
THE GSTF JOURNAL ON COMPUTING, VOL.2, NO.4 1

Referential integrity and dependencies between
documents in a document oriented database

Kalin Georgiev

Abstract—Reliability of foreign keys, which is natural in rela-
tional databases, requires additional efforts when working with
non-relational databases, as non-relational database management
systems generally don’t support foreign key constraints due to
their distributed nature. Referential integrity is an important
property whenever documents need to refer to each other, which
is the common case. This work discusses an implementation
of a verification approach which makes use of the MapReduce
programming model, in order to detect incorrect references in
document oriented databases that may be caused by errors in
the program code or incomplete transactions. Furthermore, the
method can be applied for the verification of more complex de-
pendencies between documents, such that bind aggregated values
from certain sets of documents with the values of documents
referred by them.

Index Terms—Referential integrity, noSQL, Non-relational
databases, MapReduce, MongoDB.

I. INTRODUCTION

NON-RELATIONAL database management systems
(NRDBMS), unlike their counterpart - the relational

database management systems (RDBMS), commonly lack
built in support for foreign key constraints. Therefore,
ensuring referential integrity of data, which is an important
property whenever records in different collections refer to
each other, requires additional efforts, which are commonly
implemented on the application level.

Referential integrity as a database property requires that
records, which refer to each other, use correct references.
These “references” are usually values of the referred docu-
ment’s identifying (primary) key. The problem of ensuring and
verifying referential integrity is relevant to any data structure,
regardless of whether it’s represented in a relational database,
a non-relational database, or in memory, for example.

Relational database management systems (RDMS) ensure
by default that every update transaction maintains the referen-
tial integrity of the data. Non-relational DBMS, however, reply
on flat data structures and distributed architecture. Under a
distributed architecture, verifying the correctness of a foreign
key can not be achieved without access to other nodes or some
other data shared across the nodes, which would introduce a
performance drawback.

This work addresses several problems related to the use
of foreign keys and some semantic relationships between
documents that may be in the same collection or spread across

Manuscript received December 20, 2012; This work was supported by the
European Social Fund through the Human Resource Development Operational
Programme under contract BG051PO001-3.3.06-0052 (2012/2014).

K. Georgiev is with the Faculty of Mathematics and Informatics, Sofia
university, Sofia, Bulgaria, e-mail: kalin@fmi.uni-sofia.bg

different collections: (1) duplicate primary keys, (2) references
to non-existent primary keys, and (3) various properties of
aggregated values. The discussed implementation makes use
of the MapReduce [1] programming model with its specific
implementation built in the NRDBMS MongoDB [2]. How-
ever, the approach behind the implementation is fairly general
an can be applied to other MapReduce frameworks with little
change.

Used Notations
All schema-less databases admit heterogeneous collections.

MnogoDB, as a non-relational DBMS, is not an exception.
Documents in MnogoDB are represented in the JSON (Java
Script Object Notation) format. The format is based on the
JavaScript object literal, which allows for arbitrary fields and
nested structures. MongoDB does not enforce strict typing of
the field values, not even does it ensure that all documents
have the same fields. However, we will assume for simplicity
that all documents which need to be verified do contain the
fields that participate in the correctness property and that the
values of these fields have the required types. We will assume
that a mechanism is available for the filtering or the specific
handling of documents which don’t satisfy this requirement.

Therefore, we will adopt a classical notation to denote
database documents and their fields. Essentially, we will
enforce a partial schema on the collections of interest by
requiring that each document contains at least a set of pre-
defined fields and that their values have proper types. If d is
a document and l is field label, by d[l] we will refer to the
value of the filed l in the document d.

II. BRIEF INTRODUCTION TO MAPREDUCE

MapReduce [1] is a programming model named after the
classical map and reduce functions known from functional
programming, although the semantics of the map and reduce
functions in MapReduce have deviated from their original
forms. The model employes a functional style for the imple-
mentation of embarrassingly parallel problems [4] over large
data sets.

There are different variants and implementations of the
MapReduce model found in various databases and data frame-
works in general. In this section we introduce a basic, limited
model of the process, which will allow us to lay down
our application of MapReduce, without dealing with intricate
technical details and implementation differences.

Let us have a collection A of documents. Let K be a set of
keys and P be some arbitrary value type. Then a map function
is any function of the form map : A → 2K×P .

DOI: 10.5176/ 2251-3043_2.4.205

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

24 © 2013 GSTF



THE GSTF JOURNAL ON COMPUTING, VOL.2, NO.4 2

The map function is an isolated part of the computational
process focused at processing individual documents from the
collection, without any information about the rest of the
documents. The map function is free to do anything with the
document’s data and produce a number of values based on it.
The process is called emitting and the map function can emit
any number of values, including 0. A simple example for a
map function will be the projection (in relational-algebraic
terms) of a field or fields from a record or the calculation
of some simple formula based on one or more record fields:
for example, emit the age field from all documents in the
people collection.

The outputs of all map processes R =
⋃
{map(d)|d ∈ A}

are grouped by the key emitted by map to form a number
of classes [d] = {data|(k, data) ∈ R} for every different key
emitted by map.

Each such class is then passed to a reduce process -
reduce : K × 2P → F , where F if the type of the “final”
result. The reduce process is what “aggregates” the results
from the individual map processes, which are first grouped by
the key chosen by the map function.

As a very simple example, imagine that we have a collection
of people of both sexes. Let the sex of the individual person
be identified by the sex field and their age - by the age
field. Image that we need the average age of all males and all
females in our database.

We will use a map function which emits the age of each
person and groups ages by their sex, and then a reduce function
will just calculate the average value of the sets of values
produced by map:

function map ()
{emit(this.sex,this.age);}

function reduce (key,emits)
{return average(emits);}

where average(emits) is the average of the numbers
in the ages array. Note that MongoDB provides a refer-
ence to the document as the variable this in the map
function, instead as a function parameter. In our exam-
ple, the map function will output a number of tuples
sex:age, one for each person. The MapReduce framework
will then group the age elements in two classes [male] and
[female] containing the ages of all males and all females
respectively. Finally, the reduce function will be executed
twice with the arguments reduce(male,[male]) and
reduce(female,[female]). The final result consists of
two tuples (male,am) and (female,af), where am is
the average age of all males, and af is the average age of all
females in our collection.

Re-reduce

Because the sets which the reduce function has to process
may become large and because of other technical consid-
erations, there is another (optional) step in the MapReduce
process - re-reduce. The classes [k] may be broken down
into a number of subsets. Different reduce processes then
process these subsets and the lists of results of these processes

are passed to a re-reduce function. In other words, reduce
performs a “partial” aggregation which is completed by re-
reduce. However, considering this stage is not essential for
our needs as we will predominantly use commutative and
associative operations in our reduce functions, so that they
can serve as re-reduce functions as well.

III. VERIFICATION OF ONE-TO-MANY RELATIONS

Let us have two collections A and B and their corresponding
fields kA and kB, which we will consider “keys”. Similarly to
the foreign keys in relational databases, we can imagine that
kA is the “primary” key for the records in A and kB contains
references to that primary key. Then the goal for verifying
referential integrity between the two collections is to check
whether dB[kB] for each dB ∈ B can be found in exactly
one dA ∈ A as the value of dA[kA]. In other words, that
∀dB ∈ B : ∃!dA ∈ A such that dA[kA] = dB[kB]. This
expresses the “one-to-many” relation between the records in
A and B, where the records in B refer to records in A.

The approach that we will use to verify the integrity of
a one-to-many relation is similar to an approach used to
implement (or “simulate”) join operations in non-relational
databases using MapReduce [3]. The essence of the approach
is to use the map function to emit “counters” for every key in
A and B, grouping all counters by the value of the foreign key
and then letting the reduce function sum up all counters. In this
way, the resulting data set can be used to detect mismatches
of the number of records in A and B that refer to each other.

Let

function mapBase(){
emit (this["kA"],{"sums":[1,0]});

}

be the map function applied to the records in A. Similarly

function mapRef(){
emit (this["kB"],{"sums":[0,1]});

}

is applied to the records in B. And finally

function reduce (key,emits){
var sums = [0,0];
for (var i in emits){
sums[0] += emits[i].sums[0];
sums[1] += emits[i].sums[1];

}
return {"sums":sums};

}

will sum the components of all tuples that are emitted under
the same key. Invoking the MapReduce process in MongoDB
involves the following expressions:

db[A].
mapReduce (mapBase,

reduce,
{out: {reduce: "result"}});

db[B].
mapReduce (mapRef,

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

25 © 2013 GSTF



THE GSTF JOURNAL ON COMPUTING, VOL.2, NO.4 3

reduce,
{out: {reduce: "result"}});

As a result, there will be a tuple tkey =
(key, countA, countB) in the collection result for
every unique key seen in A or B. The tuples contain the
number of occurrences of key as values of kA and kB
respectively. The referential correctness with respect to each
key can be verified by examining the values of countA.
• countA = 0 will suggest that key is present in B but

there are no occurrences in A
• countA > 1 will suggest that key is not unique in A

Therefore, by filtering all items in the result set for which
countA 6= 1 a list can be obtained of all incorrect references
in B.

Example

For example, let’t have the following data in A and B (using
the JSON notation):

A:{ {"key":"ka"},
{"key":"ka"},
{"key":"kb"}}

B:{ {"key_a":"ka"},
{"key_a":"kb"},
{"key_a":"kc"}}

The outputs of mapBase and mapRef will be

{{"ka":{"sums":[1,0]},
{"ka":{"sums":[1,0]},
{"kb":{"sums":[1,0]}}

{{"ka":{"sums":[0,1]},
{"kb":{"sums":[0,1]},
{"kc":{"sums":[0,1]}}

The reduce processes will be executed with the following
parameters:

reduce ("ka",{ {"sums":[1,0]},
{"sums":[1,0]},
{"sums":[0,1]}})

= [2,1]

reduce ("kb",{ {"sums":[1,0]},
{"sums":[0,1]}})

= [1,1]

reduce ("kc",{ {"sums":[0,1]}})
= [0,1]

Which reveals issues with ka and kc.

IV. MANY-TO-MANY RELATIONS

While relational database management systems only support
one-to-many relations, most non-relational database engines
do not suffer from this limitation thanks to the support of list
properties. In our setup, a single record in B can easily refer
to a number of records in A and vice versa.

A common use case for such a model is the Books and
Authors example, where each book can have multiple authors

and a single author may have written multiple books. A
classical relational implementation of this model would be to
introduce a junction table (BooksAuthors) and use join queries
to extract data.

If this example is to be implemented in a document
database, the documents in the Authors collection could
contain lists of book identifiers and in the same time, the
documents in the Books collection could contain lists of author
identifiers. This structure introduces data redundancy, however,
this denormalization approach is commonly used for query
optimizations in databases [5].

Let dA[kA] and dB[kB] be unique record identifiers and
there are two fields refB in each dA and refA in each dB
containing list of keys in B and A respectively. Then, in this
case, the goal of verifying referential integrity is to check
whether every member of every dA[refB] is a valid key
in B and every member of every dB[refA] is a valid key in
A.

Our approach in this case is similar: we use map to count all
keys that refer to records in A and B, but we emit a number of
values this time – one for each element of the corresponding
reference lists.

function mapBase(){
emit (this["kA"],{"sums":[1,0]});
for (var i in this["refB"]{
emit (this["refB"][i],

{"sums":[0,1]});
}

}

Similarly

function mapRef(){
emit (this["kB"],{"sums":[1,0]});
for (var i in this["refA"]{
emit (this["refA"][i],

{"sums":[0,1]});
}

}

Note that we have reserved the first member of the tuples
for the primary key counter, while the second member counts
the keys used as references. The reduce function does not need
changes for this setup.

function reduce (key,emits){
var sums = [0,0];
for (var i in emits){
sums[0] += emits[i].sums[0];
sums[1] += emits[i].sums[1];

}
return {"sums":sums};

}

Again, the output of the process is a set of tuples tkey =
(key, countkey, countref ) and examining the values of the
tuples will reveal the following inconsistencies:

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

26 © 2013 GSTF



THE GSTF JOURNAL ON COMPUTING, VOL.2, NO.4 4

• countkey = 0 will suggest that key is present as a
reference in some record, but it does not exist as a primary
key in the referenced collection

• countkey > 1 will suggest that key is not an unique key
in the corresponding collection

Finally, please note that similar verifications can be per-
formed over two types of records in the same collection in
the schema-less databases. However, the map function needs
to be extended to differentiate the type of records by using
a distinction rule in order to emit the proper key field (for
example “has the value person in the field type”).

V. BINDING AGGREGATES AND FIELDS

The resulting set produced by the map and reduce functions
of the previous section contains tuples, the elements of which
count the occurrences of every primary key and every key used
as a reference. The reduce function is very simple: it sums a
number of 1s. This is a very limited use of the capabilities of
the reduce function, which is capable of accumulating the data
emitted by the map function in a variety of ways, the most
obvious of which is to use some commutative and associative
binary operator.

If, together with the key counters, the map function emits
the values of some other field, the reduce function could
afterwards aggregate these values using a commutative and
associative operator. The values of these aggregates can then
become parameters for various predicates expressing custom
correctness properties which are specific for the use case.
For example, verify that “total amount” in the records of the
“expenses” collection is equal to the the sum of all “amount”
fields in the records of the “invoices” collection which refer
to the expense record.

Let there be two more fields - sum in A and item in B
in our one-to-many setup. The goal is to verify that for each
dA ∈ A

dA[sum] =
∑
{dB[item]| dB ∈ B∧

dB[keyB] = dA[keyA]}

where
∑

is any commutative and associative binary oper-
ator defined for the type of the items in B (not necessarily a
sum). In other words, verify that the value of every dA[sum]
holds the correct sum of all dB[item] for the documents in
B which refer to dA.

The map function is extended to emit the values of the
elements of the sum in order to allow the reduce function to
accumulate those values and produce the total sum, again for
every unique key in A:

function mapBase(){
emit (this["kA"],

{"sums":[1,
0,
this["sum"],
0]});

}

function mapRef(){
emit (this["kB"],

{"sums":[0,
1,
0,
this["item"]]});

}

Again, we have reserved the first member of the tuple for
the primary key counter, while the second member counts the
keys used as references. The third member holds the expected
value for the total sum and the fourth - the individual values
of each item, which are summed by the reduce function. Note
that 0 (zero) in the third and fourth element is not necessarily
the number 0, it’s the zero element of the corresponding type
with respect to the operator

∑
.

function reduce (key,emits){
var sums = [0,0];
for (var i in emits){
for (var j = 0; j < 4; j++){
sums[j] += emits[i].sums[j];

}
}
return {"sums":sums};

}

Examining the resulting tuples tkey =
(key, countA, countB , valA, sumB) is analogous to the
one-to-many setup with the additional step of verifying that
valA = sumB .

Note that in this way the method can be applied to verify a
number of different aggregates by letting map emit additional
members of its tuples and summing all of them in reduce.

VI. CONCLUSION

When the database layer of a software system doesn’t
provide mechanisms for ensuring the referential integrity of the
data, issues with the program code and incomplete transactions
can cause significant issues for the system. In theory, when the
correctness of the program code is fully verified and tested,
cases of inconsistency should be reduced to a minimum. How-
ever, every complex system would benefit from a mechanism
for the verification of its data, in order to handle undetected
issues with the program logic or failures of other kinds, which
cause update operations to create inconsistencies in the data.

The approach proposed in this work allows for a post factum
detection of the following classes of issues:

• duplicate primary keys;
• references to non-existent primary keys;
• various properties binding values from one collection

with aggregated values from another collection.

The proposed mechanism would only report the existence
of such issues, without any suggestions about the cause for the
generation of inconsistent records. However, if the verification
is run periodically, it can be an important instrument for
the early detection of issues with the code and their timely
resolution, before the issues are exhibited broadly across the
system.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

27 © 2013 GSTF



THE GSTF JOURNAL ON COMPUTING, VOL.2, NO.4 5

Experiments and performance

The implementation discussed in this work has been applied
for the post-factum detection of foreign key inconsistencies
in the SocialBook web application (www.livemargin.com).
SocialBook is a book publishing platform with a variety
of multimedia and social features. There are a number of
interrelated collections in the application’s database that refer-
ence each other – books, authors, readers, comments, replies,
and others. This method has been applied for the detection
and removal of “leaking” data, such as orphan comments,
replies, and books, which have been produced due to incorrect
application logic or failed transactions.

The experimental results hint towards a liner complexity
of the method, which is supported by the theory behind
MapReduce. However, a precise analysis and a performance
evaluation of the method is still to be completed. This is a
subject of the author’s continuing research in the area.

ACKNOWLEDGMENT

This work was supported by the European Social
Fund through the Human Resource Development Opera-
tional Programme under contract BG051PO001-3.3.06-0052
(2012/2014).

REFERENCES

[1] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters., CACM, 2008, 51(1), pp. 107-113

[2] MongoDB online documentation, Available:
http://www.mongodb.org/display/DOCS

[3] F. N. Afrati and J. D. Ullman, Optimizing Joins in a Map-Reduce
Environment. Technical Report., EDBT ’10 Proceedings of the 13th
International Conference on Extending Database Technology (March 22
- 26, 2010, Lausanne, Switzerland), pp. 99-110

[4] I. Foster, Designing and Building Parallel Programs. Section 1.4.4.,
Addison-Wesley, Boston, 1995

[5] S. K. Shin, G. L. Sanders, Denormalization strategies for data retrieval
from data warehouses., DECIS SUPPORT SYST, 2006, 42(1), pp. 267-
282

Kalin Georgiev works at the Faculty of Mathe-
matics and Informatics of Sofia university as an
assistant professor where he is involved in vari-
ous computer science courses (C++ programming,
functional programming, logical programming, com-
putability theory, project management, and others)
and a number of technological courses. He is a part
of several academic research projects while with
Sofia University and The Bulgarian Academy of
Sceinces. Presently, Kalin participates in research
activities in the areas of mathematical psychology

and formal verification methods. In parallel, Kalin is involved in the manage-
ment of several commercial projects applying moder mobile, web, and cloud
development technologies.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

28 © 2013 GSTF




