

Abstract— With the explosive growth of data availability on

the World Wide Web, web usage mining becomes very essential

for improving designs of websites, analyzing system performance

as well as network communications, understanding user reaction,

motivation and building adaptive websites. Web Access Pattern

mining (WAP-mine) is a sequential pattern mining technique for

discovering frequent web log access sequences. It first stores the

frequent part of original web access sequence database on a

prefix tree called WAP-tree and mines the frequent sequences

from that tree according to a user given minimum support

threshold. Therefore, this method is not applicable for

incremental and interactive mining. In this paper, we propose an

algorithm, improved Web Access Pattern (iWAP) mining, to find

web access patterns from web logs more efficiently than the

WAP-mine algorithm. Our proposed approach can discover all

web access sequential patterns with a single pass of web log

databases. Moreover, it is applicable for interactive and

incremental mining which are not provided by the earlier one.

The experimental and performance studies show that the

proposed algorithm is in general an order of magnitude faster

than the existing WAP-mine algorithm.

Index Terms—Data mining, web mining, web access sequences,

incremental mining.

I. INTRODUCTION

Data mining [2, 3, 9, 10, 11, 12], the extraction of hidden

predictive information from large databases, is a powerful new

technology with great potential to help companies focus on the

most important information in their data warehouses. Web

mining is an application of data mining which discovers useful

patterns from the Web data repository [4]. This can be defined

as the integration of information gathered by traditional data

mining methodologies and techniques with information

gathered over the World Wide Web. The information gathered

through Web mining is evaluated (sometimes with the aid of

software graphing applications) by using traditional data

Tarannum Shaila Zaman is a student of the Department of Computer

Science & Engineering at University of Dhaka, Dhaka, Bangladesh. (e-mail:

imagine_prottasha@yahoo.com)

Nafisah Islam is a student of the Department of Computer Science &

Engineering at University of Dhaka, Dhaka, Bangladesh.(e-

mail:.nafisah001@yahoo.com)

Chowdhury Farhan Ahmed is an Associate Professor of the Department of

Computer Science & Engineering at University of Dhaka, Dhaka,

Bangladesh. (e-mail: farhan@cse.univdhaka.edu)

Byeong-Soo Jeong is a Professor of the Department of Computer

Engineering, Kyung Hee University,1 Seochun-dong, Kihung-gu, Youngin-si,

Kyunggi-do, 446-701, Republic of Korea.(e-mail: jeong@khu.ac.kr)

mining parameters such as clustering and classification,

association, and examination of sequential patterns. Web

mining allows you to look for patterns in data through content

mining, structure mining, and usage mining. Web usage

mining [1], one of the broad categories of Web mining,

analyzes frequent user access patterns and relationships from

web usage data that can be stored in web server logs, proxy

logs or browser logs. The discovered patterns are usually

represented as collections of pages, objects, or re-sources that

are frequently accessed by groups of users with common needs

or interests. Behavior of all users on each web server can be

extracted from the web log. An Example of a line of data in a

web log is given below in the format:

host/ip user [date:time] ``request url'' status bytes

137.207.76.120 -- [30/Aug/2001: 12:03:24 -- 0500]

``GET/jdk1.3/docs/relnotes/deprecatedlist.html HTTP/1.0''

200 2781

Preprocessing tasks can be applied to the original log files

to obtain web access sequences after data cleaning, user

identification, session identification, etc., for mining

purposes.[6]

Sequential mining is the process of applying data mining

techniques to a sequential database for the purposes of

discovering the correlation relationships that exist among an

ordered list of events. Essentially, a Web access pattern is a

sequential pattern in a large set of pieces of Web logs, which is

pursued frequently by users. [4]

Pei et al. [4] proposed a compressed data structure known as

Web Access Pattern Tree (or WAP-tree), which facilitates the

development of algorithms for mining web access patterns

efficiently from web logs.[6] It stores the web log data in a

prefix tree format similar to the frequent pattern tree[2] for

non-sequential data.[5] An efficient recursive algorithm is

proposed to enumerate access patterns from WAP-tree. Many

other researches have been done on this algorithm.

Techniques for mining sequential patterns from web logs

fall into Apriori or non-Apriori. The Apriori-like algorithms

generate substantially huge sets of candidate patterns,

especially when the sequential pattern is long. WAP-tree

associates WAP-mine algorithm (Pei et al., 2000), a non-

Apriori method which stores the web access patterns in a

compact prefix tree, called WAP-tree, and avoids generating

huge number of candidate sets . [5]

This sequential pattern mining technique finds all sets of

frequent sequences by first storing the frequent part of the

iWAP: A Single Pass Approach for Web Access

Sequential Pattern Mining

Tarannum Shaila Zaman, Nafisah Islam, Chowdhury Farhan Ahmed, Byeong-Soo Jeong

DOI: 10.5176_2010-2283_2.1.129

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

62 © 2012 GSTF

original web access sequence database on a WAP-tree and

then mining that tree according to a given minimum support

threshold. The main steps involved in this technique are

summarized next.

The algorithm first scans the web log once to find all

frequent individual events. Secondly, it scans the web log

again to construct a WAP-tree over the set of frequent

individual events of each transaction. Thirdly, it finds the

conditional suffix patterns. In the fourth step, it constructs the

intermediate conditional WAP-tree using the pattern found in

previous step. Finally, it goes back to repeat Steps 3 and 4

until the constructed conditional WAP-tree has only one

branch or is empty. Thus, with the WAP-tree algorithm,

finding all frequent events in the web log entails constructing

the WAP-tree and mining the access patterns from the WAP

tree. [5]

WAP-tree algorithm scans the original database only twice

and thus mining efficiency is improved sharply. But the main

drawback is that it recursively constructs large numbers of

intermediate WAP-trees during mining and this entails storing

intermediate patterns, which are still time consuming

operations which lead to many other researches.

A. Related Work

WAP-mine algorithm is obviously a novel data structure in

the field of discovering interesting and frequent user access

patterns. However, WAP-mine requires re-constructing large

numbers of intermediate condition WAP-trees during mining,

which is also very costly. So, many researchers proposed many

efficient WAP-mine algorithms in different times.

CS-Mine

 CS-Mine is based directly on the initial conditional

sequence base of each frequent event and eliminates the need

for re-constructing intermediate conditional WAP-trees. This

can improve significantly on efficiency comparing with WAP-

mine, especially when the support threshold becomes smaller

and the size of database gets larger.[6]

FS-Mine

The FS-Miner is an incremental sequence mining system.

FS-miner efficient strategy for discovering frequent patterns in

sequence databases that requires only two scans of the

database. Incremental and interactive mining functionalities

are also facilitated by the FS-tree. [7]

mWAP:

The modified Web Access Pattern approach is based on

WAP-tree, but avoids recursively re-constructing intermediate

WAP-trees during mining of the original WAP tree for

frequent patterns. The modified WAP algorithm is able to

quickly determine the suffix of any frequent pattern prefix

under consideration by comparing the assigned binary position

codes of nodes of the tree. The tree data structure, similar to

WAP-tree, is used to store access sequences in the database,

and the corresponding counts of frequent events compactly, so

that the tedious support counting is avoided during mining.[8]

PL-WAP Mine:

PL-WAP Mine is a more efficient approach for using the

WAP-tree to mine frequent sequences, which totally eliminates

the need to engage in numerous re-constructions of

intermediate WAP-trees during mining. The proposed

algorithm builds the frequent header node links of the original

WAP-tree in a pre-order fashion and uses the position code of

each node to identify the ancestor/descendant relationships

between nodes of the tree. It then, finds each frequent

sequential pattern, through progressive prefix sequence search,

starting with its first prefix subsequence event.[5]

B. Motivations

Data mining has attracted a great deal of attention in the

information industry and in society as a whole in recent years.

With the explosive growth of data available on the World

Wide Web, discovery and analysis of useful information from

the World Wide Web becomes a practical necessity. Many

algorithms are improved for sequential pattern mining. The

Web access pattern tree stores highly compressed, critical

information for access pattern mining and facilitates the

development of novel algorithms for mining access patterns in

large set of log pieces. Experimental results have shown that

WAP-mine is obviously faster than traditional sequential

pattern mining techniques.[6] But this algorithm does not

support incremental and interactive mining techniques. That is,

mining a fixed size web access sequence database for different

support threshold needs to build complete WAP-tree for

individual threshold. Again, mining with a fixed support

threshold for different size of datasets also needs to construct

the whole tree. This is because here only frequent part of the

database plays role in the construction of WAP-tree. This

motivates us to study alternative methods for Web access

pattern mining. The key consideration is minimizing time

requirement to build WAP-tree and also how to facilitate

dynamic mining techniques. So, we propose an improved

WAP-tree structure named iWAP-tree which surely minimizes

elapsed time for tree construction. Based on iWAP-tree

structure, an efficient single pass web access pattern mining

algorithm, named as iWAP (improved Web Access Pattern)

has been proposed. To support interactive and incremental

mining techniques, this algorithm eliminate finding frequent

events from database and record the whole web access

sequence database in WAP-tree.

C. Outline of the paper

In Section II, we introduce our proposed iWAP-mine

algorithm and compare it with existing WAP-mine algorithm.

Section III shows the experimental results for both algorithm.

Finally, the conclusion is given in Section IV.

II. PROPOSED SINGLE PASS APPROACH

We proposed an efficient algorithm named improved WAP

(iWAP) works by scanning the whole database once. It builds

its tree named iWAP-tree while scanning the database and

counting the occurrence of individual events at the same time.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

63 © 2012 GSTF

That means time elapsed for finding frequent event is dropped

out.

Algorithm iWAP: mining access patterns in Web access

sequence database.

Input: Web access sequence database WAS and support

threshold € (0<€ <1).

Output: the complete set of €-patterns in WAS.

Method:

1. Scan WAS, construct a iWAP-tree over the set of

individual event.

2. Recursively mine the iWAP-tree using conditional

search.

A. iWAP-tree construction

iWAP algorithm tried to improve execution time for

constructing WAP-tree of WAP-mine algorithm[4]. Main

difference between these two algorithms lies in WAP-tree

construction. In this subsection, an illustration of how tree

construction is done in both algorithm and how they differ are

stated using an example.

Table. 1 A database of Web access sequences(WAS) with Frequent patterns.

Suppose given threshold is 30% for both algorithm. In case of

WAP mine algorithm it means an access sequence, s should

have a count of 2 out of 4 records in our example database of

table 1, to be considered frequent. Constructing WAP-tree,

entails first scanning database once, this derives the set of

frequent events a, b, c which is shown in the 3rd column of

table 1 and stores the frequent items as header nodes.

Using iWAP algorithm finding frequent subsequence is

omitted. After inserting a virtual root (Root) each event of

individual sequence is inserted as a node with count 1 from

Root if that node type does not yet exist. But the count of the

node is increased by 1 if the node type already exists. Count is

updated whenever the corresponding event is found in a

sequence. In this way this header count corresponds to the total

occurrence of the event in the database. This variable is

useful to determine the frequent event. For example, as shown

in Fig. 1(a)., to insert the first sequence abdac of transaction

ID 100 of the example database, which is a direct child of the

Root, a left child of Root is created, with label a and count 1.

Fig. 1. Construction of iWAP-tree for sequence (a) abdac, (b) abcac

Then, the header link node for event a is connected to this

inserted a node from the a header node. Count of a header

node is updated to 1 as it was initially 0. The next event b is

inserted as the left child of node a with a count of 1 and linked

to header node b with updating the count to 1. The third event

d is inserted as the left child of the node b having a count of 1,

and the d link is connected to this node from header node of d.

The fourth event is a and it is inserted as the left child of the d

on this branch with a count of 1 and a connection to this node

is made from last inserted node a. But this time count of a

node is not updated because the header count for this event has

been updated previously for the same sequence. The fifth and

last event of this sequence is c and it is inserted as the left

child of the second a on this branch with a count of 1 and a

connection from c header node to this node is made.

Secondly, insert the sequence abcac of the next transaction

with ID 200, starting from the virtual Root. Since the root has

a child labeled a, the count of node a and corresponding

header count is increased by 1 to obtain (a:2) now. Similarly,

(b:2) is also in the tree and header count also holds 2. The next

event , c does not match the next existing node a, and new

node c:1 is created and inserted as another child of b node. In

same way, next a and c are inserted in newly created branch of

the tree, as shown in Fig. 1(b). The third sequence babac and

fourth sequence abacc are inserted next to obtain complete

iWAP-tree Fig. 2. In this way, iWAP-tree construction takes

place in single pass.

On the other hand, WAP-mine algorithm constructs the

WAP tree with frequent sub-sequences (column 3 of table 2).It

finds the frequent subsequence in the first pass and in the

second pass as the same way as iWAP does it constructs the

WAP tree(Fig. 3).No count variable is maintained in header

table.

 Once the sequential data is stored on the complete iWAP-

tree Fig. 2 or WAP-tree Fig. 3, the tree is mined for frequent

patterns starting with the lowest frequent event in the header

list. Mining procedure of iWAP is same as the WAP-mine

algorithm except it does not create conditional sequence base

as well as conditional iWAP-trees for all events in the header

table. Count variable in the header table helps to do mining for

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

64 © 2012 GSTF

those events that meets with minimum support threshold.

Fig. 2. Complete iWAP-tree based on table 1

 Fig. 3. Complete WAP-tree based on table 1

B. Mining Web access sequences

As does not meet support threshold we start from frequent

event c. From the iWAP-tree of Fig 2, it first computes prefix

sequence of the base c or the conditional sequence base of c as

: {abda:1; ab:1;abca:1; ab:-1;baba:1; abac:1}.

The count for each conditional base path is the same as the

count on the suffix node itself. The first sequence in the list

above, abda represents the path to the first c node in the

iWAP-tree. When a conditional sequence in a branch of a

iWAP-tree, has a prefix subsequence that is also a conditional

sequence of a node of the same base, the count of this new

subsequence is subtracted because it has contributed before.

Thus, the conditional sequence list above has one ab with

count -1. With these sequences next conditional iWAP-tree is

constructed shown in Fig. 4. Next conditional sequence base

 Fig. 4. Conditional iWAP-tree during mining

for suffix cc as ab:1,aba:1 and corresponding conditional

iWAP-tree |cc is shown in Fig. 5(a). After building the next

conditional iWAP-tree |bcc (Fig. 5(b)), this ends the re-

construction of iWAP-trees for event c and the frequent

Fig. 5. Conditional iWAP-trees during mining

patterns found along this line are cc, bcc, abcc, acc. The

recursion continues with the suffix path |c, |bc, |ac, |bac. The

algorithm keeps running, finding the conditional sequence

Fig. 6. Conditional iWAP-trees during mining

bases of ac and building the conditional iWAP-tree |ac Fig.

6(a). This has header count of 4, 4, 1, 1 for event a, b, c, d

respectively.

Since the count of c & d is less than the minimum support

threshold, it is discarded in future mining process. The

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

65 © 2012 GSTF

conditional search of c is now finished. The search for frequent

patterns that have the suffix of other header frequent events

starting with suffix base |b and then |a are also mined in the

same way the mining for patterns with suffix c is done above.

Discovered frequent pattern set for c is: {c, cc, acc, bcc, abcc,

aac, bac, abac, ac, abc, bc}.

After mining the whole tree, discovered frequent pattern set

is: {c, cc, acc, bcc, abcc, aac, bac, abac, ac, abc, bc, b, ab, a,

aa, ba, aba}.

Though WAP-tree is an effective structure facilitating Web

access pattern mining, and WAP-mine outperforms GSP based

solution in a wide margin, it has still some drawbacks. Many

researches have been done to improve this algorithm. Our

strategy is to improve WAP-tree construction which leads to

dynamic mining facility.

III. EXPERIMENTAL RESULTS

Testing is a very essential part of research. To demonstrate

the effectiveness of our algorithm here we have shown some

experimental results from a number of test cases with

performance analysis. The two algorithms WAP-mine and

iWAP are implemented in C language. All experiments are

performed on Intel Core 2 Duo desktop processor of 2.53GHz

having 4GB DDR 2 RAM with a Windows XP operating

system.

Used Datasets: Experimental datasets are generated by using

our data generation program. Three parameters are used to

generate the data sets.

|D|: Number of sequences in the database.

|C|: Average length of the sequences.

|N|: number of events.

For example, C10.N50.D10 K means that |C| = 10, |N| = 50,

and |D| = 10K.It represents a group of data with average length

of the sequences as 10, the numbers of individual events in the

database are 50, and the total number of sequences in database

is 10 thousand. The datasets with different parameters test

different aspects of the algorithms. Basically, if the number of

these three parameters becomes larger, the execution time

becomes longer.[5]

A. Experiment 1

Fixed size database and different minimum support is used

in this experiment to compare the performance of WAP-mine

and iWAP algorithms. The datasets are described as C15. N50.

D5 K, and algorithms are tested with different minimum

support threshold (between 5%-50%) against the 5 thousand (5

K) database. It shows, our algorithm is much efficient for

small support threshold which is shown in Fig . 7.

Fig. 7. Scalability measurement with different support thresholds

B. Experiment 2

Fig. 8 Scalability measurement with different number of input sequences

Databases with different sizes from 2 K to 10 K with the

fixed minimum support of 30% were used in this experiment.

The five datasets are C10. N40. D2 K, C10. N40. D4 K, C10.

N40.D6 K, C10. N40. D8 K and C10. N40. D10 K.

Performance measurement of the WAP and Proposed

algorithms were compared and the results of this experiment

are presented in Fig. 8. This is an example result of

incremental mining technique.

C. Experiment 3

Initially, both algorithms will take almost same amount of

time with 50% threshold. But when user will change threshold

to 40% WAP-mine algorithm will rebuild the whole WAP-tree

for same set of database. On the other hand, iWAP algorithm

does not need to rebuild the tree as it has recorded full

database in iWAP-tree earlier. Now only time for mining will

be consumed by iWAP for further changing in threshold

whereas WAP-mine algorithm will consume time for both tree

construction and mining procedure, shown in Fig. 9.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

66 © 2012 GSTF

Fig. 9 Experimental result for interactive mining.

IV. CONCLUSION

Now a days web access sequential pattern mining is very

important topic for research. It has lots of application and also

attracts lots of researchers to research for a better solution. In

this research we try to find another better solution based on the

WAP-mine algorithm for web access sequential pattern

mining. We do the improvement in case of building the WAP-

tree which helps us to speed up the total CPU time. We have

proposed an efficient tree structure iWAP-tree and

corresponding mining algorithm for web access sequential

pattern mining which support the interactive and incremental

mining facility. The performance of the iWAP algorithm has

been evaluated in comparison with the WAP-mine algorithm.

Experimental results have shown that the iWAP algorithm

performs much more efficient than the WAP-mine algorithm,

especially when the support threshold becomes small. Here in

the proposed algorithm the memory issue is not considered. As

for future work, the mining process and solving the memory

problem of iWAP is considered.

REFERENCES

[1] Grcar., M.: USER PROFILING: WEB USAGE MINING. Department

of Knowledge Technologies Jozef Stefan Institute Jamova 39, 1000

Ljubljana, Slovenia, pp. 45-49.

[2] Han, J., Pei, J., Yien, Y., Mao,R.: Mining Frequent patterns without

candidate generation; a frequent pattern tree approach. Data mining and

knowledge discovery,pp. 54-87(2004)

[3] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of

the 11th International Conference on Data Engineering, Taipei,

Taiwan(1995)

[4] Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H. : Mining access patterns

efficiently from web logs. In: Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD00). Kyoto, Japan, pp. 396-399,

400-402 (2000)

[5] EZEIFE, C., LU, Y.: Mining Web Log Sequential Patterns with Position

Coded Pre-Order Linked WAP-Tree. In: International Journal of Data

Mining and Knowledge Discovery(DMKD) Kluwer Publishers, pp.

6,10, 12-15, 27-34 (2005).

[6] Zhou, B., Cheung Hui, S., Fong, A. : CS-Mine: An Efficient WAP-Tree

Mining for Web Access Patterns. In: School of Computer Engineering,

Nanyang Technological University, Singapore, pp. 523- 527, 530-

532.(2004)

[7] Maged, E., Elke, A.R., Carolina, R. : FS-Miner: An Efficinet and

Incremental System to Mine Contiguous Frequent Sequences. In:

Computer Science Technical Report Series,Worcester Polytechnic

Institute, pp. 128-130 (2003).

[8] Parmar, J., Garg, S.: Modified Web Access Pattern (mWAP) Approach

for sequential Pattern Mining. In: International Conference on Data

Mining, pp. 30-35 (2007)

[9] Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining

World Wide Web Browsing Patterns. In: Journal of Knowledge and

Information Systems, Vol. 1, No. 1, pp. 67-71 (1999)

[10] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in

large databases. In: 20th International Conference on Very Large

Databases. Santiago, Chile, pp. 487-499 (1994)

[11] Kosala, R., Blockeel, H.: Web Mining Research: A Survey. ACM

SIGKDD Explorations,Vol. 2., pp. 1-15 (2000)

[12] Ahmed, C. F., Tanbeer, S. K., Jeong B. S. , “An Efficient Method for

Incremental Mining of Share-Frequent Patterns”. In: 12th International

Asia-Pacific Web Conference (APWeb), Busan, South Korea, pp. 147-

153 (2010)

Tarannum Shaila Zaman received her B.S degree in

2011 and now studying M.S in Computer Science &

Engineering from the University of Dhaka, Bangladesh.

From September, 2011 to December, 2011 she worked

as a Junior Quality Assurance Engineer in Structured

Data Systems Limited. Since January, 2011 she has

been working as a Junior Software Engineer in Together

Initiative. Her research interest is in the area of data

mining.

E-mail: imagine_prottasha@yahoo.com

Nafisah Islam received her B.S degree in 2011 and

now studying M.S in Computer Science & Engineering

from the University of Dhaka, Bangladesh. Since

September, 2011 she has been working as a Junior

Quality Assurance Engineer in Structured Data Systems

Limited. Her research interest is in the area of data

mining.

E-mail:nafisah001@yahoo.com

Chowdhury Farhan Ahmed received his B.Sc. and

M.Sc. degrees in Computer Science from the University

of Dhaka, Bangladesh in 2000 and 2002 respectively,

and Ph.D. degree in Computer Engineering from Kyung

Hee University, South Korea in 2010. From 2003-2004

he worked as a faculty member at the Institute of

Information Technology, University of Dhaka,

Bangladesh. Since 2004, he has been working as a

faculty member in the Department of Computer Science

and Engineering, University of Dhaka, Bangladesh. His

research interests are in the areas of data mining and

knowledge discovery.

E-mail: farhan@cse.univdhaka.edu

Byeong-Soo Jeong received his B.S. degree in

Computer Engineering from Seoul National University,

Korea in 1983, his M.S. degree in Computer Science

from the Korea Advanced Institute of Science and

Technology, Korea in 1985, and his Ph.D. in Computer

Science from the Georgia Institute of Technology,

Atlanta, USA in 1995. In 1996, he joined the faculty at

Kyung Hee University, Korea where he is now a

professor at the College of Electronics & Information.

From 1985 to 1989, he was on the research staff at Data

Communications Corp., Korea. From 2003 to 2004, he

was a visiting scholar at the Georgia Institute of

Technology, Atlanta. His research interests include

database systems, data mining, and mobile computing.

E-mail: jeong@khu.ac.kr
.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

67 © 2012 GSTF

mailto:farhan@cse.univdhaka.edu
mailto:jeong@khu.ac.kr

