

A Java-based Mobile Agent Framework for
Distributed Network Applications

Salah Jowan and Tony Mullins

Department of Computer Science, Faculty of Sciences, University of Elmergib, Libya,
E-mail: salahjowan@hotmail.com

Computing Department, Griffith College Dublin (GCD), Ireland, E-mail: tony.mullins@gcd.ie

Abstract—Recently, a new paradigm has emerged for

structuring and developing distributed network applications in
open distributed and heterogeneous environments. Many
application areas, such as electronic commerce, mobile
computing, network management and information retrieval can
benefit from the application of the Mobile Agent technology. The
exploitation of Mobile Agents offers several peculiar advantages,
such as reduction of network latency, asynchronous execution,
robust and fault tolerant behavior. Java technology provides a
platform-independent, portable software environment which
makes it an excellent tool for mobile agent development. Mobile
Agents are mainly intended to be used for applications
distributed over large scale (slow) networks because they allow
saving communication costs by moving computation to the host
on which the target data resides. However, it has not become
popular due to some problems such as security. In this paper, we
present a distributed network architecture based on the Mobile
Agent approach. A network of communicating servers each of
which support multiple clients is our goal. We also propose a
security approach for mobile agents, which protect critical data
of mobile agents from malicious attacks, by using cryptographic
techniques. We implement a bank service application to be tested
on our mobile agent framework. The results suggest that for
networks with high latency, Mobile Agents may provide
improvements over more conventional client-server systems.

Keywords—Java, Mobile Agent, Distributed Systems,
Cryptography.

I. INTRODUCTION
Large scale distributed systems typically involve a number

of nodes, which may be distributed over a large geographical
area. The Client-Server (CS) paradigm has been found useful
for designing distributed systems. However, CS approach does
not scale well when the number of servers increase [1] and
build complex relations with one another. Also, the underlying
network characteristics, such as link bandwidths and delays,
may vary over a period of time. It is difficult and cumbersome
to model such applications using only traditional architectures
like client-server model. Agent paradigm is a promising
choice for network-centric applications, especially for
distributed applications and services, because it is intrinsically
communication and cooperation oriented [2, 3]. Agent
concepts and mobile software agents have become a part of
the system and service architecture of the next generation
networks. It is where agent's mobility offers important

advantages because of the network load reduction, increased
asynchrony between the communicating entities and higher
concurrency. Global end-to-end interactions, typical for a
client-server paradigm, are replaced by local interactions in a
server, visited by a mobile agent. Consequently, the need for
long reliable connections is reduced; bandwidth requirements
are lower and repeated interactions less frequent.

In this paper we show that Mobile Agent paradigm can help
in effective structuring of large-scale distributed systems. The
gains are in terms of scalable and flexible architectures, and
dynamically extensible applications. The advantages of this
approach are more flexibility and its suitability for use in a
client/server implementation model.

II. BACKGROUND
Several approaches arose in attempts to improve upon

performance and alleviate some of the problems and
limitations, which were discovered. For example, the use of
several remote procedure calls (RPC) to perform a client-server
transaction may use more network bandwidth than sending a
more complicated query to a server, performing necessary
computation or accessing of databases locally, and returning
the results to the client [4]. Initial attempts used the concept of
process migration in an attempt to save bandwidth and increase
performance. However, movement of an entire address space
from one machine to another, as utilized by this technique,
makes it difficult to return the results to the client without
returning the entire process as well [5]. The concept of remote
evaluation (REV) programming [6] improves on process
migration by allowing a program to be sent within a request,
having it executed on a remote server, and returning only the
results to the client. However, lack of state information limits
the usefulness of remote evaluation (REV) based systems.
Mobile objects were subsequently developed, in which object-
oriented programming techniques are used to encapsulate state
as well as code.

In recent years, the Mobile Agents (MA) has emerged as a
useful paradigm for overcoming the above limitations [7].
Mobile agents extend on the functionality of mobile objects by
adding autonomous and asynchronous execution capabilities.
This allows mobile agents to decide for themselves the most
efficient means to obtain data, or route around network
bottlenecks.

 DOI: 10.5176/2251-3043_2.4.219

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

125 © 2013 GSTF

Several academic research projects (e.g., [8, 9]) explore the
mobile agent paradigm, and several commercial systems (e.g.,
Aglets [10], Voyager [11], Concordia [12]) have been
introduced recently. Most of these systems are based on Java
for the programming of agents, but they largely differ in their
migration and security models and most importantly in the
support and services they provide for the agents. Some aspects
of our own mobile agent framework will be presented further
down in Section IV.

III. WHAY MOBILE AGENTS?
The term ‘Agent” is heard frequently today while it means

a variety of things to a variety of people [13], commonly it is
defined as an independent software program, which runs on
behalf of a network user. An agent may run when the user is
disconnected from the network, even if the user is disconnected
involuntarily. Some agents run on specialized servers, others
run on standard platforms. Many examples of agent systems
exist, and they are receiving much attention on the World Wide
Web. A Mobile Agent is specialized in that in addition to
being an independent program executing on behalf of a
network user, it can travel to multiple locations in the network.
As it travels, it performs work on behalf of the user, such as
collecting information or delivering requests. This mobility
greatly enhances the productivity of each computing elements
in the network and creates a uniquely powerful computing
environment well suited for a number of tasks. A Mobile Agent
is not bound to the system where it begins execution. The
Mobile Agent is free to travel among the hosts in the network.
Created in one execution environment, it can transport its state
and code with it to another execution environment in the
network, where it resumes execution. By transmitting
executable programs between (possibly heterogeneous)
machines, agent-based computing introduces an important new
paradigm for the implementation of distributed applications in
an open and dynamically changing environment. This
paradigm can even be understood as an architectural concept
for the realization of distributed systems. It is particularly well-
suited if adaptability and flexibility are among the main
application requirements. At the moment it is not yet clear
whether mobile agent technology will establish itself as an
independent computing paradigm for practical use in the long
run. Chess et al. [4] made an attempt to estimate the benefit of
mobile agent technology. They concluded that all the problems
considered as good examples for the use of mobile agents can
also be solved using traditional client/server solutions.
However, mobile agents allow a general solution to all such
problems. Instead of having to create different, well-tailored
solutions to every problem, mobile agents provide a generic
solution to all these problems. In [4, 5, 14] the use of mobile
agents for distributed systems has several potential benefits
such as reduction of network latency, asynchronous and
autonomous execution, robust and fault tolerant behavior.

IV. SYSTEM MODEL
Our goal is to design and implement a distributed system in

which we should be able to control a connection between

possibly multiple Clients and a single server. The idea is that
the Server stores data required by the Clients. When a Client
requires data, it sends a request to the Server and waits for a
reply. In the case of the data required by the Clients does not
reside in the Server, the Server then consults other servers for
such data and send it to the Clients. To design such system, we
build two servers (see Fig. 1). The first one, is to communicate
with Clients (Client/Server paradigm) and the other one, is to
communicate with other servers (Mobile Agent paradigm).

Network

Client

Client

Server

Agent Server Client
Agent

Agent

S1

S2

S3

Sn-1

 Figure 1. The overall architecture of the model.

A. Client/Server Architecture
Client-server paradigm describes the relationship between

two computer programs in which one program, the Client,
makes a service request to another program, the Server, which
fulfills the request. In a network, the Client-server model
provides a convenient way to interconnect programs that are
distributed efficiently across different locations.

In Client-server model, one server is activated and awaits
Client requests. There are two ways to build a server that can
carry on conversations with multiple Clients at the same time.
One solution is to write a non-blocking server; the other is to
write a multithreaded server. The multithreaded alternative is
almost always considered a better solution [15].

new Client
Server Class

ServerSocket

port

Main()

Socket

run()

Socket

Threads

Network

Socket

Client 2

Main()

Client 1
Client 1

Socket

run()

Socket

Handler
Threads

Network

Resource

C1
C2

Client Request
 Queue

Figure 2. Multithreaded Server dealing with Clients by
launching a handler thread for each connection.

In our architecture, the Client sends a request to the Server for
some information; the Server accepts the Client connection and

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

126 © 2013 GSTF

then launches a handler to deal with the Client’s request. The
main function of the handler is to take the Client’s request and
look for the required information in the Server resources. If the
data required by the Client in the Server database, the handler
then will send such data to the Client, otherwise, the handler
put the Client’s request in a queue called Client request queue
as it is illustrated in the previous diagram. The Server uses this
queue in order to retain the Clients which the Server could not
satisfy their requests from its resources. The Server also, uses
this mechanism (the queue) so that it can be able to
communicate with other servers to satisfy its Client’s requests
one by one.

B. AgentServer Architecture
In our architecture, the Agent server is the mechanism of

conversation between servers. When the main server cannot
satisfy a Client request for information, the Server should be
able to contact other servers in order to bring such information
to the Client. In this case, the main server keeps those requests
in a queue and contacts the Agent server to handle such
requests one by one. The main server has a thread, called queue
handler, which is responsible of managing the queue as well as
dealing with the Agent server. The Agent server is in a loop
listening to the requests coming from the main server. Once the
Agent server gets a request, it creates an Agent for that request
and sends it off through the network. The Agent, which has the
Client’s request, can travel from server to another over the
network in search of such information for the Client. The
Agent also has the capability to return to its original point
whenever it gets the Client’s data and once the Agent returns to
its original Agent server, then the Agent server takes the data
from the Agent and send it to the Client (see Fig. 3).

Mobile Agents are transferred between computing
locations, which are Agent servers/hosts. Agent servers are
also, responsible for providing the resources Agents need to
work. In addition, they are responsible for handling procedures
of packaging an Agent and moving its resource and data pieces
from one host to another.

Agent Server Class
request to
create an

agent

 Create Agent
(Thread)

Network

run()
Create Agent();
Take the first address
from the list;

Send Agent();

Wait for the agent to
return;
Read Agent();
Send result back;

Socket

ServerSocket

port (1)

 run()

Read Agent();
Execute it's code;
Take the next address;

Dispatch Agent();

Socket

ServerSocket

port (2)

 Agent Listener
(Thread)

Main()
Launch Create Agent thread;

Launch Agent Listener thread;

Agent
Interface

AgentAgent

Network

Figure 3. Agent Server Architecture.

In the diagram above, it is obvious that the architecture has
three main components, which are the Agent Creator, the
Agent Listener and the Agent object.

1) Agent: The Agent is a serialized object that represents a
data structure and carries some information for its user. The
Agents use specialized servers (Agent server) that receive
them, allow them to interact with the given environment and,
when finished, dispatch them to their next destination. Each
Agent has its own migration mechanism to determine its own
path through the network. Our Agent object consists of two
fundamental parts: state and code. State describes attributes of
Agent and code is the path of control of the Agent thread.

2) Creat an Agent: The main role of the Agent creator is to

create an Agent whenever is required by the Agent server.
When the Agent server receives a Client’s request from the
main server, it launches a thread to create an Agent, which
will carry out actions to fulfill the Client’s request. The Agent
creator thread creates the Agent with a unique id in order to
identify and locate the Agent during its lifetime. Also, the
Agent when first created is provided by the Client’s request
and the migration mechanism (the path) in order for the Agent
to be able to migrate between different hosts in the network.
To create an Agent the Agent creator instantiates the Agent
object with initialization arguments. Only when the
initialization has been completed can the Agent assume that it
has been fully and correctly installed in the Agent creator.
After being fully installed in the Agent creator, the Agent is
now capable of executing independently of other Agents in the
same place. The Agent creator now opens a Socket to send the
Agent to the first destination in the Agent’s path. The gent
now can start migrating under its own control from one host to
another over the network and it can move to the place where
data is stored and select information the user wants. After the
Agent is sent, the Agent creator opens a server socket and
listens on a specific port for the Agent to come back (see
Fig.3). In the Agent’s path, the last destination is always the
address of the Agent creator, which created the Agent. So it is
absolutely guaranteed that the Agent will return to its original
place after the completion of its journey. When the Agent has
returned from its journey, the Agent creator extracts the
information and sends it directly to the Client who is waiting
for the results.

3) Agent Treansfer: As we mentioned that Agents need an

execution environment (place) in which Agents operate and
perform their tasks. The most common view of a place is that
it is a context in which an Agent can execute (see Fig. 4). We
can regard it as an entry point for a visiting Agent that wishes
to execute. The place provides a uniform set of services that
the Agent can rely on irrespective of its specific location.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

127 © 2013 GSTF

Resources
Agents

Place

Agent Server

Host

Figure 4. Execution Environment of Agents

In our Agent server model, the Agent listener is the
execution environment (place) for Agents. The Agent listener
is responsible for receiving Agents, executing their code and
dispatching them to their next destination according to their
path. The Agent listener is in a loop listening on a specific port
for incoming Agents. When it receives an Agent, it will receive
the Agent as a serialized object. The Agent listener then
deserializes (unpack) it and sends it to a queue so the Agent can
wait for its turn for executing its code in the local system. The
queue mechanism is built in the Agent listener so that it can
receive multiple Agents at the same time. After executing the
Agent code, the Agent listener extracts the next destination
address from the Agent’s path, which is in the Agent object
data structure.

Suspend Execution

Encode Data

Serialize Agent

Transfer Agent

Sender

Resume Execution

Decode Data

Deserialize Agent

Receive Agent

Receiver

Network

 Figure 5. Agent Transfer.

When a Mobile Agent is preparing for a trip, it must be able
to identify its destination. Once the location of the destination
is established, the Agent system (Agent listener) should do the
following (see Fig. 5):

• Suspend the Agent: The Agent is notified about the
transfer and allowed to prepare for departure
(complete its current task). When that is done its
execution thread is halted.

• Encode the Agent’s data: The Agent system encodes
the data the Agent contains for security purposes.
Special cryptography techniques are used to
implement encryption and decryption algorithms.

• Serialize the Agent: The Agent (its state and class) is
serialized by the Agent system. Serialization is the
process of creating a persistent representation of the
Agent object that can be transported over a network.
Serialization of the Agent may include the execution
state.

• Transfer the Agent: The Agent system establishes a
network connection to the specified destination host
and transfers the encoded serialized Agent.

Before an Agent system receives an Agent, the Agent

system must determine whether it can accept an Agent from the
sending host. Only after the sender has successfully
authenticated itself to the receiving Agent system will the
actual data transfer take place (see Fig. 5):

• Receive the Agent: When the destination Agent
system agrees to the transfer, the encoded Agent is
received.

• Deserialize the Agent: The persistent representation of
the Agent is deserialized. The Agent class is
instantiated, and the transferred Agent state is
restored.

• Decode the Agent’s data: The Agent system decodes
the data the Agent contains.

• Resume Agent execution: The re-created Agent is
notified of its arrival at the destination place. It can
now prepare to resume its execution and is given a
new thread of execution.

V. DESIGN ASSUMPTIONS
Designing and implementing distributed applications over a

distributed network is considerably different from those
applications that run on one machine. In this section we will
discuss some important design issues that must be considered
and overcome for the development of our project.

1) Security: Data is vulnerable at many points in any
computer system, and many security techniques can be
employed to protect it. Clients who are connected to our
system should be confident that their request and information
would be handled in privacy and confidentiality. When an
Agent travels over a distributed network, it introduces
potential security threats [16, 17]. As Mobile Agent can carry
out actions autonomously, this requires that Agent knows the
information about its users (Clients). It must be robust enough
to prevent from revealing this information to third parties
(malicious hosts) [17]. Otherwise, a host may insert its own
tasks into an Agent or modify Agent’s state, which can lead to
theft of Agent’s resources. As we mention previously, Mobile
Agents are composed of code, data, and state. Agents migrate
from one host to another taking the code, data, and state with
them. Our approach to prevent attacks to Mobile Agents from

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

128 © 2013 GSTF

malicious hosts is to employ cryptographic algorithms in order
to encrypt the Agents’ data including their state information in
a way that makes undesired hosts unable to reveal the Agent’s
information.

2) Scalability: In our application the Server must be

scalable and must be able to contain a large number of Clients
without causing any decrease in the efficiency of overall
system. This requires an architecture in which the Server does
not process one connection and wait another, but where it
always remains available and accepts several connections at a
time. Threads are employed to achieve this goal. The Server
can receive a connection from a Client and can pass it to the
proper thread to take care of it. The Server then is available
again for next connection.

3) Transparency: The aim of transparency is to make

certain aspects of the distribution invisible to the user of the
system. In our design, the user of the system should not be
worried about how the request will be transported between
Servers and Agent Servers. Also, how the Agent will move
between different hosts is invisible. Even the failure of
networks and the processes is invisible and can be presented to
the user in the form of exceptions.

4) Concurrency: At any given moment, there might be

many Clients connected to the Server. When more than one
Client will try to access the resources that should be
consistent, and should be accessed and modified by one user at
a time. If multiple Clients access such resources
simultaneously, it can lead the Server to be inconsistent. This
inconsistency of the Server can lead to unexpected and
unwanted results. By using proper Synchronization
techniques, we overcome this problem and the Server is stable
and consistent.

5) System Reliability & Fault Tolerance: Computer

systems sometimes fail. Communication failure between
Client and Server can happen. The system must be able to
respond in any such situation. Supposing that the Agent
Server, for example, is waiting for an Agent to return, but the
Agent is dead in one of the hosts, what would happen. The
Agent system should be able to find out such problem, notify
the user about the failure, and go back to work. In our system,
in order to build such a reliable and fault tolerant system, we
use the power of exceptions provided by Java to handle all
possible problems.

VI. SYSTEM IMPLEMENTATION
To implement the Client/Server architecture, we simulate a

bank service system. The bank service acts as a Server to its
customers (users) who are looking for some information and
transactions from their accounts. The customers’ accounts
represent the Server’s database. The ATM machine in the bank
system acts as a Client in which the client communicates with

the server on behalf of the user. Fig. 6 illustrates the interaction
between the Client and The server within the bank system.

Bank Server

ATM(1)

GUI

Connection
Handler

Connection
Handler

Connection
Handler

ClientUser

ATM(2)

GUI

ClientUser

ATM(3)

GUI

ClientUser

Bank Accounts

Figure 6. Bank System Simulation.

A. Client Application
The Client application in our system represents the ATM

machine action. As we mentioned previously that the Client
makes a request for some information to the Server and waits
for a reply. As the Client gets a reply from the Server, the
Client displays the replay as a result to its user. To implement
the ATM Client, we divide this task into two parts. The first
part, we implement the user interface in order to enable the user
to interact with the Bank Server by allowing the user to enter a
request as well as to see the result (see Fig. 7). The second part
is to implement the connection required to have the Client and
the Server talking to each other.

Figure 7. Screenshot of the ATM client.

B. Server Application
The basic procedure for implementing a Server is to open a

server socket on a particular local port number, and then to wait
for connections. Clients will connect to this port and, a
connection will be established. The Agent Server is responsible
for handling the communication with other servers in the
network. It takes a Client request from local Server and creates
a Mobile Agent for the Client and then sends it off over a
distributed network in order to fulfill the Client request from
other servers. In addition, the Agent Server is responsible for
receiving Mobile gents from other servers and executing their
codes as well as providing them with access to the local Server
resources.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

129 © 2013 GSTF

To implement the targeted Agent Server, we divide the
Agent Server entity into two parts (see Fig. 8). The first part is
concerned with creating Agents and sending them off. The
other part is the place where Agents are received and executed.

Figure 8. Screenshots from running the agent system.

VII. CONCLUSION
In this paper, a model of distributed network architecture

was presented. This architecture is based on the client-server
approach in cooperation with the mobile agent approach. At
one end, the client-server paradigm was used to form the
communication mechanism between clients and the server. At
the other end, the mobile agent technology was used to
facilitate the communications between servers over the
network. Also, a number of techniques were used which assist
in supporting security, concurrency, scalability and fault
tolerance. We showed that the advantages of mobile agent
approach are more flexibility and its suitability for use in a
client/server implementation model.

Although initial results using the current architecture have
been encouraging, there is still some future work that could be
done to improve upon the agent architecture described in this
work. We tested our architecture by implementing a Bank
Service application. There are many other similar applications
can be implemented on our agent architecture. It is better to
write code for any of those applications and test it on our
architecture.

REFERENCES
[1] J. White. Mobile Agents, in Software Agents, J. Bradshaw (ed.), AAAI

Press / The MIT Press, 1996.
[2] Y.Aridov and D.Lang, “Agent design patterns: element of agent

application design”, Proc. Autonomous Agents ‘98, pp108-115. ACM,
’98.

[3] Antonio Carzaniga, Gian Pietro Picco and Giaovanni Vigna, “Designing
Distributed Applications with Mobile Code Paradigms”, Proc. 19th
International Conference on Software Engineering (ICSE '97) , pp.22-
32, ACM , ‘97.

[4] C. G. Harrison, D. M. Chess, A. Kershenbaum, “Mobile Agents: Are
They a Good Idea?”, Technical report, IBM T.J. Watson Research
Center, Mar. 1995.

[5] D. Wong, N. Paciorek, D. Moore, “Java-based Mobile Agents”,
Communications of the ACM, Vol. 42, No. 3, Mar. 1999.

[6] J. W. Stamos, D. K. Gifford, “Remote evaluation”, ACM Transactions
on Programming Languages and Systems, Vol. 12, No. 4, pp 537-565,
Oct. 1990.

[7] F. C. Knabe, “An overview of mobile agent programming”, Proceedings
of the 5th LOMAPS Workshop on Analysis and Verification of
Multiple-Agent Languages, Stockholm, Sweden, Jun. 1996.

[8] Gray R.S., Agent Tcl: “A Flexible and Secure Mobile-Agent System”,
Proc. 4th Annual Tcl/Tk Workshop, Monterey, CA, 1996, pp 9-23.

[9] Peine H., Stolpmann T., “The Architecture of the Ara Platform for
Mobile Agents”, in Rothermel K., Popescu-Zeletin R. (eds), Mobile
Agents (Proc. 1st Int.Workshop), Springer-Verlag, LNCS 1219, 1997,
pp 50-61.

[10] Lange D., Chang D.T., IBM Aglets Workbench – “Programming Mobile
Agents in Java”, white paper, IBM Corporation, Japan, August 1996.

[11] Voyager: http://www.objectspace.com/voyager/
[12] Wong D., Paciorek N.,Walsh T,Concordia: “An Infrastructure for

Collaborating Mobile Agents”, in Rothermel K., Popescu-Zeletin R.
(eds), Mobile Agents (Proc. 1st Int.Workshop), Springer- Verlag, LNCS
1219, 1997, pp 86-97.

[13] S. Franklin, A. Graesser, “Is it an Agent, or Just a Program?: A
Taxonomy for Autonomous Agents”, Proceedings of the Third
International Workshop on Agent Theories, Architectures, and
Languages, Institute for Intelligent Systems, University of Memphis,
1996.

[14] D.B. Lange and M. Oshima. “Seven good reasons for mobile agents”.
Communications of the ACM, 45(3):88–89, March 1999.

[15] Hughes, Shoffner, Hamner, “Java Network Programming”, Second
Edition, Manning Publications Co., 1999.

[16] Hyungjick Lee, J. Alves-Foss, S. Harrison, “The use of Encrypted
Functions for Mobile Agent Security”, System Sciences, 2004.
Proceedings of the 37th Annual Hawaii International Conference on, 5-8
Jan, 2004, Pages: 297-306.

[17] T. Sander, C. Tschudin, “Towards Mobile Cryptography”, In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, 1998. IEEE Computer Society Press.

Salah Jowan has BSc in Computer Science from University of Tripoli in
Libya. He also obtained an MSc in Computing from Griffith College Dublin
(GCD) in 2004 and then joined Elmergib University in Libya as a
lecturer. Mr. Jowan has been demonstrating/lecturing in computer science for
over seven years and is currently the course director for Computer Science
undergraduate programmes. His areas of interest include concurrent
programming, distributed computing and mobile agents.

Tony Mullins graduated with an MA in Philosophy from University College
Dublin (UCD) in 1977 and a HDipEd from Trinity College in 1979. He
subsequently went on to study Mathematics in the Dublin Institute of
Technology (DIT) and Computer Science at UCD where he obtained an MSc
(Qual) in 1986. He worked as a researcher and project manager for Decision
Support Systems on a number of Esprit projects. He joined the Faculty of
Computing in 1992. Mr. Mullins is Course Director of the MSc degree in
Computing and specialises in formal methods, concurrent programming, real-
time systems, and programming languages. In 2000 he published his book "A
First Course in Programming with Java".

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

130 © 2013 GSTF

