
Study of different setup costs in SingleGA to
solve a one-dimensional cutting stock problem

Julliany Sales Brandão1, Alessandra Martins Coelho2, Felipe do Carmo3, João Flávio Vasconcelos3,

1Centro Federal de Educação Tecnológica do Rio de Janeiro, 2Instituto Federal de Educação Ciência e
Tecnologia do Sudeste de Minas Gerais, 3Universidade do Estado do Rio de Janeiro

Abstract - This paper presents the application of new
costs for one recent approach, called SingleGA, in
solving One-Dimensional cutting stock problem. The
cutting problem basically consists in finding the best
way to obtain parts of distinct sizes (items) from the
cutting of larger parts (objects) with the purpose of
minimizing a specific cost or maximizing the profit.
The obtained results of SingleGA are compared to the
following methods: SHP, Kombi234, ANLCP300 and
Symbio, found in literature, verifying its capacity to
find feasible and competitive solutions. The
computational results show that variations of
SingleGA posses good results, improving as setup cost
increases.

Keywords: One-dimensional cutting problem; Genetic
algorithm; Setup.

INTRODUCTION

The cutting stock problem is a generic term for a
class of combinatorial problems which consists in
finding the best items arrangement (cutting pattern)
of different sizes (items) from cutting larger pieces
(objects), aiming a specific purpose [1]. There is, in
this case, the importance of geometry, since the
items and objects shapes and dimensions determine
the possible cutting patterns. This is an important
issue in the Operations Research area, being widely
studied by the scientific community.

The studies of cutting problems have been
stimulated by the companies need to improve their
processes due to competition among them, as well
as waste and costs reduction, and efficiency in
delivery. This study it became critical and very
relevant in order to production planning several
industries segments such as glass, pulp & paper,
textile, chemical, among others.

Kantorovick [2] was a pioneer in the field of
cutting stock problems. However, the area
breakthrough was the work Gilmore e Gomory ([3],
[4]) studying the cutting stock problem through the
column generation process.

Haessler (1975) was the first to address the
non-linear one-dimensional cutting stock problem

this way. The objectives are considered inversely
related or partially conflicting, because, as the setup
is reduced, the number of processed objects is
increased.

It is necessary the cutting patterns and
frequency standards to solve a cutting stock
problem, i.e. the number of times that these
standards will be implemented. Although the
overall goal is to minimize losses, several modeling
is the problem, namely, profit maximization, the
reduction of objects used, the production time and /
or a combination thereof.

The cost of preparing the machine is a relevant
factor in some cutting processes. Thus, it is
interesting to evaluate the effect of minimizing the
number of processed objects (input minimization)
and the minimizing of the number of cutting
patterns (setup), goals which are partially
conflicting, for a more general assessment of the
cost. The problem discussed here belongs to the
class NP-Complete. In this case the use of
heuristics or meta-heuristics is justified, generating,
for these, good solutions in a short period of time.

This paper will analyze the behavior of
SingleGA with varying setup cost for comparison
and method efficacy verification.

The paper is organized as it follows: Section 2
formally deals with the cutting problem in order to
reduce the number of processed objects and the
setup. The basic concepts of genetic algorithms are
presented in Section 3. Section 4 presents the
computational implementation and sections 5 and
show, respectively, the computational results and
conclusions.

 ONE-DIMENSIONAL CUTTING STOCK PROBLEM

A formal mathematical model that represents

these goals is described below (1):

DOI: 10.5176_2010-2283_2.1.118

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

1 © 2012 GSTF

 Minimize  
n

=j

n

=j
jj)δ(xα+xc

1 1
1

 (1)

 Subject to : ∑
j=1

n

aij x j≥ d i i=1,. .. ,m

 x j∈N

 j=1, .. . ,n

where:

)(jx = 1, se 0jx

 0, se 0jx

n = number of possible cutting patterns;

m = number of different items;

c1 = cost of each coil;

c2 = cost of replacement of standard cutting;

x j = number of coils processed with the standard
cut j;

a ij = number of items of type i in pattern j;

di = number of items i demanded;

GENETIC ALGORITHMS

Genetic algorithms are searched and the
optimization of solutions algorithms, are based on
genetics and evolutionary mechanisms of living
beings, such as natural selection and the survival of
the fittest, introduced by Charles Darwin in his
classic "The Origin of Species" (1859) whose first
published known work dates from the late 50's and
early 60's.

The Genetic Algorithms, rigorously
introduced by John Holland [6], work with a
population of individuals, in which each one
represents a possible solution to a given problem.
Each individual has fitness, that is, a value that
quantifies the individual's adaptability to the

environment (treated problem). Individuals with
higher fitness have higher chances of being selected
for reproduction through the intersection, and
thereby spread over their characteristics for future
generations, allowing the most promising areas of
research to be explored, taking the genetic
algorithm, in most cases, to the convergence to the
problem optimal solution.

 COMPUTING CONSTRUCTION

 SINGLEGA

 The SingleGA developed by [7], was
based on Symbio [8]. However, the use SingleGA
is just a genetic algorithm to solve the same goal,
while the Symbio makes use of concepts of
symbiosis [10], specifically, a mutualistic
relationship between two genetic algorithms [11]
that evolve beneficial way.
 The SingleGA is a genetic algorithm
composed of two kinds of population: the solutions
and the patterns, for instance, have the ability to
build cutting patterns, regardless of the solution.
The population patterns, generated randomly, are
static, in this case, not suffering from any kind of
evolution.

The solution population gene was represented
by two elements. The first refers to the amount of
time (frequency) that the standard indicates by the
second element processed. The second element
only served as a reference to the pattern population.

The pattern population gene was represented
by a real number that indicates the item length
range from requirements list the clients.

The maximum amount of genes from the
solution individual (maximum size of the genome)
used was equal to the number of setups (number of
different items). However, if the largest item to be
cut presents a length less than or equal to 50% of
the coil length, the following procedure would be
adopted, experimentally determined and presented
in Figure 1, which is an adaptation of [8].

The pattern genome size adopted was equal to
the greatest integer, less than or equal to the result
of the division between the size of the default coil
and the smaller item of the pattern.

The items were added to the pattern from left
to right, if and only if, the pattern had sufficient
free space to accommodate it (approach based on
the work of [8].

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

2 © 2012 GSTF

The solutions population (individuals formed
by genes from the solutions population) was formed
by 600 individuals and the patterns population
(individuals formed by genes from the patterns
population) by 400, in both cases, all individuals
were generated randomly, with no direction.
Populations sizes were defined experimentally,
after simulations with different values.

Figure 1 - Number of Genes of the
Solution Individual

The structure selection adopted was the elitism
with steady state. It was chosen because of the fact
that this feature increases the performance of
genetic algorithm, since it ensures that the best
solution found so far is maintained in future
generations. The steady state used is available in
the package GALib [11] form the class of genetic
algorithms GASteadyStateGA. According to the
GALib's tutorial (Wall, 1996), the method
generates, in each generation, a temporary
population of individuals by cloning, and they are
inserted in the population of the current generation,
removing the worst individuals. The replacement
rate, found experimentally, was 25%, which means
that 75% of the solution population best individuals
will be selected and remain in the population.

The fitness calculation (Fs) of the individual
solution in order to meet the objective of
minimizing both the number of processed objects
and setup, based and described on [8], was
performed as follows:

ρ+)τ(x+)δ(xα+xc=F jjj1s 

 (2)

where:

: is the relative loss and can be calculated by

, being the waste of

standard j.

: are penalties if the solution is not feasible. Is
proportional to the sum of the infeasibilities, i.e.,
the value remaining to meet the demand of the
item, multiplied by 1000 (value experimentally
chosen).

Values and , respectively, are the costs of
processed objects and setup, treated explicitly in the
objective function, not requiring any other
modifications to achieve different objectives, i.e.,
the cost is already involved directly in the
minimization of the objective function.

To calculate the objective function an
interpretation of the patterns was performed, i.e., it
was determined which were the active genes of the
pattern. The active genes are those that fit in the
master-piece without blowing its size.

The recombination operator (crossover) used
was the uniform, which consists on randomly
choose a value between 0 and 1. If the number
drawn was less than or equal to 0.7 the
recombination was carried out with the individual
who owned the greatest fitness, otherwise, it was
carried out with the worst individual. The
recombination rate, found experimentally, was
30%.

The mutation operator adopted consisted on
randomly choosing a position in the genome of the
gene to be mutated and then randomly determining
which of its elements (frequency or default_index)
would suffer mutation. If the chosen element of the
gene were the frequency, a value between the
minimum and maximum limits were drawn,
otherwise, one individual was randomly chosen in
the pattern population and a pointer would be
created. For the standard index, component of the
solution population's gene, the limits were between
zero and the maximum number of setups and for
the frequency, the limits were between zero and the
value of the highest demand [8].The mutation rate
was given by the ratio between 1 and different
number of items (1/m).

if (number of items> 30) then

SolutionGenes = 16

else

if (Number of items> 15) then

SolutionGenes = 12

else

SolutionGenes = 8

end if;

end if

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

3 © 2012 GSTF

Regarding the stopping criteria, three were
used:

 maximum number of generations:
1000;

 maximum execution time: 500s;
 convergence: 500 generations, ie, if

the algorithm does not improve the
solution by 500 generations, it stops.

At this point is presented the pseudo code of
the proposed method called SingleGA:

 Procedure SingleGA
1 Generate the individuals of the patterns
population randomly;
2 Generate the individuals of the solutions
population randomly;
3 Calculate the objective function of the solutions
individuals;
4 Select the solutions individuals parents;
5 Use recombination and mutation operators to
generate new solutions;
6 Evolve the population;
7 if some stopping criterion is satisfied
STOP the execution of the algorithm;
 8 else return to step 3.
End-Procedure SingleGA

 The similarity with the Symbio consists
on the objective function, in the way patterns are
added and some limits cited. However, besides
using only one genetic algorithm, the other
procedures, genetic operators, rates and values
adopted are different, as presented in pseudo-code
and stopping criteria described above.

COMPUTATIONAL RESULTS

The problems used for the computational tests
with the SingleGA were generated randomly by
CUTGEN1 [12]. We generated 18 classes
characterized by different values of input
parameters, each class containing 100 problems,
totaling 1800 tests for evaluating the quality of the
proposed method.

The parameters and the seed used to generate
the 1800 problems in CUTGEN1 were the same
used by Foerster and Wascher [13], Salles Neto and
Moretti [1] and Golfeto et al. [8].

The results of SingleGA will be presented

with two new values for the cost of setup:

which was termed SingleGA01, called

SingleGA05 and cost presented in [7]
which was called SingleGA10. In all cases, the cost

of the number of objects processed was of a unit

 The value of is intended to penalize
the number of different patterns.

For the purpose of assessing the quality of
SingleGA, in solving the cutting stock problem
mentioned in section 2, was compared with four
different methods in the literature: SHP [5],
Kombi234 [13], ANLCP300 [1], Symbio [8].
 The average total cost was calculated to
assess the quality and performance of the proposed
method, at the same time, the two goals for
comparison of the value of the objective function
with the other methods.

The total cost is the cost of the objective
function and its calculation was performed by the
following formula represented below:

.

 (3)

where:

 is the average number of objects

processed in the 100 problems in each class;

 is the average of the number of

setup among the 100 problems of each class.

The expression used for calculating the

variation of the total cost is represented by (4)
below:

 (4)

For the average total cost e , the
SingleGA01 was better in six classes compared to
the SHP and other six had a difference less than
3.5%, with respect to ANLCP300 was better in four
classes and six presented in a less than 3, 5%.
Although it not shown better results when
compared with the Kombi234 and Symbio01, the
percentage difference the first in five classes was
3%, while the latter this difference has fallen to
1.5% in six classes.

For costs e , the total cost of

SingleGA05 showed better results in nine classes of
SHP and two class obtained almost the same result
(0.006841%). In the Kombi234 it was higher in
seven classes and ANLCP300 in three classes and
other five classes the percent difference was 2.3%.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

4 © 2012 GSTF

Finally, when confronted with Symbio05,
was better in one class in two other class (13 and
14) had nearly identical results and more three
showed a difference of only 0.7%.

The average total cost of SingleGA10 (e

) found better results when compared with

setup cost and . The results obtained

by SingleGA10 were better than SHP in 12 classes
and in more one, class 16, showed a difference of
only 0.4%. The SingleGA10 exceeded the
Kombi234 in ten classes, the ANLCP300 in three
classes, and in the latter, and in further fix classes
showed a difference less than 2%. In relation to
Symbio10, it was superior in four classes and
shown the difference was less than 3% in other
seven classes.

The SingleGA10 was better than
Kombi234 and SHP in most classes, a fact that in
relation to ANLCP300 and Symbio10 has not
occurred.

Considering changes in the setup cost
noted that as the cost of setup increases, also the
method performance increases. Furthermore, it was
observed that for smaller setup cost, the method
was similar to the behavior of the SHP and
ANLCP300. However, with this increased cost, the
method has worsened their performance in relation
to ANLCP300 and has been improving steadily in
comparison with other methods.

Due to small differences in the percentage
changes found, we analyzed graphically (Graphics
1 to 3) the behavior of SingleGA with other
methods, and found that the performance of the
methods are almost equal. The major differences
provided by SingleGA for all the others are in class
12 and 18. The same is true for the comparison
between the variations of SingleGA (Graphic 4).

When comparing the results obtained with
the SingleGA with other methods, it was noted that
the SingleGA presented its best results to the extent
that this value (setup cost) was increasing.

The computational time was not considered in
this work, since each method has been implemented
in different languages and machines, making it
impossible to compare them.

Graphic 1: SingleGA01 x other methods

CONCLUSIONS

 This paper showed that the study with
additional setup cost in the SingleGA method
presented a good behavior when compared with
other methods, however, the higher the setup cost,
the higher the method performance Increasing the
setup, method performance worsened compared to
ANLCP300 and has been improving steadily in
comparison with other methods.

Graphical analysis carried out showed good
performance of the method tested with all costs,
and make clear that the percentage changes are
small for most classes when compared with other
methods, thus validating the SingleGA.

The method met the intended goals, however,
noted that it is possible to refine it and found to
provide superior results with a more detailed study
of parameters such as population size, genetic
operators and their respective rates.

 Based on the computational results presented,
it can be said that the new method is promising and
competitive in the environment of one-dimensional
cutting stock problems.

REFERENCES

[1] SALLES NETO, L.L. Modelo não linear para
minimizar o número de objetos processados e o
setup num problema de corte unidimensional. 2005.
Tese (Doutorado) - Instituto de Matemática,
Estatística e Computação Científica, Universidade
Estadual de Campinas, Campinas, 2005.
[2] KANTOROVICH, L.V. Mathematical methods
of organizing and planning production.
Management Science, v. 6, p 366-422, 1960.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

5 © 2012 GSTF

[3] GILMORE, P.C.; GOMORY, R.E. A linear
programming approach to the cuting stock problem
I. Operations Research, v. 9, p. 849-859, 1961.
[4] ___________________________. A linear
programming approach to the cutting stock problem
II. Operations Research, v. 11, p. 863-888, 1963.
[5] HAESSLER, R. Controlling cutting pattern
changes in one-dimensional trim problems.
Operations Research, v. 23, p. 483-493,1975.
[6] HOLLAND, J.H. Adaptation in natural and
artificial systems. Michigan: University of
Michigan Press, 1975.
[7] BRANDÃO, J. S., COELHO, A. M.,
VASCONCELOS, J. F., SALLES NETO L. L.,
PINTO, A. V., Application of Genetic Algorithm to
Minimize the Number of Objects Processed and
Setup in a One-Dimensional Cutting Stock
Problem. International Journal of Applied
Evolutionary Computation (IJAEC), Vol 2, Issue 1,
2011. 15 pages: DOI: 10.4018/jaec.2011010103,
ISSN: 1942-3594, EISSN: 1942-3608.

 [8] GOLFETO, R. R.; MORETTI, A. C.; SALLES
NETO, L. L. Algoritmo genético simbiótico
aplicado ao problema de corte unidimensional. In:
SIMPÓSIO BRASILEIRO DE PESQUISA
OPERACIONAL, 39., 2007. Anais do Simpósio
Brasileiro de Pesquisa Operacional 2007a .

[9]ALLABY, M. Dictionary of ecology. New York:
Oxford University Press, 1998.
[10] PIANKA, E. R. Evolutionary ecology. New
York: HarperCollins,1994.
[11] WALL, M. A C++ library of genetic algorithm
components. Massachusetts Institute of
Technology. Mechanical Engineering Department,
1996.
[12] GAU, T.; WASCHER, G. CUTGEN1: A
problem generator for the standard one-dimensional
cutting stock problem. European Journal of
Operational Research, v. 84, p. 572-579, 1995.
[13] FOERSTER, H.; WASCHER, G. Pattern
reduction in one-dimensional cutting-stock
problem. International Journal of Prod. Res., v. 38,
p.1657-1676, 2000.

Graphic 2: SingleGA05 x other methods

Graphic 3: SingleGA10 x other methods

Graphic 4: Variations SingleGA

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

6 © 2012 GSTF

http://www.igi-global.com/journal/international-journal-applied-evolutionary-computation/1127
http://www.igi-global.com/journal/international-journal-applied-evolutionary-computation/1127

