
A Demand Based Load Balanced Service Replication Model

Manu Vardhan
CSED, MNNIT Allahabad

Motilal Nehru National
Institute of Technology

Allahabad, India
rcs1002@mnnit.ac.in

Shrabani Mallick

CSED, MNNIT Allahabad
Motilal Nehru National
Institute of Technology

Allahabad, India
shrabani@mnnit.ac.in

Shakti Mishra

Asstt. Professor
Institute of Development &

Research in Banking
Technology

Hyderabad, India
smishra@idrbt.ac.in

D. S. Kushwaha
CSED, MNNIT Allahabad

Motilal Nehru National
Institute of Technology

Allahabad, India
dsk@mnnit.ac.in

Abstract—Cloud computing allows service users and providers to
access the applications, logical resources and files on any
computer with ease. A cloud service has three distinct
characteristics that differentiate it from traditional hosting. It is
sold on demand, typically by the minute or the hour; it is elastic.
It is a way to increase capacity or add capabilities on the fly
without investing in new infrastructure, training new personnel,
or licensing new software. It not only promises reliable services
delivered through next-generation data centers that are built on
compute and storage virtualization technologies but also
addresses the key issues such as scalability, reliability, fault
tolerance and file load balancing. The one way to achieve this is
through service replication across different machines coupled
with load balancing. Though replication potentially improves
fault tolerance, it leads to the problem of ensuring consistency of
replicas when certain service is updated or modified. However,
fewer replicas also decrease concurrency and the level of service
availability. A balanced synchronization between replication
mechanism and consistency not only ensures highly reliable and
fault tolerant system but also improves system performance
significantly. This paper presents a load balancing based service
replication model that creates a replica on other servers on the
basis of number of service accesses. The simulation results
indicate that the proposed model reduces the number of messages
exchanged for service replication by 25-55% thus improving the
overall system performance significantly. Also in case of CPU
load based file replication, it is observed that file access
time reduces by 5.56%-7.65%.

Keywords-component; Service Replication, Consistency, File
Replication Server, Load balancing, Request-Reply Protocol

I. INTRODUCTION

Cloud computing systems fundamentally provide access to
large amounts of data and computational resources through a
variety of interfaces. These resources are provided on demand
basis through various file servers available across cloud service
providers. Further, in addition to reliability and scalability, a
fault tolerant mechanism ensures functioning of system even in
the case of failure. The one way to achieve this is through
service replication across different machines. Setting up a
replication configuration is a fairly standard way to enable
disaster recovery (DR) to recover from critical failure.
Replication means replicating the critical software components
or software services on to other machines, so that if one of
these fail, the others can be used to continue.

Though replication potentially improves fault tolerance,
inconsistency may lead to the condition where clients can have
stale files. As a result, each time a service is modified,

consistency mechanisms ensure that all existing copies are
consistent. In distributed file system this happens usually either
by transmitting the modified service or invalidation message to
the various sites, or by transmitting only the modified section
service. However, fewer replicas also decrease concurrency
and the level of service availability. While developing robust
systems, maximizing service replication enables minimized
costs of consistency related message transmission. Clearly,
there is a strong relation between the service consistency
mechanism, message transfer, and file availability. As a result,
system can handle large number of requests as several copies
of the service exist. Demand based Service Replication Model
proposed in this paper avoids unnecessary service replication
and tries to resolve the following issues:

1. If a copy of the requested file is available on a peer node,
preventing unnecessary replication,

2. Involuntary routing the file request in case of node failure,
without any user intervention.

3. Dynamic load distribution among peer servers.

The proposed mechanism uses asynchronous
communication that also ensures that the system will keep
accepting the requests without blocking its state.

The rest of the paper is organized as follows. The next
section discusses a brief literature survey of existing theories
and work done so far. Section 3 proposes a Demand based
Service Replication Model. Section 4 carries out the simulation
and results. Finally, section 5 concludes the work followed by
references.

II. RELATED WORK

Replication means high availability of resources. Resources
can be physical or logical. Physical resources include memory
and storage capacity, whereas logical resources include file,
data and services that need to be replicated or made available
on demand, depending upon the application requirement.
Resource replications are basically of two types, active and
passive. The Passive replication is like primary copy and all
updates are redirected to the primary copy. The updates can be
propagated after the transaction has been committed. In active
replication, mutual information about the peer nodes is
maintained and the replicated resources can be accessed at any
site. The traditional resource replication is passive, that does
not participate in the decision on when to replicate, where to
replicate and number of copies to replicate. In a blind-replica
service model [13], request routing is independent of where the
replicas are located. Each replica simply serves the requests

DOI: 10.5176/2251-3043_2.4.202

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

5 © 2013 GSTF

flowing through it under a given routing strategy. Various
replication strategies have been proposed on the basis of the
relative popularity of individual files based on their query rate.
[6] proposed a query based file popularity approach for
replication. Common techniques include the square-root,
proportional, and uniform distributions. The approaches in [10]
and [4], consider static replication in combination with a
variant of Gnutella searching. Static strategies are applied for
replication when there is little gain from using dynamic
strategies if the resource conditions are fairly stable over a long
period of time. Dynamic strategies are able to recover from
failures such as network partitioning and easily adapt to
changes on demand, bandwidth and storage availability.

Clarke, et al. [3], replicates objects both on insertion and
retrieval on the path from the initiator to the target mainly for
anonymity and availability purposes. The methodology in [14]
addresses data replication and considers that adaptive
replication algorithms change the replication scheme of an
object to reflect the read-write patterns and eventually
converge towards the optimal scheme. The adaptive data
replication algorithm aims at decreasing the bandwidth
utilization and latency by moving data closer to clients. A
dynamic replication strategy is proposed in [5] by the name of
push caching. A server knows how popular its files are and so
it decides when to ‗push‘ one of its popular files to a remote
‗friend‘ server. It decides where to replicate them by using the
access history that it has stored. Our strategy of maintaining
detailed access histories to determine the popular files is
modeled on this study.

File clustering based replication algorithm in a grid
environment is proposed by [8], which presents the location
based replication mechanism. The files stored in a grid
environment, are grouped together based on the relationship of
simultaneous file accesses and based on the file access
behavior the location and movement of replicas is determined.
Similarly, locality aware file replication is proposed by [2], to
ensure data reliability and availability through the parallel I/O
system. The approach in [7] discussed granularity of
replication, which means the unit of data that may be replicated
independently of other units of data. For a replicated file
system, unit of data include a file, a record within a file. To
ensure synchronized file replication across two loosely
connected file systems, a transparent service for synchronized
replication across loosely connected file system is developed in
[11] that propagate the modification of replicated files and
directories from either file system.

The authors in [9] proposed file replication and migration
policy, by which the total mean response time for a requested
file at a particular site can be reduced. Similarly [1], propose an
adaptive file replication policy, which is capable of reacting to
changes, by dynamically creating or deleting replicas.

An approach has been proposed in [15] wherein the job
arrivals are characterized by correlation among their
dependencies. The author‘s have proposed a policy wherein the
migrated processes are queued based on the size of the
processes and even considers the autocorrelation among these.
The proposed approach does not consider the priority of
processes, which is the major limitation of the cited approach.

Zhang and Pande [16] discuss about minimization of the
transfer cost and define strategy as to which parts of the
program should migrate. Many of the researchers [17] have
tried to resolve issues like longer freeze time that may be due
to unavailability of competing resources but their approach
requires pre-fetching of memory pages for process transfer. A
hybrid load balancing policy underlying grid computing
environment [18] proposes a dispatcher and agent based
approach. The dispatcher performs maintenance, status
monitoring, node selection and assignment and adjustment task
for each node. The author‘s consideration of load balancing
restricts the system to the ‗‗join and leave‘‘ decision of nodes.
This suits P2P system but not CSCW. Dynamic Load
Balancing (DLB) [19] provides application level load
balancing using system agents and DLB agent. The approach
requires a copy of system agents on all the system so that DLB
agent may collect load information from these systems and
perform load balancing. The other contemporary work includes
grid load balancing using Intelligent Agents [20] that proposes
a combined approach using intelligent agents and multi-agents
for effectively scheduling the local and global grid resources
that also incorporate peer to peer advertisement and service
discovery to balance the workload. The approach requires a
copy of system agents on all system so that DLB agent may
collect load information from these systems and perform load
balancing. Yagoubi and Slimani [21] puts forward a dynamic
tree based model to represent grid architecture and proposes
Intra-site, Intracluster and Intra-grid load balancing. The
authors in [22] describe a small cluster along with efforts to
improve the efficiency of parallel scientific computation on
that cluster.

III. THE PROPOSED DEMAND BASED SERVICE REPLICATION

(DBSR) APPROACH

In the proposed Demand Based Service Replication (DBSR)
model, client nodes requests for files and the Service File
Replication Server replicates the service on other servers on
the basis of the number of requests it receives. A group of
such Service File Replicator Servers works in peer-to-peer
manner to provide the most updated version of file to clients
and to make the replication process smooth and non-
complicated.

Figure 1: The Proposed Demand Based Service Replication
(DBSR) Model

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

6 © 2013 GSTF

A. Data Structures Used:

To exchange the local information and to keep the
databases of peer servers update, each FRS maintains a
lookup table (cf. Table 1) and a local service table (cf.
Table 1).

1. Look-up Table

The lookup table contains the following entries:
Server IP: The Server_IP field typically contains the IP
address of peer servers.
Service_id: This field contains the Service_id of those
replicated services which are currently available on the
servers.
Last Update: The last update shows the last time when the
service was modified. If a table contains a new version of this
service, the server itself initiates the update process with the
peer server.

Table 1: Lookup Table Structure
Server_IP Service_id Last Update

2. Local Service Table

Each FRS constructs a Local Service Table, and regularly
updates it as a request for a cloud service reaches to it. It
contains three fields:
Service_id: This contains the Service_id of those services
which are available on the server.
Replica_Available: The number of replicas available for a
particular service.
Last Update: The last update shows the last time when the
service was modified.

Table 2: Local Service Table Structure
Service_id Last

Update
Replica_Available

Figure 2: Exchange of Lookup Table among Peer
Servers

B. DBSR Replication Mechanism

The DBSR Model works as follows:

The peer servers are connected with each other using mesh
topology. The Servers authenticate each other by finding a
certificate in common and testing to be sure that certificates are
authentic.
1. Replication is initiated by a server or a workstation in one of
the following ways:

 A client sends a request for a particular service to any of the
Service File Replication Server.

 A connection is established between server and client.
 If the requested service is available with the server, it sends

the replicated service to user.
 If the service is not available at server, it route the request to

the peer server that is available with the requested file.
2. Each SFRS constructs a lookup Table and Local Service
Table as discussed above.
3. Each server exchanges their lookup table with other servers
as shown in Figure 2.
4. When a server receives a request but is not capable of
fulfilling the request, it searches the lookup table and contacts
the peer server. The peer server sends its local service list to
requesting server. Upon receiving this table, if server finds that
any of the replicas is available, then it transfers the request to
this peer server. If no replica is available, then it immediately
contacts another peer server.

C. How Replication Works?

In order to keep the unused replicas into bin and migrating or
replicating the services on to peer servers whenever a burst of
requests come, following parameters are used (cf. Table 3).:

 Table 3: Parameters Proposed for Replication Algorithm

Parameters Explanation
Req_Count

(r1)
 The current number of requests for replica
of file f1

Min(r1) Minimum number of replicas of Service S1
that can reside on server Si

Max(r1) Maximum number of replicas of Service S1
that can reside on server Si

Avail_Rep(r1) Available number of replicas of Service S1
that are currently residing on server Si

loadbound Total load on the server Si computed as
Total number of requests for all services on
Si

loadmax Maximum load on the server Si that can be
handled

Case 1: For sharing the load of servers

The pseudo code for finding out when to replicate/migrate the
service on the peer server is as follow:
 If number of incoming requests on server for R1exceeds
(Avail_Rep (r1) - Min (r1)), then an alarm is raised by server
Si to handle sudden outburst of such requests in near future.
To cope up with this kind of situation, server Si asks its peer
server (Si+1) to share its local file table. If the number of
available replicas for R1 i.e. Avail_Rep(r1) lies somewhere in
between maximum(Max(r1)) and minimum (Min(r1)) number,
server Si knows where to route those requests. However, if
this condition fails then before migrating replica, it checks for
one more condition. In this case, the total load (in terms of
number of requests that are currently being processed) of the
system is measured against maximum number of request a
server can handle. If the peer server is found below loaded, the

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

7 © 2013 GSTF

replica migration takes place from Si to Si+1. If this condition
does not satisfy, the request is sent to next peer server (Si+2).
Lets, explains the same with an example where request for
service s1_4 comes to Server Si. It is assumed in all the cases
that all the machines are within load limit, means no server is
running on maximum load condition. The Avail_rep for service
s1_4 is only 2, the Req_Count =1, and Avail_Rep – Min (i.e. 2
-1 =1), hence request to share local file table is sent to peer
server Si+1. Although the first client simply allows
downloading the service but at that moment, the Avail_rep
becomes 1 and the corresponding update is propagated to Local
service table. Now if one more request comes the Req_Count
reaches to 2 that is greater than Avail_Rep – Min (i.e. 1 -1 =0),
hence immediately one available replica gets transferred to new
client, but simultaneously one of the service replica gets
migrated to new peer server. Since Si+1currently holds one
replica, any new request is entertained with peer server and in
the meanwhile time, more replicas can be created on peer
server or on the originating server.

Case 2: To update the Service File version

Whenever a look up table is exchanged among peer servers, all
servers check that if a new version of the service is available. If
any of the servers accommodates a new version of any service,
then all other servers pull the updated replica from server and
update the file version. This has to be noted down that like
traditional databases only changes are pulled. Here, an
updating procedure using an example where a service (s1_3)
has three versions on three different servers. However, during
periodic update when server gets to know that a latest version
is available on peer server, the request to pull these changes is
sent to peer server. The servers correspondingly acknowledge
the request and send a latest version of service file to requestor
server.

D. CPU Load based File Replication Mechanism

We consider a network of four Replicating Server (RS) which
are connected to each other via intercommunication network.
Each RS is assumed as the trusted node. In the proposed File
Replication Model as shown in Fig. 3, an underloaded RS can
fulfill the file request of the client whereas an overloaded RS
looks for an underloaded RS on which the file request can be
redirected. Average loaded RS are the ones which neither
redirect the file request nor serve the new file request, so as to
avoid getting overloaded. In order to reduce the overhead of
polling and broadcasting periodically, RS does not enquire
about the load status of all RS. Instead each RS sends its load
status information to other RS when it changes. RS only
monitors other RS status by its state table. Hence, RS never
takes the responsibility of various RS status. The Hybrid load
balancing algorithm works as follows:

If (CPU_Status(RS) changes then for RSi

{do (for all RSi+1; i=1, 2, 3…, n)
Send RSi status to all peer RSi+1 to update

their node status table}

If (CPU_Status (RS) (overloaded) ||
(file_request_count>=fileThreshold)
{Look for underloaded RS in node status table and Replicate
the requested file on an underloaded RS and redirect the
request to this underloaded RS}

The hybrid load balancing based file replication mechanism is
illustrated in Fig. 3.

Figure 3. File replication based on CPU load balancing

File replication strategy: Replicating Server (RS) will
replicate the file as follow:
1. The RS will check the CPU load, if it is overloaded, RS will
replicate the file on an underloaded node.
2. In case RS CPU load is average, but the file threshold has
been reached, RS will replicate the file on an underloaded
node.
Inter-cluster/Destination node selection: Proposed Selection
Strategy for choosing an idle workstation is based on the
following aspects: Least Busy RS First (LBRSF): On the basis
of the information provided by RS, overloaded RS may
choose least busy RS for file replication. This policy may
restrict replicating the file because of unavailability of
underloaded RS. Random Selection: An overloaded RS will
replicate the file randomly to any idle RS. The selection
criteria may be the availability of resources, memory
availability, network bandwidth, compatibility among system
and many other factors.

E. State Transition Diagram for Service Replication Service

The transition systems are considered to perform external and
internal actions. The State Transition Diagram for DBSR
Model has been shown in the Figure 4. The states are Start,
Connect, Receive, Analyze, Replicate, Send and the virtual
state Time Out. The meanings of states are as shown in Table
4.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

8 © 2013 GSTF

Figure 4: State Transition Diagram for DBSR Model

Table 4: States in Transition Diagram and their meanings
State Meaning

Start Represents the initial state from where client
attempts to establish a connection with Server

Connect When a successful connection gets establishes
between server and client.

Receive All incoming requests come to this state
Analyze It analyzes the incoming requests, responsible

for replica migration and dispatches the result to
send port. It also takes care of node crash and
timeout, upon receiving which it sends
appropriate message to send.

Replicate This state or extracts the replicates the service on
server as requested by Analyze state and
simultaneously also checks for node crash or
failure.

Send All outgoing results and messages are sent
through Send.

Time out A virtual state that keeps track of session failure
or time out and communicates with Analyze.

State Transition Definition: Let A be the finite alphabet of
observable actions whose element are denoted by a, b, c. let τ

be the symbol of unobservable or internal action, not
belonging to A. Then Act can be defined as A U {τ} and the

elements u, v… A U {τ} and w is the element of (A U {τ})*.

Transition system is quadruple A = (A, S, , S0), where,

 (a) A is an alphabet.

(b) S possibly infinite set of states; S {Start, Connect, Receive,
Analyze, Replicate, Timeout, Send}

 (c) → 𝜖𝑆𝑋(𝐴 ∪ {𝜏})𝑋𝑆

(d) S0= {Start}is initial state.

Let state S1, S2 range over S, then (S1, u, S2) will also be

denoted by 𝑆1

𝑢
→ 𝑆2 ,

 denotes transitive closure of .

Let w = u1, u2… un (A € {τ})*, then 'SS w if S1, S2, S3
…, Sn, Sn+1 € S such that,

𝑆 = 𝑆1

𝑢1
 𝑆2

𝑢2
 𝑆3

𝑢3
 ……𝑆𝑛

𝑢𝑛
 𝑆𝑛+1 = 𝑆 ′

State Transition Equations:

The start state initiates the communication by sending the
connection request to connect.

𝑆𝑡𝑎𝑟𝑡
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 _𝑅𝑒𝑞
 Connect (1)

𝐶𝑜𝑛𝑛𝑒𝑐𝑡
𝑆𝑒𝑟𝑣𝑖𝑐𝑒 _𝑅𝑒𝑞
 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 (2)

Once the connection gets established, the client request for a
particular service reaches to receive via connect. Upon
receiving this request, the request is put to analyze. The state
gives the list of server where this file is currently available. If
the service file is available with server, the analyze sends the
IP address of server to send from where file gets transferred to
client. If service file is not available then, a service replication
request is sent to Replicate, and a new replica is
created/migrated on peer server. The peer server ip from
replicate is sent to send. While replication, if one of the node
crashes or replication fails due to timeout, all server busy
message is sent to the client.

𝑅𝑒𝑐𝑒𝑖𝑣𝑒
𝑆𝑒𝑟𝑣𝑖𝑐𝑒 _𝑅𝑒𝑞
 𝐴𝑛𝑎𝑙𝑦𝑧𝑒 (3)

Analyze
𝑆𝑒𝑟𝑣𝑖𝑐𝑒 _𝑅𝑒𝑝 _𝑅𝑒𝑞
 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 (4)

 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒
𝑅𝑒𝑝 _𝑅𝑒𝑞 _𝑓𝑎𝑖𝑙
 𝐴𝑛𝑎𝑙𝑦𝑧𝑒 (5)

Analyze
𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ,𝑆𝑒𝑟𝑣𝑒𝑟𝐵𝑢𝑠𝑦
 𝑆𝑒𝑛𝑑 (6)

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒
𝑃𝑒𝑒𝑟𝑆𝑒𝑟𝑣𝑒𝑟 _𝑠𝑒𝑟𝑣𝑖𝑐𝑒
 𝑆𝑒𝑛𝑑

𝑠𝑒𝑟𝑣𝑖𝑐𝑒
 𝐶𝑜𝑛𝑛𝑒𝑐𝑡 (7)

𝐴𝑛𝑎𝑙𝑦𝑧𝑒
𝑆𝑒𝑟𝑣𝑒𝑟 _𝑠𝑒𝑟𝑣𝑖𝑐𝑒
 𝑆𝑒𝑛𝑑

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝐹𝑖𝑙𝑒
 𝐶𝑜𝑛𝑛𝑒𝑐𝑡 (8)

𝑆𝑒𝑛𝑑
𝐴𝑙𝑙𝑆𝑒𝑟𝑣𝑒𝑟𝐵𝑢𝑠𝑦
 𝐶𝑜𝑛𝑛𝑒𝑐𝑡

𝐴𝑙𝑙𝑆𝑒𝑟𝑣𝑒𝑟𝐵𝑢𝑠𝑦
 𝑆𝑡𝑎𝑟𝑡 (9)

IV. SIMULATION AND RESULTS

The proposed model is simulated on JAVA platform. DBSR
approach is compared with Request Reply Acknowledgement
(RRA) [12] and Request Reply (RR) protocol [12]. It
outperforms RRA and RR protocol in terms of replication.
Given below are the details and possible cases for better
understanding of DBSR approach.

Table 5: Number of messages exchanged per request
Service File Replication Total number of Messages

DBSR RR RRA
Case 1 Replica

available on
peer server

2n+4 2n+6 3n+9

Case 2 New replica
created

2n+6 2n+10 3n+15

Table 5 shows the comparison of the DBSR approach in terms
of messages exchanged per request with the existing RR and
RRA protocol.

Case 1: Replica available on peer server and Case 2: New
replica created, for DBSR, RR and RRA protocol. In RR and
RRA protocol, there is no routine mechanism for getting the
IP address of the peer server on which the file is replicated, as
compared to DBSR approach. In case of RR and RRA
protocol, new FRS and ip_Req message, will provide the IP
address of peer node having the copy of replicated resource.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

9 © 2013 GSTF

Table 6 shows Case1 where the communication is established
between only those peer server on which the file is present.
Here 0≤n≤i. It shows the data for n=1.
Case 1 Is treated as the special case of replication scenario, if
the replica for the requested file is available on a peer node. So
the number of messages exchanged will get reduced to eight
and twelve respectively for RR and RRA protocol.
Case 2 In this case the communication is established between
only those peer server on which the file is not present. Here 1
≤n≤i. It shows the data for n=1.
Based on the total number of messages exchanged for
successfully completing the request for file list, transfer and
replication request, it is established that DBSR approach runs
well for file list and transfer request. It outperforms the other
two protocols, when used for file replication. In terms of total
number of messages exchanged, DBSR approach shows
significant performance improvement, for file replication
request, as compared to file list and transfer request.

V. CONCLUSION

Cloud computing has been used as an extension of parallel
processing. Coordinating various computing resources to achieve
bigger task is the key of cloud computing. In this paper, we propose a
demand and load balancing based file replication model that makes
an attempt to create a replica only when the number of requests
exceeds than a pre-defined threshold. The threshold can be taken on
the basis of server configuration. Of the emerging technologies cloud
computing has a lot of substance. The huge set of challenges it has
brought with it has to be captured and tamed to produce more
benefits. The proposed approach is able to resolve many of the
unaddressed issues viz., selection criteria of node for replica
placement, failure handling, file popularity based replication and
avoidance of unnecessary file replication. Instead of haphazardly
creating the replica, Demand Based Service replication approach
(DBSR), autonomously determine the need for service file replication
based on the number of requests, maximum number of replicas a
server may possess and availability of files on the peer nodes. The
proposed replication approach ensures accurate decision making
while locating the resources and fetches them to fulfill the request in
a transparent manner. While performing some service replication
operation, if the node crashes, the DBSR model makes an attempt to
complete the file request via peer node thus providing fault tolerance
capability to the system. DBSR approach provides service
replication, access and performance transparency to the system,
thereby ensuring the replication decisions about the services. Results
indicate that, threshold based services replication approach reduces
the number of messages exchanged for service replication by 25-
55%. Also in case of CPU load based file replication, it is observed
that file access time reduces by 5.56%-7.65%. It establishes that
DBSR approach runs well for file list and transfer request. It
outperforms the other two protocols, when used for file replication. In
terms of total number of messages exchanged, DBSR approach
shows significant performance improvement, for service file
replication request, as compared to file list and transfer request in
comparison to request reply and request reply acknowledgement
protocol, thus minimizing the network resource utilization. We
believe it will shift the operational paradigm of the collaborative
business process.

REFERENCES

[1] G. Cabri, A. Corradi, F. Zambonelli, ―Experience of Adaptive

Replication in Distributed File Systems‖, IEEE Proc. of 22nd
EUROMICRO Conf. on Beyond 2000, Hardware and Software Design
Strategies, 1996, pp. 459-466.

[2] H.Y Cheng, C.T. King, ― File Replication for Enhancing the Availability
of Parallel I/O Systems on Clusters‖, 1st IEEE Computer Society Int.
Workshop on Cluster Computing, 1999, pp. 137-144.

[3] I. Clarke, O. Sandberg, B. Wiley, T. Hong, ―Freenet: A distributed
anonymous information storage and retrieval system‖,2000.

[4] E. Cohen, S. Shenker, ―Replication strategies in unstructured peer-to-
peer networks‖, In The ACM SIGCOMM'02 Conference, August 2002.

[5] J. Gwertzman, M. Seltzer, ―The case for geographical push-caching‖,
5th Annual Workshop on Hot Operating Systems, 1995.

[6] S. Helen, IRM: Integrated file replication and consistency maintainence
in P2P Systems, IEEE Trans. on Parallel and Distributed Systems, Vol.
21, No. 1, January 2010, pp. 100-113.

[7] A. Hisgen, et al. ―Granularity and semantic level of replication in the
Echo distributed file system‖, Workshop on the Management of
Replicated Data, 8-9 Nov 1990, pp.2-4.

[8] S. Hitoshi, S. Matsuoka, T. Endo, ―File Clustering Based Replication
Algorithm in a Grid Environment‖, 9th IEEE/ACM Int. Sym. on Cluster
Computing and the Grid, 2009, pp. 204-211.

[9] R.T. Hurley, S.A. Yeap, ― File migration and file replication: a
symbiotic relationship‖, IEEE Trans. on Parallel and Distributed
Systems, Vol. 7, No. 6, June 1996, pp. 578-586.

[10] Q Lv et al., ―Search and replication in unstructured peer-to-peer
networks‖, In Proceedings of the 16th ACM International Conference
on Supercomputing, New York, USA, June 2002.

[11] H. Rao, A. Skarra, ―A transparent service for synchronized replication
across loosely-connected file systems‖, 2nd International Workshop on
Services in Distributed and Networked Environments, 5-6 Jun 1995,
pp.110-117.

[12] A. Z. Spector, ― Performing remote operation efficiently on a local
computer Network‖, Communications of the ACM, Vol. 25, No. 4,
1982, pp. 246-259.

[13] X. Tang, C. Huicheng, S.T. Chanson, ―Optimal Replica Placement under
TTL-Based Consistency‖, Parallel and Distributed Systems, IEEE
Transactions on , vol.18, no.3, March 2007, pp.351-363.

[14] O. Wolfson, S. Jajodia, Y. Huang,,―An adaptive data replication
algorithm‖, ACM Transactions on Database Systems, 22(2):255–314.

[15] Q. Zhang, N. Mi, A. Riska, E. Smirni, Load unbalancing to improve
performance under autocorrelated traffic, in: Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems,
2006.

[16] K. Zhang, S. Pande, Efficient application migration under compiler
guidance, in: Proceedings of the 2005 ACM SIGPLAN Conferences on
Languages, Compilers, and Tools for Embedded Systems, 2005.

[17] R.S.C. Ho, Cho-Li Wang, F.C. Lau, Lightweight process migration and
memory prefetching in openMosix, in: IEEE International Symposium
on Parallel and Distributed Processing IPDPS, 2008.

[18] K.Q. Yan, et al., A hybrid load balancing policy underlying grid
computing environment, Journal of Computer Standards & Interfaces
(2007) 161–173.

[19] R.U. Payli, et al., DLB—a dynamic load balancing tool for grid
computing, Scientific International Journal for Parallel and Distributed
Computing 07 (02) (2004).

[20] Junwei Cao, et al., Grid load balancing using intelligent agents, Future
Generation Computer Systems 21 (1) (2005) 135–149.

[21] Yagoubi, Y. Slimani, Task load balancing for grid computing, Journal of
Computer Science 3 (3) (2007) 186–194.

[22] A. Silberchatz, P.B. Galvin, G. Gagne, Operating System Concepts, 8th
ed., Wiley Sons, 2008.

GSTF Journal on Computing (JoC) Vol.2 No.4,January 2013

10 © 2013 GSTF

