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Abstract—We derive the conceptual link between dance 
choreography and other significant problems in computer 
science, mathematics, and operations research. Dance 
choreography problems, formulated as decision problems, 
are shown to be NP-Complete. The corresponding 
optimization problems are shown to be NP-Hard and NP-
Easy, and hence NP-Equivalent. We discuss the rationale 
behind these classifications, and evaluate various 
algorithmic solutions and their implementations. 
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I.  INTRODUCTION 
For several decades now, very many significant 

computational problems have been continually identified for 
which efficient solutions have never yet been found. In 1971, 
Stephen A. Cook theorized a formal framework within which 
to classify such problems when he formulated the NP-
Complete concept, and identified the first NP-Complete 
problem, the Boolean Satisfiability problem (SAT) [1]. Since 
then, the NP-Complete equivalence class of problems has 
expanded steadily. Thanks to contributions from various 
researchers, this class now contains thousands of important and 
interesting problems. These NP-Complete problems share a 
common property: should an efficient solution for any one NP-
Complete problem be found, an efficient solution for all such 
problems is automatically assured. In this paper, we formulate 
a number of NP-Complete problems in the domain of Dance 
Choreography, and link them conceptually to other 
computational problems in diverse realms, such as computer 
science itself, mathematics, and operations research.  

In the following sections, we describe the complexity 
classes NP-Complete, as well as NP-Hard, and NP-Easy. We 
then define some Dance Choreography problems and classify 
them accordingly, and argue for the case for putting them on 
par with other significant problems. Two algorithmic 
approaches to solving such problems are then discussed, with 
some illustrative experimental data. Finally, we describe a 
software implementation of some of the problems classified, 
showcasing some of its features.  

II. COMPLEXITY THEORY 
Cook’s seminal paper sparked a debate that is to this day 

unresolved: the question whether or not the set of problems 
that can be solved in polynomial time with respect to problem 
size is equal to the set of problems whose solution can be 
verified in polynomial time if a non-deterministic solution is 
derived, i.e., the question whether P = NP. We now discuss 
some complexity categories currently researched, define dance 

choreography problems that belong in these categories, and 
show how they not only conceptually link to, but can also be 
used to solve other similarly complex problems. 

A. NP, NP-Complete, NP-Hard, NP-Easy, NP-Equivalent 
Complexity Classes 

It is important to distinguish between the notion of sets of 
problems and the notion of algorithmic solutions to these 
problems. All the terms we are describing here refer to the 
former, although when we state that a certain problem is 
solvable using a certain time metric, we are referring to the 
performance of the best algorithm that has been discovered for 
that problem. These problem categories are based on the 
difference between efficient and non-efficient algorithm 
solutions available for the respective problem. All algorithms 
that are capable of solving a problem within a polynomial time 
factor with respect to input size of the problem are regarded as 
efficient; all algorithms not so capable, and take exponential 
time in the worst case, are not regarded as efficient. Problems 
for which it can be shown that no efficient algorithm is 
available for their solution are known as intractable problems. 
The NP- complexity classes we shall now discuss belong in 
that gray area where so far no known efficient algorithms exist 
for the problems in these classes, but these problems are yet to 
be proven intractable. To this day, no one knows if such a 
proof is even possible.  

The concept of non-determinism is used frequently in 
computational science. It is a convenient conceptual device for 
considering the solution potential of an algorithm by 
suspending certain requirements, such as a concrete solution 
process. In all the classes in which we are concerned, the N- 
prefix refers to this non-deterministic aspect of the solution 
process. Thus, one way to characterize NP problems is that 
solution verification in polynomial time is possible, given a 
non-deterministically derived solution.  

Furthermore, some NP problems are also NP-Complete. 
They are called NP-Complete because they possess the 
additional property mentioned in the introductory section of 
this paper, viz., that an efficient (i.e., polynomial-time) 
algorithmic solution for any one of the NP-Complete problems 
ensures an efficient solution for all NP-Complete, as well as 
NP, problems. Informally, every NP-Complete problem is at 
least as “difficult” to solve as all other NP problems. The 
solution to NP-Complete problems plays a key role in the 
question of P and NP equivalence.  

NP-Complete problems encompass decision problems. 
Such problems are those that require a binary response 
(yes/no). We can further define the NP-Hard, NP-Easy, and 
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NP-Equivalent categories. These latter categories encompass 
more general problems that do not necessarily require a binary 
response. An NP-Hard problem is often an optimization 
problem related to an NP-Complete decision problem (see the 
next section for some examples). Informally, an NP-Hard 
problem is at least as “difficult” again as an NP-Complete 
problem. Quite often, an NP-Hard problem can be shown to be 
NP-Easy, meaning it is no more “difficult” to solve than any 
NP problem. This is the case for many optimization problems, 
such as the ones defined below. A problem that is shown to be 
both NP-Hard and NP-Easy is, by definition, NP-Equivalent. 
This implies that the decision problem and the related 
optimization problem that have been categorized as NP-
Complete, and NP-Hard/Easy, respectively, are “equivalent” 
from the efficiency aspect. Many advanced texts are available 
for further discussion of this fascinating topic [3, 9].  

B. Complexity of Dance Choreography Problems  
We introduce several dance choreography problems and 

classify them into the above complexity classes. The aim is to 
link these problems, from a solution efficiency standpoint, to 
other problems in diverse domains of computing, such as 
computer science, mathematics, and operations research.  

First we define a relatively specialized dance 
choreography decision problem (DC), and prove it is NP-
Complete by restricting it to a known NP-Complete problem. 
Then we define a more general version of the dance 
choreography decision problem (DCk). This latter problem is 
in turn shown to be NP-Complete by restricting it to the 
previously proven NP-Complete problem DC. We then define 
optimization versions of these problems, and show that these 
are NP-Hard. We also show that one of these NP-Hard 
problems is also NP-Easy, and hence, NP-Equivalent.  

DANCE CHOREOGRAPHY (DC) 
 
INSTANCE:   
 A finite set Figures;  
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;  
 n ∈ ;  
  fstart, fend ∈ Figures;  
 a set Compulsory ⊆ Figures.  
 
QUESTION:   
 Is there a sequence Amalgamation = ‹f1, f2, …, fn›,  
  fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow, 1 ≤ j < n 
 such that  
   f1 = fstart and fn = fend  
 and  

 {fi : 1 ≤ i ≤ n} ⊇ Compulsory? 
 
This problem can be proven to be NP-Complete by 

showing (a) that it is in NP, and (b) that another, previously 
proven, NP-Complete problem can be transformed into it in 
polynomial time.  

The first part of the proof, showing that it is in NP, i.e., 
that a non-deterministically obtained solution (if one is 

available) is verifiable in polynomial-time, is trivial. This 
process simply involves checking that the figures used in the 
amalgamation are valid with respect to Follow, that they are all 
contained in Compulsory, and that the first and last figures are 
as specified in the problem instance. Since similar processes 
are involved in the proofs of other Dance Choreography 
decision problems presented below, they are omitted in these 
other proofs.  

In the second part of the proof, we select a known NP-
Complete problem, called the HAMILTONIAN CIRCUIT 
(HC) [9], and show that it is many-one reducible to DC (HC 
∝ DC). The proof technique used here is that of restriction [5]. 

HAMILTONIAN CIRCUIT (HC) 
 
INSTANCE:   
 A graph G.  
 
QUESTION:   
 Does G have a Hamiltonian Circuit (simple cycle 
 containing all the vertices)? 
 
THEOREM 1: DC is NP-Complete. 
 
PROOF: Restrict to HC: Make n = |Figures| + 1, Compulsory = 
Figures, fstart = fend. ♦ 
 

In order to define conveniently a related optimization 
problem, we modify DC slightly by introducing the notion of 
distinctness of figures used in an amalgamation, resulting in the 
problem we call Dance Choreography k (DCk). The modified 
problem is defined as follows, and shown also to be NP-
Complete (DC ∝ DCk):  

DANCE CHOREOGRAPHY k (DCk) 
 
INSTANCE:   
 A finite set Figures;  
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;  
 n ∈ ;  
  fstart, fend ∈ Figures;  
 a set Compulsory ⊆ Figures;  
 k ∈ 0.  
 
QUESTION:   
 Is there a sequence Amalgamation = ‹f1, f2, …, fn›,  
  fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈  Follow,  
   1 ≤ j < n 
  such that  
    f1 = fstart and fn = fend  

 and 
  {fi : 1 ≤ i ≤ n} ⊇ Compulsory 
 and 
  k ≤ |{distinct elements f1, .. fn}| ? 
 

THEOREM 2: DCk is NP-Complete. 
 
PROOF: Restrict to DC: Make k = 0. ♦ 
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We are now able to define the optimization version of 
DCk, which we call Dance Choreography Optimization 
(DCO), a modification of the decision problem. This problem 
is shown to be NP-Hard.   

DANCE CHOREOGRAPHY OPTIMIZATION (DCO) 
 
INSTANCE:   
 A finite set Figures;  
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;  
 n ∈ ;  
  fstart, fend ∈ Figures;  
 a set Compulsory ⊆ Figures.  
 
QUESTION:   
 What is the optimal Amalgamation = ‹f1, f2, …, fn›,  
  fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈  Follow,  
  1 ≤ j < n,  
  in the sense that |S| is maximal,  
   where S = {distinct elements f1, .. fn};  
 that satisfies  
   f1 = fstart and fn = fend  
 and  

 {fi : 1 ≤ i ≤ n} ⊇ Compulsory? 
 

In this definition, the optimality measure is that of set 
cardinality: the more varied the figures used in the 
amalgamation, the better. Informally, the optimization problem 
is one of maximizing the variety of figures used. We can show 
that this problem is NP-Hard by describing a Turing reduction 
from an NP-Complete problem, such as DCk, i.e., DCk ∝T 
DCO.   

THEOREM 3: DCO is NP-Hard. 
 
PROOF: DCk is Turing-reducible to DCO in the following 
manner: Let max be the optimal solution for an instance of 
DCO, where max = |{f1, .. fn}|. Then, the answer for an 
instance of DCk is “yes” if k ≤ max, “no” otherwise. ♦ 

DCO is specialized in that the only optimality measure is 
cardinality of the set of figures used in the amalgamation. The 
problem can be generalized through the optimality measure. In 
other words, other optimality measures could be included and 
brought under a general optimality measure, defined by a 
fitness function F: {‹f1..fn›} → 0. We call this version Dance 
Choreography Optimization 2 (DCO2), which is also NP-Hard 
because DCO ∝T DCO2. In the following sections, we discuss 
algorithmic implementations of DCO2. These implementations 
offer various specific optimality measures: “No preference” 
(meaning no optimality measure is in place, so all valid 
amalgamations are considered equally good), “Variety” 
(essentially the optimality measure used by DCO), 
“Simplicity,” and “Repetition avoidance” (see fig. 6 below).  

DANCE CHOREOGRAPHY OPTIMIZATION 2 (DCO2) 
 
INSTANCE:   
 A finite set Figures;  
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;  

 n ∈ ;  
  fstart, fend ∈ Figures;  
 a set Compulsory ⊆ Figures;  
 a function F: {‹f1, f2..fn›} → 0.  
 
QUESTION:   
 What is the Amalgamation = ‹f1, f2, …, fn›,  
  fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈  Follow,  
  1 ≤ j < n,  
 that satisfies  
   f1 = fstart and fn = fend  
 and  
  {fi : 1 ≤ i ≤ n} ⊇ Compulsory 
 for which F (‹f1, f2, …, fn›) is maximal?  

  
THEOREM 4: DCO2 is NP-Hard. 
 
PROOF: An algorithmic solution with specialization of the 
evaluation function F of DCO2 to compute set cardinality 
provides the solution to DCO. ♦ 

We now show that the optimization problem DCO is NP-
Easy, and hence, NP-Equivalent. To facilitate our task, we first 
define yet another decision problem that is a modification of 
DCk, Dance Choreography Extension (DCE):  

 
DANCE CHOREOGRAPHY EXTENSION (DCE) 

 
INSTANCE:   
 A finite set Figures;  
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;  
 n ∈ ;  
  fstart, fend ∈ Figures;  
 a set Compulsory ⊆ Figures;  
 k ∈ 0; 
 a partial amalgamation ‹f1, f2, …, fm›, m ≤ n,  
  fi ∈ Figures, 1 ≤ i ≤ m, ‹ fj, fj+1 › ∈  Follow,  
  1 ≤ j < m. 
 
QUESTION:   
 Can the partial amalgamation be extended to length n, i.e., 
  ‹f1, f2, …, fm,…, fn›,  
  fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈  Follow,  
   1 ≤ j < n 
  such that  

   f1 = fstart and fn = fend,  
  {fi : 1 ≤ i ≤ n} ⊇ Compulsory, and 

   k ≤ |{distinct elements f1, .. fn}|? 
 

The optimization problem DCO can now be shown to be 
NP-Easy by showing how it is polynomial-time Turing 
reducible to DCE.  

THEOREM 5: DCO is NP-Easy. 
 
PROOF: We show that DCO is polynomial-time Turing 
reducible to DCE (DCO ∝T DCE) in two stages, both of which 
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can be accomplished in polynomial time. Let DCEAlg be a 
hypothetical polynomial-time algorithm for DCE. (a) A binary 
search (a polynomial-time process) for the best score (k), 
bounded by cardinality of the set of figures used (n), can be 
performed using DCEAlg. (b) To determine the actual 
amalgamation, we call DCEAlg no more than (n–1)(n–2) times 
if a solution exists. This is also is a polynomial-time process. 
Hence the reduction from DCO to DCE is a polynomial-time 
Turing reduction. ♦ 
 

Similar arguments can be advanced for the classification 
of the other optimization problems defined here. In our present 
case, since DCO is both NP-Hard (Theorem 4) and NP-Easy 
(Theorem 5), it is, by definition, NP-Equivalent. We have seen 
that finding an efficient solution for DCO automatically 
ensures an efficient solution for DCk. Now we find that the 
reverse is also the case, i.e., since DCE is in NP and DCk is 
NP-Complete, we can claim DCE ∝ DCk. Thus, we can use an 
efficient solution for DCk (if one were ever to be discovered) 
to solve DCO efficiently as well. In fact, the reductions we 
have shown during the various proofs form many cycles in a 
transformation graph, such as the one shown in fig. 1. 

DC DCk DCO
DCO2

DCE

∝ ∝ ∝Τ
∝Τ

∝Τ

∝

HC

 
Figure 1. Transformation sequence of dance NP problems. 

Among other things, this shows that we do not lose 
generality in dealing with only the decision versions of an 
optimization problem. For practical reasons, however, it is 
more useful to use the optimization versions of the problems, 
especially if we intend to implement algorithmic solutions to 
these problems.  

In general, all the dance choreography problems here 
defined (including DCE, which, incidentally, can also be 
shown to be NP-Complete) are conceptually connected to all 
other NP-Complete problems, those known and those yet to be 
discovered. It is entirely possible, for example, that in the 
future these dance choreography problems may be used to 
prove that a newly identified problem is NP-Complete or NP-
Hard.  

C. A Solution Procedure For NP Problems 
Besides accomplishing their theoretical purpose of 

establishing the complexity classes of computational problems, 
these proofs also furnish transformational descriptions that are 
useful in actually solving these problems. For example, any 
instance of the HAMILTONIAN CIRCUIT problem (HC) can 
be solved by transforming it into an instance of the Dance 
Choreography problem (DC), along the lines described in the 
NP-Completeness proof of the latter. Incidentally, another 
well-known computational problem, the so-called 
TRAVELING SALESMAN problem (TS), also used HC to 
prove that it was NP-Complete. Thus, HC can also be solved 
using a solution to TS. The key unanswered question is 

whether the solution of these problems can be accomplished 
efficiently.  

Example 1. An instance of DC is shown in fig. 2. The 
graph on the left represents a simplified hypothetical syllabus 
of four figures (R[ight] F[oot] Closed Change, L[eft] F[oot] 
Closed Change, Reverse [Turn], and Natural [Turn]) with their 
permissible interactions. By imposing the constraints n = 
|Figures| + 1 and Compulsory = Figures, fstart = fend, this 
instance becomes also one of HC. Thus, the same algorithmic 
solution to DC problems can be used to solve HC problems. 
The graph on the right represents a solution to the present 
instance (the dark arcs indicate a possible amalgamation). 

RF Closed 
Change

LF Closed 
Change

NaturalReverse

RF Closed 
Change

LF Closed 
Change

NaturalReverse

 
Figure 2. Solution of a DC and HC problem instance. 

In a paper published soon after Cook’s, Karp introduced 
twenty-one new NP-Complete problems. Among them was 
VERTEX COVER (VC), which Karp proved was NP-
Complete by showing how an instance of it could be 
transformed to one of HC, thus showing that a solution for the 
latter could be used to solve the former [9]. Both VC and HC 
are graph theory problems, but these can be used to solve 
propositional logic problems as well, such as the 3-
SATISFIABILITY problem (3SAT). This problem in turn was 
proven NP-Complete by transformation of the 
SATISFIABILITY problem (SAT). As noted above, SAT was 
in fact the first ever proven NP-Complete problem: Cook 
proved it to be so by showing that an instance of any NP 
problem was transformable to an instance of it [1].  

Therefore, if direct transformations are not readily 
available, an instance of any NP problem can be solved by first 
transforming it into an instance of SAT using the procedure 
outlined by Cook, which in turn can be transformed eventually 
into an instance of any NP-Complete problem for which an 
algorithmic solution is available. The practical application of 
the conceptual link between dance and other significant 
computational problems should now be apparent (fig. 3).    

SAT 3SAT VC HC DC

TS
np ∈ NP

É

É

 
Figure 3. General transformation sequence of NP problems. 

D. Exhaustive and Heuristic Algorithms for Dance 
Choreography 
Procedures designed to solve problems such as the dance 

choreography problem are potentially very time consuming, 
unless some concessions are made. If we insist on perfect 
solutions, the procedure involved could become very 
impractical once the problem reaches a certain size. In the case 
of the dance choreography problem, once the number of figures 
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required, called the amalgamation length, exceeds about ten, 
things very quickly go haywire.  

The Exhaustive algorithm is one that tries to investigate 
every eventuality, by using a backtracking process in the 
search. In our implementation, we pruned the search tree as 
soon as a figure was reached that could not be followed. Even 
so, very many possibilities arise exponentially as the 
amalgamation length increases. The NP-Complete theory 
outlined above warns us that it is futile, at the present, to 
investigate more efficient procedures while requiring perfect 
results.  

Example 2. As an indication of the exponential increase in 
computing time, we show what can happen as we attempt to 
create amalgamations of increasing length. We ran the 
Exhaustive algorithm to search for amalgamations of 
increasing length from one to twelve figures. The figures were 
chosen from our proprietary Quickstep syllabus. To ensure a 
uniform start, the opening figure in each trial was the figure 
called “Quarter Turn to the Right.” No ending figure was 
specified for any of the amalgamations. The optimality 
measure was as defined in DCO, which is the degree of variety 
of figures: within the specified length of the amalgamation, 
preference was given to those amalgamations comprising as 
many different figures as possible; the optimality values are 
normalized to the interval [0..10]. The “optimal” column refers 
to the number of optimal amalgamations found under this 
measure for that particular amalgamation length; the 
“suboptimal” column refers to all other otherwise valid 
amalgamations found. The experiment was performed on a 2.3 
GHz  Intel Core i5 processor. Processing time was measured in 
clock ticks (60 clock ticks equal one second). As Table I 
shows, processing time increased exponentially with increasing 
amalgamation length. ♦ 

TABLE I. PERFORMANCE OF THE EXHAUSTIVE ALGORITHM (QUICKSTEP) 

length time optimal suboptimal total 
1 <1 1 0 1 
2 <1 5 0 5 

3 <1 22 1 23 
4 1 64 12 76 
5 4 233 94 327 
6 21 792 501 1293 
7 95 2612 2732 5344 
8 424 8198 13576 21774 

9 1880 24431 64879 89310 
10 8323 68431 296896 365327 
11 36586 178856 1317186 1496042 
12 161291 436003 5687687 6123690 

 

Fine-tuning tactics in an Exhaustive search, such as 
pruning of the search tree mentioned above, will still result in 
exponential running time in the worst case. Fortunately 
however, problems such as these do benefit from less idealistic 
procedures. These procedures make use of various problem-
specific heuristics, and are often the most practical solutions 
for non-trivial problem sizes.  

A well-known heuristic approach is the so-called Greedy 
algorithm. There is no moral attachment to the name of this 
algorithm: it merely suggests that a search guided by the 
concept of the “best” choice is attempted, with no intent to 
backtrack, as happens in the Exhaustive algorithm. In our 
implementation of the Greedy algorithm, the amalgamation is 
built figure-by-figure, and the next figure chosen in the 
sequence is the one that appears the most promising with 
respect to the fitness function, as defined in DCO. Once a 
figure is chosen, there is no turning back, i.e., there is no 
backtracking. As a result, the Greedy algorithm runs much 
faster than does the Exhaustive algorithm, at the risk of 
producing non-optimal results (Example 3).  

Example 3. The results of the application of the Greedy 
algorithm to the same parameters as in Example 2 are shown in 
Table II. The same fitness function, as defined in DCO, was 
used. The “time” column shows the clock ticks; the “fitness” 
column shows the optimality measure, with values in the range 
[0..10]. Note that the speed trade-off is in the quality of 
amalgamations: not all the amalgamations were optimal 
compared to the results obtained by the Exhaustive algorithm. 
Nevertheless, an overall acceptable quality was obtained in this 
and several other trials not shown here. The running time was 
drastically shortened, however. ♦  

TABLE II. PERFORMANCE OF THE GREEDY ALGORITHM (QUICKSTEP) 

length time fitness 
1 <1 10 
2 <1 10 
3 <1 10 
4 <1 10 
5 1 10 
6 1 10 
7 1 10 
8 1 10 
9 1 9.4 
10 1 9.0 
11 1 8.6 
12 1 8.3 

 
Besides the Greedy algorithm, other heuristics-based 

algorithms could be used. One promising method is the Genetic 
Algorithm. We have used this approach in the NP-Hard music 
composition problem of Species Counterpoint [6]. Smart 
modifications to the Exhaustive algorithm are also possible, for 
example, the branch-and-bound technique to implement best-
first searching. 

III. MULTIMEDIA DANCE SOFTWARE 
Terpsichore© is a multimedia-based interactive computer 

software for dance training and education, copyrighted on July 
1, 2011 (Registration Number TXu 1-762-479) [4]. It 
generates ballroom dance amalgamations based on figures 
formalized by various International Standard dance 
associations: DVIDA (Dance Vision International Dance 
Association), IDTA (International Dance Teachers’ 
Association), and ISTD (Imperial Society of Teachers of 
Dancing) [2, 7, 8]. Based on structural and pedagogical 
considerations, we have compiled our own syllabus by 
grouping these dance figures into three categories: 
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“Foundational,” “Intermediate,” and “Advanced.” We now 
describe some features of Terpsichore© related to 
implementations of the problems defined above.  

A. Simplified Implementation of the Optimization Problem 
Using the Exhaustive and Greedy Algorithms  
Two simplified implementations in our software using the 

Exhaustive algorithm omit the Compulsory set specification. 
One enables specification of both fstart and fend, while the other 
omits the specification of fend. In fig. 4, they are labeled 
“Thorough Search (with specified starting and ending figures)” 
and “Thorough Search (with specified starting figure),” 
respectively. The latter implementation was used to generate 
the output shown in Table I.  

Similarly, two simplified implementations using the 
Greedy algorithm are labeled “Quick Search (with specified 
starting and ending figures)” and “Quick Search (with specified 
starting figure),” respectively (fig. 4). The latter 
implementation was used to generate the output shown in 
Table II. 

B. Full Implementation of the Optimization problem Using 
the Exhaustive Algorithm  
The various components of the generalized optimization 

problem described above (DCO2) are realized as follows. The 
Exhaustive algorithm that implements this problem is called 
“Thorough Search (with specified required figures)” (fig. 4). 
The user selects a finite set Figures, specifies fstart and fend from 
our proprietary syllabus (fig. 5), specifies the amalgamation 
length, n, determines the evaluation function F (fig. 6, showing 
the “Variety” criterion), and chooses a set of Compulsory 
figures (fig. 7).  

Example 4. With the settings as shown in figs. 2, 3, 4, and 
Compulsory = ∅, 30 optimal and 33 suboptimal Quickstep 
amalgamations were found (fig. 8 shows one of these optimal 
amalgamations). Note that fixing the ending figure, fend, results 
in far fewer amalgamations, compared to the number found in 
the corresponding setting shown in Table I. ♦  

Example 5. With the settings as shown in figs. 2, 3, 4, and 
5 (two figures chosen for the Compulsory set: “Progressive 
Chassé” and “Natural Spin Turn”), only 9 optimal and 0 
suboptimal amalgamations were found (fig. 9). Not 
surprisingly, with the added restriction imposed by the 
compulsory figures, the overall number of optimal 
amalgamations is substantially less than that in Example 4. ♦ 

 

 

Figure 4. Implementations of dance choreography problems. 

 

Figure 5. Figures, fstart, fend selections. 

      

 Figure 6. n, F selections.  Figure 7. Compulsory figures selection.  

            

Figure 8. Output for Compulsory = ∅.     Figure 9. Output for |Compulsory| = 2.  

IV. CONCLUSION 
We have formulated several Dance Choreography problems 

and shown them to be variously NP-Complete, NP-Hard, and 
NP-Easy. The significance of these classifications lies in their 
relatedness to problems in computer science, mathematics, and 
operations research. We evaluated various algorithmic 
solutions to these problems, as implemented in our software, 
Terpsichore©.  

Terpsichore© was designed to be extensible and portable. 
Therefore, we intend to pursue future software development 
along those lines. Theoretically, more such problems can be 
formulated, and we intend to make further relations apparent, 
not only between dance problems, but also to problems in 
related performing arts, such as music composition.  
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