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LearningVisual Categories based on
Probabllistic Latent Component Models
with Semi-supervised Labeling

Masayasu Atsumi

Abstract—This paper proposes a learning method of objectand ~ As for related work, probabilistic latent variable models
scene categories based on probabilistic latent component modelshave been applied to learning object and scene categories [2],
in conjunction with semi-supervised object class labeling. In this {3]’ [4], [5]. Since hierarchical representation enables system-

method, a set of object segments extracted from scene images o tic classificati f obiect d efficient identifi
each scene category is firstly clustered by the probabilistic latent alic classincation ot object appearance ana etiicient identifica-

component analysis with the variable number of classes, next the tion of object and scene categories, there have been proposed
probabilistic latent component tree is generated as a classification hierarchical models for object and scene categorization [6],

tree of all the object classes of all the scene categories, and[7], [8], [9]. In [10], the hierarchical Latent Dirichlet Al-
then object classes are incrementally labeled by propagating |ocation has been applied to automatically discover a visual

prior scene category labels and posterior object category labels | . . . .
given to representative object instances of some object classes aQbJeCt hierarchy from a collection of unlabeled images though

teaching signals. Through experiments by using images of plural the depth of hierarchy is prefixed. It is known that context
categories in an image database, it is shown that the method improves category recognition of ambiguous objects in a
works effectively in learning a labeled object category tree and scene [11] and there have been proposed several methods [12],
object category composition of scene categories and achieves highr1 31 114] which incorporate context into object categorization.
performance for object and scene recognition. Our problem is closely related to recent research of multi-
~ Index Terms—categorization, computer vision, labeling, learn- jnstance multi-label learning [15], [16] which learns multiple
iNg. labels of multiple object instances in a scene image.
The one of main difference of our method from these exist-
. INTRODUCTION ing ones is that it simultaneously learns a classification tree of
HE human ability of categorization makes it possible teategorical object appearance and probabilistic composition of
identify object categories and also scene categories diject categories in scene categories. Another main difference
composites of them. The problem to be addressed in this pagethat our method incrementally learns object category labels
is learning a classification tree of object appearance, categfifya semi-supervised manner.
labels of object classes and object category composition ofThis paper is organized as follows. Section Il formulates the
various scenes from a set of scene images each of whigfablem of learning object and scene categories and section IlI
is labeled with one of plural objects in a scene. Here d@escribes the proposed method in detail. Experimental results

labeled object in a scene is an object which is considergge shown in section IV and we conclude our work in section
as a foreground object and other objects in background are
unlabeled. A set of scene images whose foreground objects
have the same label forms a scene category and a scene image
can be contained in plural scene categories dependent on
which object is considered to be in foreground. In this paper,Let C be a set of categories amdic be the number of
we propose a learning method for this problem which consistategories. A scene categorye C is a set of scene images
of 1) the probabilistic latent component analysis [1] with theach of which contains an object of the category in foreground
variable number of classes (V-PLCA) for clustering a set @ind other categorical objects in background. ket be aj-
object segments extracted from scene images in each scgnebject segment extracted from a scene imagé a scene
category, 2) generation of the probabilistic latent componegditegorye, S. be a set of object segments extracted from any
tree (PLCT) as a classification tree of all the object classssene images of a scene categergnd Ns_ be the number
of all the scene categories and 3) semi-supervised labelingoffobject segments i$..
object classes by propagating prior scene category labels angdn object segment is represented by a bag of features (BoF)
posterior object category labels given to representative objé@stogram [17] of its local feature. In order to calculate a BoF
instances of some object classes as teaching signals. histogram, first of all, grey or color SIFT descriptors [18],
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bea set of key featureg;, be an-th key feature o’ and Ny  classesVg,_ that maximize the following log-likelihood

be the number of key features. Then an object segment

is represented by a BoF histogram of key featutés.. ;) = Le= Z Z he,i; (fn)10g P(sci;s fn) @)
[hc,ij (f1)7 "'7hc,7,'j (fNF)] K "

Let H. = {H (s.i,)|sc,i; € Sc} be a set of BoF histogramsfor a set of BoF histogramsi. = {H(¢,i;)|5¢,i; € Se}-
obtained from a set of scene images of a scene categary When the number of latent classes is given, these probabilities
C and {H_.}.cc be given for a set of scene categories. Thare estimated by the EM algorithm in which the following E-
problem to be solved is to compute a set of clagggswhich step and M-Step are iterated until convergence
represents object categories, frdify of each scene category [E-step]
¢ € C, then to generate a classification tree of all classes
Ucec Q. each class of which is located at a leaf of the treep(qe,r|sc,i;, fn) =
and to assign object category labels to those classes.

The probabilistic latent component analysis with the vari-
able number of classes (V-PLCA) is proposed for the first
problem of computing a set of class€y. = {g..|r = Do ey (Fn)P(de,r|Sc,iys fn)
1,...,Ng.} which represents object categories of each scenel(fnl¢er) = >, Zs]“, Rews, ()P (Gor S0ty s fur) ®3)
category ¢ € C, where N, is the number of classes " ™
in Q.. A probability distribution of classe$p(gc.)|gcr € Efn he,i; (fn)P(ge,rlSc,iss fn)

Q.}, conditional probability distributions of instances, that P(8ci; der) = S S hei (fa)p(qer|Sciirs fn) )
is, object segment$p(sc,q;|qe,r)|sc,i;, € Sc} for any q., € Scyigl = fn O et

[p(Q(z,'r')p(Sc,ij |Q(:,r)p(fn|QC,'r')]ﬁ
chm, [p(QC,T’ )p(sc,ij ‘QC,T’ )p(fn|Q(:,'r")V(3 )
2

[M-step]

Q. and conditional probability distributions of key features Do an Bei; (fa)P(deyrlSe,iss fn)
{p(fulde,)|fn € F} for any q., € Q. are calculated P(ger) = — S S s () ®)
by this method where the class probability represents the Seyij £ fn TGN

composition ratio of object categories in a scene category, there is a temperature coefficient.

conditional probability of instances represents the degree thafrhe number of latent classes is determined through an EM

object segments are instances of an object category and jtbeative process with subsequent class division. The process

probability distribution of key features represents feature efarts with one or a few classes, pauses at every certain number

object categories. of EM iterations less than an upper limit and calculates the
The probabilistic latent component tree (PLCT) method ®llowing index, which is called the degree of scatter,

proposed for the second problem of generating a classification

tree of all classes).ccQ.. The PLCT is a binary tree in Oc,r = Z(Z Ip(fnlge.r) = D(Scﬁiwfn”) X p(Se,i; |ge.r)

which similar classes are located at close leaves where the Seij  In

similarity is calculated by using the conditional probability ®)
distribution of key features. Branch nodes also have tmg]ere hei: (fn)

probability distribution of key features which characterizes D(sci;, fn) = W (7)
subtrees whose roots are those branch nodes. The PLCT can fr Tt N

be seen as a kind of thesaurus which defines a classificationVq.» € Q.. Then a class whose degree of scatter takes a
system of appearance of object categories. maximum value among all classes whose degrees of scatter are
The semi-supervised labeling method is proposed for taBove a threshold and class probabilities are above a threshold
third problem of assigning object category labels to classissdivided into two classes. This iterative process is continued
located at leaves of the PLCT. The category hypothesis ruletil degrees of scatter or class probabilities of all the classes
is introduced to infer category labels of leaf nodes througtecome less than those thresholds.
branch nodes by propagating prior scene category labels andhe latent class is divided into two classes as follows.
posterior object category labels incrementally given to repreét ¢., be a source class to be divided and lgt,,
sentative object instances of some object classes as teacldifg q.,~, be target classes after division. Then, for a seg-
signals. An instance whose conditional probability for a claggent s ;- = argmax; {p(sc.i,|gcr)} Which has the max-
is maximum is used as a representative instance for the cld&8!m conditional instance probability and its BoF histogram
H(scir) = [hc,i;(fl),...,hc’i; (fnp)], one classg.,, is set
by specifying its conditional probability distribution of key
I1l. PROPOSEDMETHOD features, conditional probabilities of instances and a class

A. Probabilistic Latent Component Analysis of Scene CathObab'“ty as
gories heis (fn) +a

p(fnlder) = forvf, e F (8)
The problem of learning object category composition >, (heis (fur) + @)

of each scene category < C is estimating probabili- 4 N
i P(Sc,ix |qe,ry) for iy =1;
ties p(sc.i;s fn) = 32, P(Ges)P(Seilder)P(fulger), nAMElY g 1oy = 4 G000 L)

%525 14¢,m1 e ixlde,ro o o
{p(qc,T)MC,r S Qc}v {p(sc,i]‘|QC,T)‘SC,Z—j S Sc,qcm S QC}, e fO’I’ V’Lj(lj #Zj) ESC
{p(falge)fn € F,qer € Q.}, and the number of latent 9)
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P(ge.ro) (10) two subsets of classeg' and Q* where|Q°| represents the
2 number of classes if°.

respectiely wherea is a positive correction coefficient. An- A leaf node L({¢g.}) has one clasg. , so that its class
other classy. ., is set by specifying its conditional probability probability, conditional probability distribution of key features
distribution of key feature§p(f.|q..»,)|fn € F} at random, and conditional probabilities of instances are maintained in
conditional probabilities of instance®(s.,q,|qc,r,)|i; € Sc} the leaf node where the class probability is normalized as
as0 for Se,i and equal probability]ﬁ for other instances p(q.,)/N¢c by dividing p(¢.,) by the number of scene
p(ge,rg) categoriesN¢. A branch node also has a class probability

sc,i, (1 #43), and a class probability agq.,,,) = —5*. 'C o gy
7'|zhe tem]perature coefficient is set1.0 until the number and a conditional probability distribution of key features. Let
: be a branch node and.; and n., be its child nodes.

of classes is fixed and after that it is gradually decreasBd o
r class probabilitieg(n.;) and p(n.2) and conditional

according to a given schedule of the tempered EM unti oo P
convergence. probability distributions of key feature§p(f,|nc1)|fn € F}

and {p(fn|nc2)|f. € F} of child nodes, the branch node has
a class probability(n,) = p(n.1) + p(n.2) and a conditional
B. Probabilistic Latent Component Tree for Object Categgrobability distribution of key feature§p(f,.|n,)|f. € F} a
rization probability value of which is obtained by

The problem of learning a classification tree PLCT of p(ner) p(ne2)
categorical object appearance is generating a binary tree 8t fnlnp) = (1) X p(fnlne) + (1) X p(fnlnez). (12)
all classexR* = U.ccQ. of all the scene categories by using b b
their conditional probablllty distributions of key features an@_ Learning Object Category Labels
class probabilities.

Let B(Q°) be a branch node wher@°(C Q*) is a

set of classes which are located at leaf nodes of a subt

P(gery) =

The problem of learning object category labels is inferring
I[%%els of classes located at leaf nodes through branch nodes by
. . pagating prior scene category labels and posterior object
whose root is the branch node. NOt? gt = Q" for category labels incrementally given to representative object
a root node %f a PLCT. Then two child nod'es of the Pafnstances of some object classes as teaching signals. Class
ent node B(Q") are generatoeq as followg. First of all, forlabels are initialized by using scene category labels when a
each key fe?turefn € F, Q" is diided into twoosubsets PLCT is generated and they are incrementally modified by us-
°f2 classesQ; = {qc.r|p(fnlge,r) 05 €qer € Q7 and ing object category labels given for representative instances of
Q3, = 14er|p(falter) > € 4c,r € Q) according to whetk;er some object classes. An instance whose conditional probability
a probability value of the kgy featurf, of each c!a_\ss " for a class is maximum is used as a representative instance
is below e or not wheree is 0 or a small positive value ¢, yhe class. The category hypothesis rule is introduced to
and 0 by default. Next, mean probability distributions Ofiyter ¢jass labels of leaf nodes through branch nodes in the
key features of classes i@} and Q3 are calculated as following steps:

{MQ}%(f"')lf”'_e F} and{pqz (fn)|fn € F} respectively 1) Assign teaching signals to leaf nodes where a teaching
and the following distance signal of each leaf node is a label of a scene category
p(frrlge.r for the leaf class at the PLCT generation time and an
Dy, = Z pge.r) Z P(fn1ge,r) log u(Ql |(fn§) (11) object category label given for a representative instance
In of the leaf class while incremental modification time,
p(fnrlqe,r) 2) Infer branch category hypotheses of branch nodes by
+ Z P(ge.r) Z p(fnlger) log 1Q, (fur) ) propagating class probabilities of leaf nodes and teach-
ing category labels assigned to leaf nodes,
is computed based on the KL information between each and3) Infer object category labels of leaf classes by using
mean probability distributions of key features. Finalfy is branch category hypotheses and teaching category la-
divided into two subsets of class€8 andQ? which give the bels.
minimal value ofDy, for any key featuref,, € F. Then for In the step 2, a branch category hypothesis is inferred as
each ofQ*(k = 1,2), a branch node3(Q*) is generated as follows based on class probabilities of leaf nodes and teaching
a child node if the number of classes @F is greater than category labels assigned to leaf nodes. BéQ)) be a branch
1 and a leaf node.(Q¥) is generated as a child node if thenode where) = {q...} is a set of classes which are located
number of classes if)* is 1. However, when the number ofat leaf nodes of a subtree whose root is the branch node and
classes of a branch nodg(Q°) is 2, two leaf nodes each ey = {((ge,r) ler)|ger € Q,ler € L} be a set of pairs
of which has one of these two classes are generated as chiictlass probabilities and teaching category labels of those
nodes. The generation of child nodes by dividing a set tdaf nodes wherd.. is a set of category labels. Then for each
classes is started from a root no#Q*) and is recursively category labell € L., ppg); = Z(p(qc,r),l)eFB(Q) 2(qe,r)
repeated on branch nodes until leaf nodes are generated.gijes a certainty value thd@(Q) represents an object category
the way, it rarely happens that the number of classes in eitheiAccordingly, a branch category hypothesis is obtained as
Q' or Q? becomed). In that case, a mean probability valug* = arg maxer, {Pp(),} that gives the maximum certainty
g reqoP(falde,r)/1Q° is used ase for dividing Q° into  value among all the categories In.

4e,r€Q% fr €F

qC,TGQ?‘n fn’eF
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In order to infer object category labels of leaf classeguilding %eebu”ding - s"yx cow r”,ei‘
in the step 3, a node attribute that is called the categorgsg. L .
root is introduced by using branch category hypotheses - O s o= U

@ road (b))  grass (b) grass

teaching category labels. Let, be a branch node whose
branch category hypothesisiis, € L., n, be a sibling node bicydle bicycle building grass building
of n,, nes andn.e be child nodes ofi,. Let [, (k = 1,2) F == ﬂ S— e
or l,, € L. be a branch category hypothesisrif;, or n, 3 ) % Y| an L . |
is a branch node or a teaching category labehdf or n, @ (b) " grass (@ cow (b) ""‘5@ )
is a leaf node. Then a branch nodg becomes a categorial
root if I,,, # l,, andl,,, = I, hold. In casel,, # I, ~ Fig.1. Examples of (a) scene images and (b) object segments with labels.
holds butl,,, # l..,, ne1 OF ne becomes a categorial rootScene images and object segments of 16 categories (‘airplane”, *bicycle”,
PR : ¢ . “bird”, “building”, “car”, “cat”, “chair’, “cow”, “dog”, “grass”, “road”,
if it is a leaf node. An object category label of a leaf class i§neep’, “sign”, “sky”, “tree”, “water”) were used in experiments.
inferred by using the categorial root attribute of branch nodes
and leaf nodes as follows: (1) if a leaf node is a categorial
root, a teaching category label given to the leaf node is s&h image contains a few object segments each of which has
as an object category label of the leaf class, (2) otherwiseome of16 category labels. Fig. 1 shows some categorical scene
branch category hypothesis of the nearest ancestor node thiiges and object segments with labels. These images were
is a categorial root is set as an object category label of thglit into five parts with equal size fdr-fold cross validation,
leaf class. that is, each of five parts was used as a recognition test set and
When a PLCT is generated, object category labels of lewie others as a learning set. Main learning parameters were set
classes are initialized by firstly assigning their scene categery follows. In determining the number of classes of V-PLCA,
labels to leaf nodes as teaching signals, then inferring brartbhesholds of the degree of scatter and class probability were
category hypotheses and finally inferring object category labal$ and 0.2 respectively and a correction coefficiemtin the
of leaf classes based on the category hypothesis rule. An objegbression (8) was.0. In the tempered EM, a temperature
category label of a leaf class is modified when the leaf nodeefficient3 was decreased by multiplying it 95 at every
receives a teaching category label which is different from 2 iterations until it becamé.s.
current object category label. Here, a label of an instanceTwo types of local feature descriptors, tB&4-dimensional
whose conditional instance probability for the leaf class pponent color SIFT descriptor on a dense grid in addition
maximum is selected as a teaching category label for the Igafthe 128-dimensional grey SIFT descriptor at interest points
node. If a given teaching category label is different from were used for experiments as it was known that dense repre-
previous teaching category label, which is a scene categggntation performed better than sparsely detected interest point
label assigned to a leaf node as an initial teaching signal rispresentation and opponent color SIFT descriptor was in gen-
case of the initial PLCT, firstly the new teaching category labekal recommended among various color SIFT descriptor [20],
is assigned to the leaf node, then branch category hypothed@g. The code book size of grey SIFT features and opponent
and the categorial root attributes are modified for nodes @plor SIFT features werél9 and720 respectively. These two
a path from the leaf node to a PLCT root node and thefigatures are abbreviated as DOCS (dense opponent color SIFT)
sibling nodes, and finally according to the category hypothesiad IPGS (interest point grey SIFT) respectively.
rule, object category labels are modified for all the leaf classes
which are located at leaf nodes of subtrees whose roots are
these modified nodes. On the other hand, if a given teachiﬁg
category label is the same as a previous teaching categoryhe mean of the total numbers of classes which were
label, which is a scene category label assigned to a leaf nodgyaserated by the V-PLCA froni6 scene categories were
an initial teaching signal in case of the initial PLCT, an objedt06.2 and 89.2 for IPGS and DOCS respectively. By using
category label is modified to the teaching category label. In tHisene category labels as teaching signals at the generation
modification, a teaching category label given to a leaf nodetige, initial IPGS PLCTs had8.6 correct object category
propagated to neighbor leaf nodes so that their object categtalyels for leaf classes on average and initial DOCS PLCTs had
labels are also modified through the category hypothesis ru36.6 correct object category labels for leaf classes on average,
which were55.2% and40.8% of 106.2 and89.8 total classes
respectively. Here a correct label for a leaf class was given by
a label of an instance whose conditional instance probability
A. Experimental Framework for the leaf class was maximum. Fig. 2 shows a part of a PLCT
the generation time. It is observed that an object category
label of a leaf node “L3" is correctly inferred as a “water” by
the category hypothesis rule though its scene category label is
goird”.
When teaching category labels, which were labels of object
segments whose conditional instance probabilities for the leaf
Lhttp://research.microsoft.com/vision/cambridge/recognition/ classes were maximum, were given to leaf nodes in the order

Experimental Results

IV. EXPERIMENTS

Experiments of category learning were conducted by usi
the MSRC labeled image database'vScene image sets b6
categories each category of which contained aR@utnages
and was labeled with its foreground object were prepared af
used for experiments. The total numbers of images 424s
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Foreground Foreground Foreground Background Background Background
class 1(dog) class 2(dog) class 3(dog) class 1(road) class 2(grass)class 3(road)

P w M M CE E3eS

0.186 0.156 0.135 0.266 0.172 0.085
(a) Ascene category “dog”

(LD) =
3 SL:bird, OL:water |—[water]
(B17)
Foreground Foreground Foreground Background Background Background

class 1(sign) class 2(sign) class 3(sign§lass 1(building)class 2(tree) class 3(building

Fig.2. A part of an initial PLCT. An ellipse is a branch node and a rectang|¢ s — E
is a leaf node. In an ellipse, “BH” indicates a branch category hypothesis. I ‘Q ﬁ? F_ “ :j
a rectangle, “SL” and “OL" indicate a scene category label and an objec ‘

category label respectively. A colored ellipse represents it is a categorial root.0-290 0.173 0.163 0.161 0.115 0.098
A label in a square bracket is a correct label and a segment image shows a (b) Ascene category “sign”

representative instance of a leaf class.

Fig. 4. Examples of object category composition of scene categories

of higher to lower class probability, IPGS PLCTs hagl6 (qe.r)
correct object category labels and DOCS PLCTs Badl Age,r) = '
correct object category labels for leaf classes on average

according to the category hypothesis rule, which W&8% for vf, € F wheref; and6, wereset a0.1 in experiments.
and91.8% of 106.2 and89.8 total classes respectively. Flg 3For a given scene image, objects in the scene are recognized
shows a part of a modified PLCT. It is observed that objephsed on similarity between conditional probability distribu-
category labels of leaf nodes “L106" and “L110" are correctlyions of key features for object classes and bags of features of
inferred as “cow’s according to the category hypothesis rujgose objects. Also a scene is recognized based on similarity
by giving a teaching category label “cow” to the leaf nodgetween composite probability distributions of key features for
“L106". By another repetition of the modification of objectscene categories and a composite bag of features of objects in
category labels by giving same teaching category labels gz scene which is sum of bags of features of those objects.
the leaf nodes, the correctness becad@’ since the same The most similar object categories and scene category are
teaching category labels were given twice in succession. selected for the given scene image.

Through learning object category labels, it turns out whetherTwo methods of recognition - the object-to-scene recog-
each class of a scene category represents a foreground fitlen method and the scene-to-object recognition method -
ject category or a background object category in the sceag devised and their recognition performance was evaluated
category and composition ratio of object categories in thBrough5-fold cross validation. In the object-to-scene recog-
scene category is obtained by their class probabilities. Fign#ion method, firstly object categories are selected for objects
shows foreground and background object classes and theia scene by computing similarity between bags of features
composition ratio of some scene categories where a foregrowidthose objects and conditional probability distributions of
class represents a foreground object category and a backgrokgy features of object classes. Then selected object categories
class represents a background object category. are used for shortlisting candidate scene categories which

The feature of a scene category is represented by coane scene categories whose foreground object categories are
posing conditional probability distributions of key featuresame with selected object categories. Finally a scene category
for foreground and background object categories in the sceneselected by computing similarity between composition of
category. LetQf and Q% be sets of classes which represerttags of features of objects and probability distributions of
foreground and background object categories in a scene céey features of candidate scene categories. In the scene-to-
goryc € C andQ/ () = {qc.r|ger € QL,p(qe) > 0} and object recognition method, firstly a scene category is selected
Q%) = {¢c.rlger € Q% p(ger) > 0} be subsets of)f and by computing similarity between composition of bags of
Qb respectively. Then a probability distribution of key featurefeatures of objects in a scene and probability distributions of

(14)
2, €@l (0,)0Qu6,) Ple.r)

for the scene categoryis expressed by key features of scene categories. Then object categories are
selected by computing similarity between bags of features of
p(ntQf(Gf) Qb (6,)) = Z AGer) %0 (fulder) objects and conditional probability distributions of key features

of object categories in the scene category. Table. | shows

f b
9er€Qe (61)0Q:(6) (13) Mmean recognition rates of objects and scenes by these two

TABLE |
RECOGNITION RATES OF SCENES AND OBJECTS

Recognitionmethod Object-to-scene Scene-to-object
Feature DOCS IPGS DOCS IPGS
Scenerecognition accurady 0.807 0.676 0.568 0.626
Objectrecognition accurag¢y 0.724 0.649 0.685 0.600
Foreground object recall 0.979 0.996 0.966 0.987

Fig. 3. A part of a modified PLCT
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of object classes in scene categories is not necessary to be pervised discovery of visual object class hierarchies Piac. of IEEE
fixed in advance and is determined dependent on Iearniég CS Conf. on Computer Vision and Pattern Recognjte®08, pp. 1-8.
samples. Also in the PLCT, the depth of an object class tr ] ;,;/lp BGa:{%_\g;galz%%icts in contextNature Reviews Neuroscience, vol. 5,

is not necessary to be fixed in advance and is determinggl A. Torralba, “Contextual priming for object detectionfiternational
dependent of object classes generated through the V-PLCA. Journal of Computer Visigrvol. 53, pp. 169-191, 2003.
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