
 

 

 

Abstract— With the explosive growth of data availability on 

the World Wide Web, web usage mining becomes very essential 

for improving designs of websites, analyzing system performance 

as well as network communications, understanding user reaction, 

motivation and building adaptive websites. Web Access Pattern 

mining (WAP-mine) is a sequential pattern mining technique for 

discovering frequent web log access sequences. It first stores the 

frequent part of original web access sequence database on a 

prefix tree called WAP-tree and mines the frequent sequences 

from that tree according to a user given minimum support 

threshold. Therefore, this method is not applicable for 

incremental and interactive mining. In this paper, we propose an 

algorithm, improved Web Access Pattern (iWAP) mining, to find 

web access patterns from web logs more efficiently than the 

WAP-mine algorithm. Our proposed approach can discover all 

web access sequential patterns with a single pass of web log 

databases. Moreover, it is applicable for interactive and 

incremental mining which are not provided by the earlier one. 

The experimental and performance studies show that the 

proposed algorithm is in general an order of magnitude faster 

than the existing WAP-mine algorithm. 

Index Terms—Data mining, web mining, web access sequences, 

incremental mining. 

I. INTRODUCTION 

Data mining [2, 3, 9, 10, 11, 12], the extraction of hidden 

predictive information from large databases, is a powerful new 

technology with great potential to help companies focus on the 

most important information in their data warehouses. Web 

mining is an application of data mining which discovers useful 

patterns from the Web data repository [4]. This can be defined 

as the integration of information gathered by traditional data 

mining methodologies and techniques with information 

gathered over the World Wide Web. The information gathered 

through Web mining is evaluated (sometimes with the aid of 

software graphing applications) by using traditional data 
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mining parameters such as clustering and classification, 

association, and examination of sequential patterns. Web 

mining allows you to look for patterns in data through content 

mining, structure mining, and usage mining. Web usage 

mining [1], one of the broad categories of Web mining, 

analyzes frequent user access patterns and relationships from 

web usage data that can be stored in web server logs, proxy 

logs or browser logs. The discovered patterns are usually 

represented as collections of pages, objects, or re-sources that 

are frequently accessed by groups of users with common needs 

or interests. Behavior of all users on each web server can be 

extracted from the web log. An Example of a line of data in a 

web log is given below in the format: 

host/ip user [date:time] ``request url'' status bytes 

137.207.76.120 -- [30/Aug/2001: 12:03:24 -- 0500] 

``GET/jdk1.3/docs/relnotes/deprecatedlist.html HTTP/1.0'' 

200 2781 

Preprocessing tasks can be applied to the original log files 

to obtain web access sequences after data cleaning, user 

identification, session identification, etc., for mining 

purposes.[6] 

Sequential mining is the process of applying data mining 

techniques to a sequential database for the purposes of 

discovering the correlation relationships that exist among an 

ordered list of events.  Essentially, a Web access pattern is a 

sequential pattern in a large set of pieces of Web logs, which is 

pursued frequently by users. [4] 

Pei et al. [4] proposed a compressed data structure known as 

Web Access Pattern Tree (or WAP-tree), which facilitates the 

development of algorithms for mining web access patterns 

efficiently from web logs.[6] It stores the web log data in a 

prefix tree format similar to the frequent pattern tree[2] for 

non-sequential data.[5] An efficient recursive algorithm is 

proposed to enumerate access patterns from WAP-tree. Many 

other researches have been done on this algorithm. 

Techniques for mining sequential patterns from web logs 

fall into Apriori or non-Apriori. The Apriori-like algorithms 

generate substantially huge sets of candidate patterns, 

especially when the sequential pattern is long. WAP-tree 

associates WAP-mine algorithm (Pei et al., 2000), a non-

Apriori method which stores the web access patterns in a 

compact  prefix tree, called WAP-tree, and avoids generating 

huge number of candidate sets . [5] 

This sequential pattern mining technique finds all sets of 

frequent sequences by first storing the frequent part of the 
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original web access sequence database on a WAP-tree and 

then mining that tree according to a given minimum support 

threshold. The main steps involved in this technique are 

summarized next. 

The algorithm first scans the web log once to find all 

frequent individual events. Secondly, it scans the web log 

again to construct a WAP-tree over the set of frequent 

individual events of each transaction. Thirdly, it finds the 

conditional suffix patterns. In the fourth step, it constructs the 

intermediate conditional WAP-tree using the pattern found in 

previous step. Finally, it goes back to repeat Steps 3 and 4 

until the constructed conditional WAP-tree has only one 

branch or is empty. Thus, with the WAP-tree algorithm, 

finding all frequent events in the web log entails constructing 

the WAP-tree and mining the access patterns from the WAP 

tree. [5] 

WAP-tree algorithm scans the original database only twice 

and thus mining efficiency is improved sharply. But the main 

drawback is that it recursively constructs large numbers of 

intermediate WAP-trees during mining and this entails storing 

intermediate patterns, which are still time consuming 

operations which lead to many other researches. 

A. Related Work 

WAP-mine algorithm is obviously a novel data structure in 

the field of discovering interesting and frequent user access 

patterns. However, WAP-mine requires re-constructing large 

numbers of intermediate condition WAP-trees during mining, 

which is also very costly. So, many researchers proposed many 

efficient WAP-mine algorithms in different times.  

CS-Mine 

 CS-Mine is based directly on the initial conditional 

sequence base of each frequent event and eliminates the need 

for re-constructing intermediate conditional WAP-trees. This 

can improve significantly on efficiency comparing with WAP-

mine, especially when the support threshold becomes smaller 

and the size of database gets larger.[6] 

FS-Mine 

The FS-Miner is an incremental sequence mining system. 

FS-miner efficient strategy for discovering frequent patterns in 

sequence databases that requires only two scans of the 

database. Incremental and interactive mining functionalities 

are also facilitated by the FS-tree. [7] 

mWAP: 

The modified Web Access Pattern approach is based on 

WAP-tree, but avoids recursively re-constructing intermediate 

WAP-trees during mining of the original WAP tree for 

frequent patterns. The modified WAP algorithm is able to 

quickly determine the suffix of any frequent pattern prefix 

under consideration by comparing the assigned binary position 

codes of nodes of the tree. The tree data structure, similar to 

WAP-tree, is used to store access sequences in the database, 

and the corresponding counts of frequent events compactly, so 

that the tedious support counting is avoided during mining.[8] 

PL-WAP Mine: 

PL-WAP Mine is a more efficient approach for using the 

WAP-tree to mine frequent sequences, which totally eliminates 

the need to engage in numerous re-constructions of 

intermediate WAP-trees during mining. The proposed 

algorithm builds the frequent header node links of the original 

WAP-tree in a pre-order fashion and uses the position code of 

each node to identify the ancestor/descendant relationships 

between nodes of the tree. It then, finds each frequent 

sequential pattern, through progressive prefix sequence search, 

starting with its first prefix subsequence event.[5] 

B. Motivations 

Data mining has attracted a great deal of attention in the 

information industry and in society as a whole in recent years. 

With the explosive growth of data available on the World 

Wide Web, discovery and analysis of useful information from 

the World Wide Web becomes a practical necessity. Many 

algorithms are improved for sequential pattern mining. The 

Web access pattern tree stores highly compressed, critical 

information for access pattern mining and facilitates the 

development of novel algorithms for mining access patterns in 

large set of log pieces. Experimental results have shown that 

WAP-mine is obviously faster than traditional sequential 

pattern mining techniques.[6] But this algorithm does not 

support incremental and interactive mining techniques. That is, 

mining a fixed size web access sequence database for different 

support threshold needs to build complete WAP-tree for 

individual threshold. Again, mining with a fixed support 

threshold for different size of datasets also needs to construct 

the whole tree. This is because here only frequent part of the 

database plays role in the construction of WAP-tree. This 

motivates us to study alternative methods for Web access 

pattern mining. The key consideration is minimizing time 

requirement to build WAP-tree and also how to facilitate 

dynamic mining techniques. So, we propose an improved 

WAP-tree structure named iWAP-tree which surely minimizes 

elapsed time for tree construction. Based on iWAP-tree 

structure, an efficient single pass web access pattern mining 

algorithm, named as iWAP (improved Web Access Pattern) 

has been proposed. To support interactive and incremental 

mining techniques, this algorithm eliminate finding frequent 

events from database and record the whole web access 

sequence database in WAP-tree. 

C. Outline of the paper 

In Section II, we introduce our proposed iWAP-mine 

algorithm and compare it with existing WAP-mine algorithm. 

Section III shows the experimental results for both algorithm. 

Finally, the conclusion is given in Section IV. 

II. PROPOSED SINGLE  PASS APPROACH 

We proposed an efficient algorithm named improved WAP 

(iWAP) works by scanning the whole database once. It builds 

its tree named iWAP-tree while scanning the database and 

counting the occurrence of individual events at the same time. 
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That means time elapsed for finding frequent event is dropped 

out.  

Algorithm iWAP: mining access patterns in Web access 

sequence database. 

Input: Web access sequence database WAS and support 

threshold € (0<€ <1). 

Output: the complete set of  €-patterns in WAS. 

Method: 

1. Scan WAS, construct a iWAP-tree over the set of 

individual event. 

2. Recursively mine the iWAP-tree using conditional 

search. 

A. iWAP-tree construction 

iWAP algorithm tried to improve execution time for 

constructing WAP-tree of WAP-mine algorithm[4]. Main 

difference between these two algorithms lies in WAP-tree 

construction. In this subsection, an illustration of how tree 

construction is done in both algorithm and how they differ are 

stated using an example. 

 
Table.  1 A database of Web access sequences(WAS) with  Frequent patterns. 

 

Suppose given threshold is 30% for both algorithm. In case of 

WAP mine algorithm it means an access sequence, s should 

have a count of 2 out of 4 records in our example database of 

table 1, to be considered frequent. Constructing WAP-tree, 

entails first scanning database once, this derives the set of 

frequent events a, b, c which is shown in the 3rd column of 

table 1 and stores the frequent items as header nodes. 

Using iWAP algorithm finding frequent subsequence is 

omitted. After inserting a virtual root (Root) each event of 

individual sequence is inserted as a node with count 1 from 

Root if that node type does not yet exist. But the count of the 

node is increased by 1 if the node type already exists. Count is 

updated whenever the corresponding event is found in a 

sequence. In this way this header count corresponds to the total 

occurrence of the event in the database. This variable   is 

useful to determine the frequent event. For example, as shown 

in Fig. 1(a)., to insert the first sequence abdac of transaction 

ID 100 of the example database, which is a direct child of the 

Root, a left child of Root is created, with label a and count 1. 

 
Fig. 1.  Construction of iWAP-tree for sequence (a) abdac, (b) abcac 

 

Then, the header link node for event a is connected to this 

inserted a node from the a header node. Count of a header 

node is updated to 1 as it was initially 0. The next event b is 

inserted as the left child of node a with a count of 1 and linked 

to header node b with updating the count to 1. The third event 

d is inserted as the left child of the node b having a count of 1, 

and the d link is connected to this node from header node of d. 

The fourth event is a and it is inserted as the left child of the d 

on this branch with a count of 1 and a connection to this node 

is made from last inserted node a. But this time count of a 

node is not updated because the header count for this event has 

been updated previously for the same sequence. The fifth and 

last event of this sequence is c and it is inserted as the left 

child of the second a on this branch with a count of 1 and a 

connection from c header node to this node is made. 

Secondly, insert the sequence abcac of the next transaction 

with ID 200, starting from the virtual Root. Since the root has 

a child labeled a, the count of node a and corresponding 

header count is increased by 1 to obtain (a:2) now. Similarly, 

(b:2) is also in the tree and header count also holds 2. The next  

event , c does not match the next existing node a, and new 

node c:1 is created and inserted as another child of b node. In 

same way, next a and c are inserted in newly created branch of 

the tree, as shown in Fig. 1(b). The third sequence babac and 

fourth sequence abacc are inserted next to obtain complete 

iWAP-tree Fig. 2. In this way, iWAP-tree construction takes 

place in single pass. 

On the other hand, WAP-mine algorithm constructs the 

WAP tree with frequent sub-sequences (column 3 of table 2).It 

finds the frequent subsequence in the first pass and in the  

second pass as the same way as iWAP does it constructs the 

WAP tree(Fig. 3).No count variable is maintained in header 

table. 

 Once the sequential data is stored on the complete iWAP-

tree Fig. 2 or WAP-tree Fig. 3, the tree is mined for frequent 

patterns starting with the lowest frequent event in the header 

list. Mining procedure of iWAP is same as the WAP-mine 

algorithm except it does not create conditional sequence base 

as well as conditional iWAP-trees for all events in the header 

table. Count variable in the header table helps to do mining for 
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those events that meets with minimum support threshold.                   

 
 

Fig. 2.  Complete iWAP-tree based on  table 1 

 
      Fig. 3.  Complete WAP-tree based on  table 1 

B. Mining Web access sequences 

As does not meet support threshold we start from frequent 

event c. From the iWAP-tree of Fig 2, it first computes prefix 

sequence of the base c or the conditional sequence base of c as 

: {abda:1; ab:1;abca:1; ab:-1;baba:1; abac:1}. 

The count for each conditional base path is the same as the 

count on the suffix node itself. The first sequence in the list 

above, abda represents the path to the first c node in the 

iWAP-tree. When a conditional sequence in a branch of a 

iWAP-tree, has a prefix subsequence that is also a conditional 

sequence of a node of the same base, the count of this new 

subsequence is subtracted because it has contributed before. 

Thus, the conditional sequence list above has one ab with 

count -1. With these sequences next conditional iWAP-tree is 

constructed shown in Fig. 4.  Next conditional sequence base 

 
      Fig. 4.  Conditional iWAP-tree during mining 

 

for suffix cc as ab:1,aba:1 and corresponding conditional 

iWAP-tree |cc is shown in Fig. 5(a). After building the next 

conditional iWAP-tree |bcc (Fig. 5(b)), this ends the re-

construction of iWAP-trees for event c and the frequent 

 

 
    

Fig. 5.  Conditional iWAP-trees during mining 

 

patterns found along this line are cc, bcc, abcc, acc. The 

recursion continues with the suffix path |c, |bc, |ac, |bac. The 

algorithm  keeps  running,  finding the conditional  sequence  

 
 

Fig. 6.  Conditional iWAP-trees during mining 

 

bases of ac and building the conditional iWAP-tree |ac Fig. 

6(a). This has header count of 4, 4, 1, 1 for event a, b, c, d 

respectively. 

Since the count of c & d is less than the minimum support 

threshold, it is discarded in future mining process. The 
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conditional search of c is now finished. The search for frequent 

patterns that have the suffix of other header frequent events 

starting with suffix base |b and then |a are also mined in the 

same way the mining for patterns with suffix c is done above. 

Discovered frequent pattern set for c is: {c, cc, acc, bcc, abcc, 

aac, bac, abac, ac, abc, bc}. 

After mining the whole tree, discovered frequent pattern set 

is: {c, cc, acc, bcc, abcc, aac, bac, abac, ac, abc, bc, b, ab, a, 

aa, ba, aba}. 

Though WAP-tree is an effective structure facilitating Web 

access pattern mining, and WAP-mine outperforms GSP based 

solution in a wide margin, it has still some drawbacks. Many 

researches have been done to improve this algorithm. Our 

strategy is to improve WAP-tree construction which leads to 

dynamic mining facility. 

 

III. EXPERIMENTAL RESULTS 

Testing is a very essential part of research. To demonstrate 

the effectiveness of our algorithm here we have shown some 

experimental results from a number of test cases with 

performance analysis. The two algorithms WAP-mine and 

iWAP are implemented in C language. All experiments are 

performed on Intel Core 2 Duo desktop processor of 2.53GHz 

having 4GB DDR 2 RAM with a Windows XP operating 

system. 

Used Datasets: Experimental datasets are generated by using 

our data generation program. Three parameters are used to 

generate the data sets. 

|D|: Number of sequences in the database. 

|C|: Average length of the sequences. 

|N|: number of events. 

For example, C10.N50.D10 K means that |C| = 10,  |N| = 50, 

and |D| = 10K.It represents a group of data with average length 

of the sequences as 10, the numbers of individual events in the 

database are 50, and the total number of sequences in database 

is 10 thousand. The datasets with different parameters test 

different aspects of the algorithms. Basically, if the number of 

these three parameters becomes larger, the execution time 

becomes longer.[5] 

A. Experiment 1 

Fixed size database and different minimum support is used 

in this experiment to compare the performance of WAP-mine 

and iWAP algorithms. The datasets are described as C15. N50. 

D5 K, and algorithms are tested with different minimum 

support threshold (between 5%-50%) against the 5 thousand (5 

K) database. It shows, our algorithm is much efficient for 

small support threshold which is shown in Fig . 7. 

 

 

 
Fig. 7.  Scalability measurement with different support thresholds 

 

B. Experiment 2 

 
Fig. 8  Scalability measurement with different number of input sequences 

 

Databases with different sizes from 2 K to 10 K with the 

fixed minimum support of 30% were used in this experiment. 

The five datasets are C10. N40. D2 K, C10. N40. D4 K, C10. 

N40.D6 K, C10. N40. D8 K and C10. N40. D10 K. 

Performance measurement of the WAP and Proposed 

algorithms were compared and the results of this experiment 

are presented in Fig. 8. This is an example result of 

incremental mining technique.  

C. Experiment 3 

Initially, both algorithms will take almost same amount of 

time with 50% threshold. But when user will change threshold 

to 40% WAP-mine algorithm will rebuild the whole WAP-tree 

for same set of database. On the other hand, iWAP algorithm 

does not need to rebuild the tree as it has recorded full 

database in iWAP-tree earlier. Now only time for mining will 

be consumed by iWAP for further changing in threshold 

whereas WAP-mine algorithm will consume time for both tree 

construction and mining procedure, shown in Fig. 9. 
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Fig. 9  Experimental result for interactive mining. 

 

IV. CONCLUSION 

Now a days web access sequential pattern mining is very 

important topic for research. It has lots of application and also 

attracts lots of researchers to research for a better solution. In 

this research we try to find another better solution based on the 

WAP-mine algorithm for web access sequential pattern 

mining. We do the improvement in case of building the WAP-

tree which helps us to speed up the total CPU time. We have 

proposed an efficient tree structure iWAP-tree and 

corresponding mining algorithm for web access sequential 

pattern mining which support the interactive and incremental 

mining facility. The performance of the iWAP algorithm has 

been evaluated in comparison with the WAP-mine algorithm. 

Experimental results have shown that the iWAP algorithm 

performs much more efficient than the WAP-mine algorithm, 

especially when the support threshold becomes small. Here in 

the proposed algorithm the memory issue is not considered. As 

for future work, the mining process and solving the memory 

problem of iWAP is considered. 
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