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A Clustering Criterion Based on Distortion Ratios
and Its Algorithms

Fujiki Morii

Abstract—A clustering criterion based on distortion ratios and
its algorithms are proposed without offering the knowledge of
the number of clusters. Computing distortion ratios on splitting
and distortion ratios on merging for clusters of a data set,
the criterion function is defined as the mean of the Euclidian
distances between points of those distortion ratios and a reference
point. Three algorithms are proposed, whose algorithms are
designed to optimize the criterion function over the number
of clusters and partitions of the data set. Through several
classification experiments, the effectiveness of the criterion and
those algorithms is demonstrated.

Index Terms—clustering, criterion, distortion ratio, algorithm,
number of clusters.

I. INTRODUCTION

CLUSTERING [1-7], whose aim is to classify an unla-
beled data set to appropriate clusters, is an important

and fundamental research issue for pattern recognition, image
processing and data mining. The ideal of clustering is to find
the proper number of clusters and obtain a good partition of
the data set without external information [8-16].

The main purpose of this paper is to propose a new cluster-
ing criterion based on distortion ratios and three algorithms to
realize the criterion under no external knowledge of the proper
number of clusters [17]. Executing split operations and merge
operations tentatively for clusters obtained by partitioning the
data set, a distortion ratio on splitting and a distortion ratio on
merging for each cluster are computed, whose ratios provide
measures of unimodality or nonunimodality of the cluster
[1][16].

The criterion function is defined as the mean of the Eu-
clidian distances between points of those distortion ratios and
a reference point, whose reference point expresses a standard
point of the distortion ratios which a cluster should neither be
split nor be merged. The function is optimized by minimizing
over the number of clusters and clusters, i.e., partitions of
the data set. By executing split and merge operations for
clusters, this criterion is designed for each cluster to maintain
unimodality.

To realize the criterion, three algorithms are proposed.
Concerning the first algorithm, starting with a set of initial
clusters, a splitting operation or a merging operation is iterated
to minimize the function over the clusters until finding a local
minimum. Selecting several random sets of initial clusters, this
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procedure is iterated, and we obtain a set of clusters minimiz-
ing the function over classification results by those procedures.
The second algorithm modifies the first one to decrease the
computation time. Minimizing the criterion function by using
k-means algorithm (KMA) [7] for the variation of the number
of clusters, the third algorithm selects the optimum number of
clusters and a classification result, .

Through several classification experiments, the effectiveness
of the clustering criterion and those algorithms is demon-
strated.

II. CLUSTERING CRITERION

Let us treat a data set X composed of n samples
�xi = (xi1, . . . , xiU ), i = 1, . . . , n, where samples are U -
dimensional real vectors and the proper number of clusters
in X is unknown. By classifying X without supervision, X
is partitioned into k disjoint subsets Xl, l = 1, . . . , k, whose
subsets are called clusters.

Our research purpose is to propose a clustering criterion and
its algorithms to obtain the proper number of clusters k and
an appropriate set of clusters for the data set.

Let us assume that a set of clusters P = {Xl, l = 1, . . . , k}
is provided. By executing a split operation and merge opera-
tions tentatively for each cluster Xl, a criterion function based
on distortion ratios is derived in the following.

The minimum distortion for Xl is defined by

Dl(1) = min
�cl

∑

�xi∈Xl

d(�xi,�cl), (1)

where d(�xi,�cl) is a nonnegative distortion measure between �xi

and �cl = (cl1, . . . , clU ). �cl satisfying (1) is called the cluster
center of Xl and expresses a representative of Xl. As d(·, ·),
we can use the squared Euclidian distance by

d(�xi,�cl) = ‖�xi − �cl‖2, (2)

=
U∑

u=1

(xiu − clu)2,

or the more general quadratic distortion by

d(�xi,�cl) = (�xi − �cl)B(�xi − �cl)t, (3)

where B is a U ×U positive definite symmetric matrix. Other
distortion measures can be also exploited in this criterion.

Each cluster Xl is tentatively partitioned into 2 subclusters
Xl1 and Xl2 to realize the minimum distortion given by

Dl(2) = min
{�clq}

min
{Xlq}

2∑

q=1

∑

�xi∈Xlq

d(�xi,�clq), (4)
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where {�clq, q = 1, 2} are called the cluster centers for Xl1

and Xl2.
Let us introduce a splitting measure for Xl given by

Sl = Dl(2)/Dl(1), (5)

which is called the distortion ratio on splitting. The small
value of Sl states that Xl should be split into 2 subclusters
because of low unimodality of Xl. The large value of Sl states
that Xl should not be split into 2 subclusters because of high
unimodality of Xl.

Next, merge operations for Xl are executed tentatively. For
neighboring Xv and Xw, the distortion ratio on merging

Mvw = (Dv(1) + Dw(1))/Dvw(1) (6)

is introduced, where Dv(1) and Dw(1) are used according to
(1). The distortion of the merged cluster Xv ∪Xw is given by

Dvw(1) = min
�cvw

∑

�xi∈Xv∪Xw

d(�xi,�cvw), (7)

where the optimized �cvw is called the cluster center of Xv ∪
Xw.

As the distortion ratio on merging for Xl, we define

Ml = max
w,(w �=l)

Mlw for all neighboring Xl, Xw (8)

= Mlŵ. (9)

The small value of Ml states that Xl should not be merged
because of low unimodality of Xl ∪ Xŵ. The large value of
Ml states that Xl and Xŵ should be merged because of high
unimodality of Xl ∪Xŵ.

Introducing a two dimensional orthogonal coordinate sys-
tem where the x-axis expresses the distortion ratio on splitting
and the y-axis expresses the distortion ratio on merging, k
points {(Sl, Ml), l = 1, · · · , k} corresponding to k clusters
are plotted on the plane. We can also show 0 ≤ Sl ≤ 1 and
0 ≤Ml ≤ 1. The criterion function based on distortion ratios
is defined as the arithmetic mean of the Euclidian distances
between those k points and a reference point (xr, yr). That is
to say, the criterion function is provided by

R(k, P ) ≡ R(k, {Xl, l = 1, · · · , k})

=
1
k

k∑

l=1

√
(Sl − xr)2 + (Ml − yr)2, (10)

and the optimized kopt and Popt ≡ {Xl,opt, l = 1, · · · , kopt}
are determined as k and {Xl} minimizing R(k, {Xl}).

In (10), the reference point (xr, yr) expresses a standard
point of the distortion ratios whose cluster should neither be
split nor be merged, where we usually use (xr, yr) = (1, 0).
When a cluster Xβ = {�x1, �x1, �x2, �x2, · · · , �xγ , �xγ} is split into
two subclusters Xβ1 = Xβ2 = {�x1, �x2, · · · , �xγ}, we have
Sβ = 1. In Mβŵ of (9), when Xŵ is infinitely far away from
Xβ , we obtain Mβ → 0, which defines Mβ = 0. Hence, when
a cluster has (Sl, Ml) = (1, 0), the cluster should neither be
split nor be merged definitely. Since the above Sβ = 1 is in
a singular situation, we can use a value in 0.6 ≤ xr ≤ 1
practically.

Another version different from the function R is provided
by

J(k, P ) =
1
k

k∑

l=1

√
(Sl − x̃r)2 + (Ml − ỹr)2, (11)

where (x̃r , ỹr) = (0, 1). The optimized kopt and Popt are
determined as k and P maximizing J(k, P ). When a cluster
has (Sl, Ml) = (0, 1), the cluster should both be split and be
merged definitely.

III. CLUSTERING ALGORITHMS

Let us propose three clustering algorithms to minimize the
criterion function R(k, {Xl}) of (10) over k and {Xl}.

The first algorithm, which we call Algorithm 1, is consid-
ered. When time is t, assume that we have a number of clusters
k(t) and a set of clusters P (t) = {X(t)

l , l = 1, . . . , k(t)}. Then
R(k(t), P (t)) is computed by (10).

The next step is to execute a split operation or a merge
operation of a cluster to make the function as small as possible.

When splitting X
(t)
l into two subclusters by (4), we have

k(t+1) ← k(t) + 1 and P (t+1), and compute

R
(t+1)
split ≡ min

l=1,···,k(t)
R(k(t+1), P (t+1)|X(t)

l is split). (12)

When merging X
(t)
v and X

(t)
w by (6), we have k(t+1) ← k(t)−

1 and P (t+1), and compute

R(t+1)
merge ≡ min

v,w
R(k(t+1), P (t+1)|X(t)

v andX(t)
w are merged).

(13)
If

R
(t+1)
split = min{R(k(t), P (t)), R(t+1)

split , R(t+1)
merge}, (14)

the same procedure is iterated after splitting. If

R(t+1)
merge = min{R(k(t), P (t)), R(t+1)

split , R(t+1)
merge}, (15)

the same procedure is iterated after merging. If

R(k(t), P (t)) = min{R(k(t), P (t)), R(t+1)
split , R(t+1)

merge}, (16)

the computation is terminated. Since we have the possibility of
obtaining a local minimum when the termination of computa-
tion, multiple selections of initial parameters k(0) and P (0) are
needed, where P (0) is usually provided by a certain effective
clustering algorithm such as KMA or vector quantization (VQ)
[6].

The algorithm to optimize R(k, P ) is summarized as fol-
lows.

(Clustering Algorithm 1 Based on Distortion Ratios)
(CA1) For a given M , repeat (CA2)-(CA6) for m = 1, · · · , M .
(CA2) Set the number of clusters k(0) at random.
(CA3) Obtain a set of initial clusters P (0) by a clustering
method such as KMA or VQ with the number of clusters k(0).
(CA4) Repeat (CA5) for t = 0, 1, · · ·.
(CA5) If R

(t+1)
split = min{R(k(t), P (t)), R(t+1)

split , R
(t+1)
merge}, we

have k(t+1) ← k(t) + 1 and P (t+1).
If R

(t+1)
merge = min{R(k(t), P (t)), R(t+1)

split , R
(t+1)
merge}, we have

k(t+1) ← k(t) − 1 and P (t+1).
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If R(k(t), P (t)) = min{R(k(t), P (t)), R(t+1)
split , R

(t+1)
merge}, go

to (CA6).
(CA6) Store {m, k(t), P (t), R(k(t), P (t))}.
(CA7) Determine an optimum solution by selecting the mini-
mum of {R(k(t), P (t))}.
(End of CA)

Let us consider the second algorithm, which is called
Algorithm 2. In Algorithm 1, the computation of minimization
in (12) and (13) needs a lot of time. To decrease the time, we
select X

(t)
γ satisfying

γ = arg max
l=1,···,k(t)

√
(Sl − xr)2 + (Ml − yr)2 (17)

for P (t) = {X (t)
l , l = 1, . . . , k(t)}, where X

(t)
γ is the most

possible cluster of splitting or merging. When splitting X
(t)
γ ,

we use

R
(t+1)
split ≡ R(k(t+1), P (t+1)|X(t)

γ is split) (18)

instead of (12). When merging X
(t)
γ , we use

R(t+1)
merge ≡ min

w
R(k(t+1), P (t+1)|X(t)

γ andX(t)
w are merged)

(19)
instead of (13). Algorithm 2 is one which (18) and (19) are
used in Algorithm 1.

Next, let us consider Algorithm 3, where the criterion
R(k, P ) of (10) is executed on the classified data by KMA
having each number of clusters k for kmin ≤ k ≤ kmax.
Algorithm 3 is provided as follows.

(Clustering Algorithm 3 Based on Distortion Ratios)
(CA3-1) For a region of the number of clusters kmin ≤ k ≤
kmax, repeat (CA3-2)-(CA3-3).
(CA3-2) Classify the data set by KMA having the number of
clusters k. We obtain clusters P (k) = {X (k)

1 , · · · , X(k)
k }.

(CA3-3) Compute R(k, P (k)) and store it.
(CA3-4) Determine the optimum kopt and clusters Popt(kopt)
taking min{R(k, P (k)), kmin ≤ k ≤ kmax}.
(End of CA3)

IV. CLASSIFICATION EXPERIMENTS

Let us consider a data set ”k5” having 5 classes shown by
Fig.1, where correct clusters are called classes. The informa-
tion of the data set k5 is provided by Table 1. For classification
experiments, we use the squared Euclidian distance as d(·, ·)
and use KMA to obtain a set of initial clusters P (0) and
Dl(2) of (4). For the computation of R by (10), we also adopt
(xr, yr) = (1, 0).

TABLE I
DATA INFORMATION ON THE DATA SET k5.

Class Number Centroid Variance Covariance

Class 1 60 (0.117,0.265) (-0.027,0.346) -0.028
Class 2 45 (1.49,0.247) (7.09,0.150) -0.038
Class 3 40 (4.07,0.166) (4.0,0.201) -0.035
Class 4 85 (4.68,1.43) (-4.04,1.18) 0.342
Class 5 100 (9.98,1.69) (2.91,1.52) 0.0022

In Algorithm 1, let us begin with an initial number of
clusters k(0) = 7. We have the classification result shown in

Fig. 1. The data set k5 composed of 5 classes.

Fig. 2 by applying KMA with k(0) = 7 to the data set k5. In
the set of initial clusters P (0) = {X1, · · · , X7} of Fig.2, it is
recognized that class4 is split into X4 and X5 and class5 is
split into X6 and X7.

Fig.3 shows {(Sl, Ml)} for the clusters in P (0). Concerning
to {X4, X5, X6, X7}, the distortion ratios on splitting have
moderate values and the distortion ratios on merging have
moderately large values. Hence, {X4, X5, X6, X7} should
not be split but be merged.

Concerning to {X1, X2, X3}, since the distortion ratios
on splitting have moderate values and the distortion ratios on
merging are small, {X1, X2, X3} should neither be split nor
be merged.

Fig. 2. A set of initial clusters P (0) for the data set k5 by using KMA with
k(0) = 7 .

To decrease the criterion function R, X7 is merged with
X6, and we have P (1) = {X1, X2, X3, X4, X5, X6∪X7}.
Furthermore, to decrease the criterion function R, X4 is
merged with X5. P (2) = {X1, X2, X3, X4∪X5, X6∪X7}
is obtained. The set of clusters P (2) is the optimized one
minimizing the function R, where the classification result
becomes Fig.4 and we rename Xl ← Xl(l = 1, 2, 3),
X4← (X4 ∪X5) and X5← (X6 ∪X7).
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Fig. 3. Distortion ratios on splitting and merging for 7 clusters X1, · · · , X7

in Fig.2.

Fig. 4. The data set k5 split into 5 clusters X1, · · · , X5.

Fig.5 shows {(Sl, Ml)} for clusters in P (2) of Fig.4.
Concerning to {X1, · · · , X5}, since the distortion ratios on
splitting have moderate values and the distortion ratios on
merging are small, {X1, · · · , X5} should neither be split nor
be merged.

In this case, the optimal classification result can be obtained
by the criterion function R with an initial value k(0) = 7. We
usually use multiple values of k(0) to avoid a local minimum
of the function.

Fig.6 provides the performance on the number of clusters
k vs. the criterion function R(k, P ) for the data set k5 and
the reference point (xr, yr) = (1, 0) when using Algorithm
3. We obtain kopt = 5 as the optimum number of clusters.
Generally speaking, classification results by Algorithms 1-3
do not necessarily make no difference. In this case we have
the same results.

Let us treat another data set ”k7” shown by Fig.7, whose set
is composed of 7 classes and has the data information given
by Table 2.

We obtain the performance on the number of clusters k
vs. the criterion function R(k, P ) for the data set k7 and the
reference points (xr, yr) = (1, 0), (0.8, 0), (0.6, 0) when using
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Fig. 5. Distortion ratios on splitting and merging for 5 clusters X1, · · · , X5.
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Fig. 6. Number of clusters k vs. criterion function R(k, P ) for the data set
k5 and the reference points (xr , yr) = (1, 0) when using Algorithm 3.

Fig. 7. The data set k7 composed of 7 classes.
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TABLE II
DATA INFORMATION ON THE DATA SET k7.

Class Number Centroid Variance Covariance

Class 1 150 (-5.94,0.994) (1.26,1.83) 0.492
Class 2 115 (-0.919,7.14) (0.828,1.14) -0.142
Class 3 200 (-0.070,0.025) (0.289,0.529) -0.0014
Class 4 60 (-1.35,-5.98) (1.93,0.949) 0.197
Class 5 79 (5.61,4.39) (1.28,1.03) -0.399
Class 6 69 (4.99,-3.87) (0.520,0.965) -0.032
Class 7 45 (9.94,-1.15) (0.372,1.36) 0.239

Algorithm 3, whose performance is provided by Fig.8. From
Fig.8, we can acquire the optimum number of clusters kopt =
7. We can also obtain the same results by using Algorithm 1
and Algorithm 2.

The clustering result by KMA with kopt = 7 is given by
Fig.9, where two samples are misclassified.
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Fig. 8. Number of clusters k vs. criterion function R(k, P ) for the data set
k7 and the reference points (xr , yr) = (1, 0), (0.8, 0), (0.6, 0) when using
Algorithm 3.

Fig. 9. The data set k7 split into 7 clusters X1, · · · , X7 by KMA with
k = 7.

V. CONCLUSION

A clustering criterion and its algorithms for a data set
without offering the knowledge of the number of clusters were
introduced. Its criterion function is composed of distortion
ratios on splitting and distortion ratios on merging for clusters,
and to minimize the function means attaining the situation
that each cluster should neither be split nor be merged. Those
algorithms realizing the clustering criterion are organized to
minimize the function by executing split operations and merge
operations. Using the criterion and the three algorithms for the
simple two data sets, we were able to obtain good clustering
results. Through a lot of clustering experiments for a variety
of data sets, the effectiveness and reliability of the criterion
and those algorithms will be investigated.
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