, 

"Inversion of DC resistivity data using neural network approach," In: 

Proceedings of the International Groundwater Conference, Dindigul, 

India, IGC-2002, pp. 57–64, (2002). 

[19] M. Abdulkarim, Wan Fatimah Wan Ahmad, Afza, S., Radzuan R.," 2nd 

Annual International Conference on Advanced Topics in Artificial 

Intelligence (ATAI), ISSN: 2251-2179, doi: 10.5716/2251-

2179_ATAI08, pp. 10–14, (2011). 

 
 

Fig. 6.  (a) Training Regression Plot for the MLP.  (b) Validation 

Regression Plot for the MLP.  (c) Testing Regression Plot for the MLP.  (d) 

Overall Regression Plot for the MLP. 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

132 © 2012 GSTF



 

[20] M. Abdulkarim, Afza, S., Radzuan, R., Wan Fatimah Wan Ahmad, A. 

Agus,"Comparison on Performance of Radial Basis Function Neural 

Network and Discriminant Function in Classification of CSEM Data" 

Part 1, LNCS 7066, pp. 113–124, Springer-Verlag Berlin Heidelberg 

(2011). 

[21] L. Xinyou, L. J. Srnka, and J. J. Carazzone, “Method for Removing Air 

Wave Effect from Offshore Frequency Domain Controlled-Source 

Electromagnetic Data,” U.S. Patent 7 277 806, Oct. 2, 2007. 

 

 

 

 

 

Muhammad Abdulkarim was born in 

Northern part of Nigeria in 70's.  He attended 

Nuru-Huda Primary School Zaria and Barewa 

College Zaria for primary and secondary 

education respectively.  His obtained 

Bachelor’s Degree in Statistics from University 

of Abuja Nigeria in 1998 and Master’s Degree 

(M.Sc. Statistics) from Ahmadu Bello 

University Zaria, Nigeria in 2006. 

 He started his academic career as an 

academic staff of the department of 

Mathematics, Statistics and Computer Science, Faculty of Science, University 

of Abuja-Nigeria.  He is a co-author of a book in Statistics first published in 

2007― "A First Course In University Statistics".  ISBN 978-125 140-9 

Printed By Ahmadu Bello University Press Limited, P.M.B. 1094, Samaru, 

Zaria, Nigeria.    He co-authored a book chapter for Lecture Notes in 

Computer Science― LNCS 7066, pp. 113–124, Springer-Verlag Berlin 

Heidelberg (2011).  He has also published in both local and International 

scientific journals and conference articles including IEEE in 2011.  Presently 

he belongs to the Novel Carbon Nano Fibres EM Transmitter in Conducting 

Medium research group Universiti Teknologi PETRONAS in Malaysia as a 

Doctoral research fellow/research officer. His current interest is in Data 

Mining with the application of Artificial Neural Network in modeling Control 

Source Electro-Magnetic (CSEM) data for deep and shallow water sea bed 

logging environment. 

 Abdulkarim is a registered member of the Nigerian Statistical Association 

(NSA).  The prizes he won includes: Vice-Chancellor’s Prize, Dean’s Prize, 

Ashaka Cement Factory Prize, National Mathematical Centre Higher 

Education Scholarship for the Best Graduating Student University of Abuja-

Nigeria (1998) and Best Student Paper Award at the 2nd Annual International 

Conference on Advanced Topics in Artificial Intelligence (ATAI) Singapore 

2011. 

 

 
  

 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

133 © 2012 GSTF




