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Abstract - This paper presents the application of new 
costs for one recent approach, called SingleGA, in 
solving One-Dimensional cutting stock problem. The 
cutting problem basically consists in finding the best 
way to obtain parts of distinct sizes (items) from the 
cutting of larger parts (objects) with the purpose of 
minimizing a specific cost or maximizing the profit. 
The obtained results of SingleGA are compared to the 
following methods: SHP, Kombi234, ANLCP300 and 
Symbio, found in literature, verifying its capacity to 
find feasible and competitive solutions. The 
computational results show that variations of 
SingleGA posses good results, improving as setup cost 
increases.  

Keywords: One-dimensional cutting problem; Genetic 
algorithm; Setup.  
 

INTRODUCTION 
 
The cutting stock problem is a generic term for a 
class of combinatorial problems which consists in 
finding the best items arrangement (cutting pattern) 
of different sizes (items) from cutting larger pieces 
(objects), aiming a specific purpose [1]. There is, in 
this case, the importance of geometry, since the 
items and objects shapes and dimensions determine 
the possible cutting patterns. This is an important 
issue in the Operations Research area, being widely 
studied by the scientific community. 

The studies of cutting problems have been 
stimulated by the companies need to improve their 
processes due to competition among them, as well 
as waste and costs reduction, and efficiency in 
delivery. This study it became critical and very 
relevant in order to production planning several 
industries segments such as glass, pulp & paper, 
textile, chemical, among others. 

Kantorovick [2] was a pioneer in the field of 
cutting stock problems. However, the area 
breakthrough was the work Gilmore e Gomory ([3], 
[4]) studying the cutting stock problem through the 
column generation process.  

Haessler (1975) was the first to address the 
non-linear one-dimensional cutting stock problem 

this way. The objectives are considered inversely 
related or partially conflicting, because, as the setup 
is reduced, the number of processed objects is 
increased. 

It is necessary the cutting patterns and 
frequency standards to solve a cutting stock 
problem, i.e. the number of times that these 
standards will be implemented. Although the 
overall goal is to minimize losses, several modeling 
is the problem, namely, profit maximization, the 
reduction of objects used, the production time and / 
or a combination thereof. 

The cost of preparing the machine is a relevant 
factor in some cutting processes. Thus, it is 
interesting to evaluate the effect of minimizing the 
number of processed objects (input minimization) 
and the minimizing of the number of cutting 
patterns (setup), goals which are partially 
conflicting, for a more general assessment of the 
cost.  The problem discussed here belongs to the 
class NP-Complete. In this case the use of 
heuristics or meta-heuristics is justified, generating, 
for these, good solutions in a short period of time. 

This paper will analyze the behavior of 
SingleGA with varying setup cost for comparison 
and method efficacy verification. 

The paper is organized as it follows: Section 2 
formally deals with the cutting problem in order to 
reduce the number of processed objects and the 
setup. The basic concepts of genetic algorithms are 
presented in Section 3. Section 4 presents the 
computational implementation and sections 5 and 
show, respectively, the computational results and 
conclusions.  

 ONE-DIMENSIONAL CUTTING STOCK PROBLEM 

 
A formal mathematical model that represents 

these goals is described below (1): 
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n = number of possible cutting patterns; 

m  = number of different items; 

c1  = cost of each coil; 

c2  = cost of replacement of standard cutting; 

x j  = number of coils processed with the standard 
cut j; 

a ij  = number of items of type i in pattern j; 

di  = number of items i demanded; 

GENETIC ALGORITHMS 

Genetic algorithms are searched and the 
optimization of solutions algorithms, are based on 
genetics and evolutionary mechanisms of living 
beings, such as natural selection and the survival of 
the fittest, introduced by Charles Darwin in his 
classic "The Origin of Species" (1859) whose first 
published known work dates from the late 50's and 
early 60's. 

The Genetic Algorithms, rigorously 
introduced by John Holland [6], work with a 
population of individuals, in which each one 
represents a possible solution to a given problem. 
Each individual has fitness, that is, a value that 
quantifies the individual's adaptability to the 

environment (treated problem). Individuals with 
higher fitness have higher chances of being selected 
for reproduction through the intersection, and 
thereby spread over their characteristics for future 
generations, allowing the most promising areas of 
research to be explored, taking the genetic 
algorithm, in most cases, to the convergence to the 
problem optimal solution. 

 
 COMPUTING CONSTRUCTION 

 SINGLEGA 
 
 The SingleGA developed by [7], was 
based on Symbio [8]. However, the use SingleGA 
is just a genetic algorithm to solve the same goal, 
while the Symbio makes use of concepts of 
symbiosis [10], specifically, a mutualistic 
relationship between two genetic algorithms [11] 
that evolve beneficial way. 
 The SingleGA is a genetic algorithm 
composed of two kinds of population: the solutions 
and the patterns, for instance, have the ability to 
build cutting patterns, regardless of the solution. 
The population patterns, generated randomly, are 
static, in this case, not suffering from any kind of 
evolution.  

The solution population gene was represented 
by two elements. The first refers to the amount of 
time (frequency) that the standard indicates by the 
second element processed. The second element 
only served as a reference to the pattern population.  

The pattern population gene was represented 
by a real number that indicates the item length 
range from requirements list the clients. 

The maximum amount of genes from the 
solution individual (maximum size of the genome) 
used was equal to the number of setups (number of 
different items). However, if the largest item to be 
cut presents a length less than or equal to 50% of 
the coil length, the following procedure would be 
adopted, experimentally determined and presented 
in Figure 1, which is an adaptation of [8]. 

The pattern genome size adopted was equal to 
the greatest integer, less than or equal to the result 
of the division between the size of the default coil 
and the smaller item of the pattern. 

The items were added to the pattern from left 
to right, if and only if, the pattern had sufficient 
free space to accommodate it (approach based on 
the work of [8]. 
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The solutions population (individuals formed 
by genes from the solutions population) was formed 
by 600 individuals and the patterns population 
(individuals formed by genes from the patterns 
population) by 400, in both cases, all individuals 
were generated randomly, with no direction. 
Populations sizes were defined experimentally, 
after simulations with different values.  

Figure 1 - Number of Genes of the 
Solution Individual 

The structure selection adopted was the elitism 
with steady state. It was chosen because of the fact 
that this feature increases the performance of 
genetic algorithm, since it ensures that the best 
solution found so far is maintained in future 
generations. The steady state used is available in 
the package GALib [11] form the class of genetic 
algorithms GASteadyStateGA. According to the 
GALib's tutorial (Wall, 1996), the method 
generates, in each generation, a temporary 
population of individuals by cloning, and they are 
inserted in the population of the current generation, 
removing the worst individuals. The replacement 
rate, found experimentally, was 25%, which means 
that 75% of the solution population best individuals 
will be selected and remain in the population.  

The fitness calculation (Fs) of the individual 
solution in order to meet the objective of 
minimizing both the number of processed objects 
and setup, based and described on [8], was 
performed as follows: 
 

ρ+)τ(x+)δ(xα+xc=F jjj1s                                                                        

                                                                       (2)                                      

where: 

: is the relative loss and can be calculated by  

, being   the waste of 

standard j. 

: are penalties if the solution is not feasible. Is 
proportional to the sum of the infeasibilities, i.e., 
the value remaining to meet the demand of the 
item, multiplied by 1000 (value experimentally 
chosen). 

Values and , respectively, are the costs of 
processed objects and setup, treated explicitly in the 
objective function, not requiring any other 
modifications to achieve different objectives, i.e., 
the cost is already involved directly in the 
minimization of the objective function. 

To calculate the objective function an 
interpretation of the patterns was performed, i.e., it 
was determined which were the active genes of the 
pattern. The active genes are those that fit in the 
master-piece without blowing its size. 

The recombination operator (crossover) used 
was the uniform, which consists on randomly 
choose a value between 0 and 1. If the number 
drawn was less than or equal to 0.7 the 
recombination was carried out with the individual 
who owned the greatest fitness, otherwise, it was 
carried out with the worst individual. The 
recombination rate, found experimentally, was 
30%. 

The mutation operator adopted consisted on 
randomly choosing a position in the genome of the 
gene to be mutated and then randomly determining 
which of its elements (frequency or default_index) 
would suffer mutation. If the chosen element of the 
gene were the frequency, a value between the 
minimum and maximum limits were drawn, 
otherwise, one individual was randomly chosen in 
the pattern population and a pointer would be 
created. For the standard index, component of the 
solution population's gene, the limits were between 
zero and the maximum number of setups and for 
the frequency, the limits were between zero and the 
value of the highest demand [8].The mutation rate 
was given by the ratio between 1 and different 
number of items (1/m). 

if (number of items> 30) then 

SolutionGenes = 16 

else 

if (Number of items> 15) then 

SolutionGenes = 12 

else 

SolutionGenes = 8 

end if; 

end if 
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Regarding the stopping criteria, three were 
used: 

 maximum number of generations: 
1000; 

 maximum execution time: 500s; 
 convergence: 500 generations, ie, if 

the algorithm does not improve the 
solution by 500 generations, it stops. 
 

At this point is presented the pseudo code of 
the proposed method called SingleGA: 

 Procedure SingleGA 
1 Generate the individuals of the patterns 
population randomly; 
2 Generate the individuals of the solutions 
population randomly; 
3 Calculate the objective function of the solutions 
individuals; 
4 Select the solutions individuals parents; 
5 Use recombination and mutation operators to 
generate new solutions; 
6 Evolve the population; 
7  if some stopping criterion is satisfied 
STOP the execution of the  algorithm; 
 8  else return to step 3. 
End-Procedure SingleGA 
 

 The similarity with the Symbio consists 
on the objective function, in the way patterns are 
added and some limits cited. However, besides 
using only one genetic algorithm, the other 
procedures, genetic operators, rates and values 
adopted are different, as presented in pseudo-code 
and stopping criteria described above. 

 
COMPUTATIONAL RESULTS  

The problems used for the computational tests 
with the SingleGA were generated randomly by 
CUTGEN1 [12]. We generated 18 classes 
characterized by different values of input 
parameters, each class containing 100 problems, 
totaling 1800 tests for evaluating the quality of the 
proposed method. 

The parameters and the seed used to generate 
the 1800 problems in CUTGEN1 were the same 
used by Foerster and Wascher [13], Salles Neto and 
Moretti [1] and Golfeto et al. [8]. 

The results of SingleGA will be presented 

with two new values for the cost of setup:  

which was termed SingleGA01,  called 

SingleGA05 and cost  presented in [7] 
which was called SingleGA10. In all cases, the cost 

of the number of objects processed was of a unit 

 The value of   is intended to penalize 
the number of different patterns. 

For the purpose of assessing the quality of 
SingleGA, in solving the cutting stock problem 
mentioned in section 2, was compared with four 
different methods in the literature: SHP [5], 
Kombi234 [13], ANLCP300 [1], Symbio [8]. 
 The average total cost was calculated to 
assess the quality and performance of the proposed 
method, at the same time, the two goals for 
comparison of the value of the objective function 
with the other methods. 

The total cost is the cost of the objective 
function and its calculation was performed by the 
following formula represented below: 

 
.  

                                             (3) 

where: 

  is the average number of objects 

processed in the 100 problems in each class; 

 is the average of the number of 

setup among the 100 problems of each class. 

 
The expression used for calculating the 

variation of the total cost is represented by (4) 
below: 
   

                                    (4) 

For the average total cost e  , the 
SingleGA01 was better in six classes compared to 
the  SHP and other six had a difference less than 
3.5%, with respect to ANLCP300 was better in four 
classes and six presented in a less than 3, 5%. 
Although it not shown better results when 
compared with the Kombi234 and Symbio01, the 
percentage difference  the first in five classes was 
3%, while the latter this difference has fallen to 
1.5% in six classes. 

For costs e ,  the total cost of 

SingleGA05 showed better results in nine classes of 
SHP  and two class obtained almost the same result 
(0.006841%). In the Kombi234 it was higher in 
seven classes and ANLCP300 in three classes and 
other five classes the percent difference was 2.3%.  
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Finally, when confronted with Symbio05, 
was better in one class in two other class (13 and 
14) had nearly identical results and more three 
showed a difference of only 0.7%. 

The average total cost of SingleGA10 ( e 

) found better results when compared with 

setup cost   and . The results obtained 

by SingleGA10 were better than SHP in 12 classes 
and in more one, class 16, showed a difference of 
only 0.4%. The SingleGA10 exceeded the 
Kombi234 in ten classes,  the ANLCP300 in three 
classes, and in the latter, and in further fix classes 
showed a difference less than 2%. In relation to 
Symbio10, it was superior in four classes  and  
shown the difference was less than 3% in other 
seven classes. 

The SingleGA10 was better than 
Kombi234 and SHP in most classes, a fact that in 
relation to ANLCP300 and Symbio10 has not 
occurred. 

Considering changes in the setup cost 
noted that as the cost of setup increases, also the 
method performance increases. Furthermore, it was 
observed that for smaller setup cost, the method 
was similar to the behavior of the SHP and 
ANLCP300. However, with this increased cost, the 
method has worsened their performance in relation 
to ANLCP300 and has been improving steadily in 
comparison with other methods. 

Due to small differences in the percentage 
changes found, we analyzed graphically (Graphics 
1 to 3) the behavior of SingleGA with other 
methods, and found that the performance of the 
methods are almost equal. The major differences 
provided by SingleGA for all the others are in class 
12 and 18. The same is true for the comparison 
between the variations of SingleGA (Graphic 4). 

When comparing the results obtained with 
the SingleGA with other methods, it was noted that 
the SingleGA presented its best results to the extent 
that this value (setup cost) was increasing. 

The computational time was not considered in 
this work, since each method has been implemented 
in different languages and machines, making it 
impossible to compare them. 

 

Graphic 1: SingleGA01 x other methods 

 
CONCLUSIONS 

 
  This paper showed that the study with 
additional setup cost in the SingleGA method 
presented a good behavior when compared with 
other methods, however, the higher the setup cost, 
the higher the method performance Increasing the 
setup, method performance worsened compared to 
ANLCP300 and has been improving steadily in 
comparison with other methods. 

Graphical analysis carried out showed good 
performance of the method tested with all costs, 
and make clear that the percentage changes are 
small for most classes when compared with other 
methods, thus validating the SingleGA. 

The method met the intended goals, however, 
noted that it is possible to refine it and found to 
provide superior results with a more detailed study 
of parameters such as population size, genetic 
operators and their respective rates. 

 Based on the computational results presented, 
it can be said that the new method is promising and 
competitive in the environment of one-dimensional 
cutting stock problems. 

 
 

REFERENCES 

[1] SALLES NETO, L.L. Modelo não linear para 
minimizar o número de objetos processados e o 
setup num problema de corte unidimensional. 2005. 
Tese (Doutorado) - Instituto de Matemática, 
Estatística e Computação Científica, Universidade 
Estadual de Campinas, Campinas, 2005. 
[2]  KANTOROVICH, L.V. Mathematical methods 
of organizing and planning production. 
Management Science, v. 6, p 366-422, 1960. 

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

5 © 2012 GSTF



[3] GILMORE, P.C.; GOMORY, R.E. A linear 
programming approach to the cuting stock problem 
I. Operations Research, v. 9, p. 849-859, 1961. 
[4] ___________________________. A linear 
programming approach to the cutting stock problem 
II. Operations Research, v. 11, p. 863-888, 1963. 
[5] HAESSLER, R. Controlling cutting pattern 
changes in one-dimensional trim problems. 
Operations Research, v. 23, p. 483-493,1975. 
[6] HOLLAND, J.H. Adaptation in natural and 
artificial systems. Michigan: University of 
Michigan Press, 1975. 
[7] BRANDÃO, J. S., COELHO, A. M., 
VASCONCELOS, J. F., SALLES NETO L. L., 
PINTO, A. V., Application of Genetic Algorithm to 
Minimize the Number of Objects Processed and 
Setup in a One-Dimensional Cutting Stock 
Problem. International Journal of Applied 
Evolutionary Computation (IJAEC), Vol 2, Issue 1, 
2011. 15 pages: DOI: 10.4018/jaec.2011010103, 
ISSN: 1942-3594, EISSN: 1942-3608. 

 [8] GOLFETO, R. R.; MORETTI, A. C.; SALLES 
NETO, L. L. Algoritmo genético simbiótico 
aplicado ao problema de corte unidimensional. In: 
SIMPÓSIO BRASILEIRO DE PESQUISA 
OPERACIONAL, 39., 2007. Anais do Simpósio 
Brasileiro de Pesquisa Operacional 2007a . 

[9]ALLABY, M. Dictionary of ecology. New York: 
Oxford University Press, 1998. 
[10] PIANKA, E. R. Evolutionary ecology. New 
York: HarperCollins,1994. 
[11] WALL, M. A C++ library of genetic algorithm 
components. Massachusetts Institute of 
Technology. Mechanical Engineering Department, 
1996. 
[12] GAU, T.; WASCHER, G. CUTGEN1: A 
problem generator for the standard one-dimensional 
cutting stock problem. European Journal of 
Operational Research, v. 84, p. 572-579, 1995. 
[13] FOERSTER, H.; WASCHER, G. Pattern 
reduction in one-dimensional cutting-stock 
problem. International Journal of Prod. Res., v. 38, 
p.1657-1676, 2000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graphic 2: SingleGA05 x other methods 
 

 

 
Graphic 3: SingleGA10 x other methods 

 

 
Graphic 4: Variations SingleGA 
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