
The Complexity of Dance Choreography Procedures
Nigel Gwee, Southern University and A&M College

Abstract—We derive the conceptual link between dance
choreography and other significant problems in computer
science, mathematics, and operations research. Dance
choreography problems, formulated as decision problems,
are shown to be NP-Complete. The corresponding
optimization problems are shown to be NP-Hard and NP-
Easy, and hence NP-Equivalent. We discuss the rationale
behind these classifications, and evaluate various
algorithmic solutions and their implementations.

Keywords-software; NP-Complete; NP-Hard; NP-Easy; NP-
Equivalent; ballroom; dance; software engineering

I. INTRODUCTION
For several decades now, very many significant

computational problems have been continually identified for
which efficient solutions have never yet been found. In 1971,
Stephen A. Cook theorized a formal framework within which
to classify such problems when he formulated the NP-
Complete concept, and identified the first NP-Complete
problem, the Boolean Satisfiability problem (SAT) [1]. Since
then, the NP-Complete equivalence class of problems has
expanded steadily. Thanks to contributions from various
researchers, this class now contains thousands of important and
interesting problems. These NP-Complete problems share a
common property: should an efficient solution for any one NP-
Complete problem be found, an efficient solution for all such
problems is automatically assured. In this paper, we formulate
a number of NP-Complete problems in the domain of Dance
Choreography, and link them conceptually to other
computational problems in diverse realms, such as computer
science itself, mathematics, and operations research.

In the following sections, we describe the complexity
classes NP-Complete, as well as NP-Hard, and NP-Easy. We
then define some Dance Choreography problems and classify
them accordingly, and argue for the case for putting them on
par with other significant problems. Two algorithmic
approaches to solving such problems are then discussed, with
some illustrative experimental data. Finally, we describe a
software implementation of some of the problems classified,
showcasing some of its features.

II. COMPLEXITY THEORY
Cook’s seminal paper sparked a debate that is to this day

unresolved: the question whether or not the set of problems
that can be solved in polynomial time with respect to problem
size is equal to the set of problems whose solution can be
verified in polynomial time if a non-deterministic solution is
derived, i.e., the question whether P = NP. We now discuss
some complexity categories currently researched, define dance

choreography problems that belong in these categories, and
show how they not only conceptually link to, but can also be
used to solve other similarly complex problems.

A. NP, NP-Complete, NP-Hard, NP-Easy, NP-Equivalent
Complexity Classes

It is important to distinguish between the notion of sets of
problems and the notion of algorithmic solutions to these
problems. All the terms we are describing here refer to the
former, although when we state that a certain problem is
solvable using a certain time metric, we are referring to the
performance of the best algorithm that has been discovered for
that problem. These problem categories are based on the
difference between efficient and non-efficient algorithm
solutions available for the respective problem. All algorithms
that are capable of solving a problem within a polynomial time
factor with respect to input size of the problem are regarded as
efficient; all algorithms not so capable, and take exponential
time in the worst case, are not regarded as efficient. Problems
for which it can be shown that no efficient algorithm is
available for their solution are known as intractable problems.
The NP- complexity classes we shall now discuss belong in
that gray area where so far no known efficient algorithms exist
for the problems in these classes, but these problems are yet to
be proven intractable. To this day, no one knows if such a
proof is even possible.

The concept of non-determinism is used frequently in
computational science. It is a convenient conceptual device for
considering the solution potential of an algorithm by
suspending certain requirements, such as a concrete solution
process. In all the classes in which we are concerned, the N-
prefix refers to this non-deterministic aspect of the solution
process. Thus, one way to characterize NP problems is that
solution verification in polynomial time is possible, given a
non-deterministically derived solution.

Furthermore, some NP problems are also NP-Complete.
They are called NP-Complete because they possess the
additional property mentioned in the introductory section of
this paper, viz., that an efficient (i.e., polynomial-time)
algorithmic solution for any one of the NP-Complete problems
ensures an efficient solution for all NP-Complete, as well as
NP, problems. Informally, every NP-Complete problem is at
least as “difficult” to solve as all other NP problems. The
solution to NP-Complete problems plays a key role in the
question of P and NP equivalence.

NP-Complete problems encompass decision problems.
Such problems are those that require a binary response
(yes/no). We can further define the NP-Hard, NP-Easy, and

 DOI: 10.5176/2251-3043_3.1.248

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

157 © 2013 GSTF

NP-Equivalent categories. These latter categories encompass
more general problems that do not necessarily require a binary
response. An NP-Hard problem is often an optimization
problem related to an NP-Complete decision problem (see the
next section for some examples). Informally, an NP-Hard
problem is at least as “difficult” again as an NP-Complete
problem. Quite often, an NP-Hard problem can be shown to be
NP-Easy, meaning it is no more “difficult” to solve than any
NP problem. This is the case for many optimization problems,
such as the ones defined below. A problem that is shown to be
both NP-Hard and NP-Easy is, by definition, NP-Equivalent.
This implies that the decision problem and the related
optimization problem that have been categorized as NP-
Complete, and NP-Hard/Easy, respectively, are “equivalent”
from the efficiency aspect. Many advanced texts are available
for further discussion of this fascinating topic [3, 9].

B. Complexity of Dance Choreography Problems
We introduce several dance choreography problems and

classify them into the above complexity classes. The aim is to
link these problems, from a solution efficiency standpoint, to
other problems in diverse domains of computing, such as
computer science, mathematics, and operations research.

First we define a relatively specialized dance
choreography decision problem (DC), and prove it is NP-
Complete by restricting it to a known NP-Complete problem.
Then we define a more general version of the dance
choreography decision problem (DCk). This latter problem is
in turn shown to be NP-Complete by restricting it to the
previously proven NP-Complete problem DC. We then define
optimization versions of these problems, and show that these
are NP-Hard. We also show that one of these NP-Hard
problems is also NP-Easy, and hence, NP-Equivalent.

DANCE CHOREOGRAPHY (DC)

INSTANCE:
 A finite set Figures;
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;
 n ∈ ;
 fstart, fend ∈ Figures;
 a set Compulsory ⊆ Figures.

QUESTION:
 Is there a sequence Amalgamation = ‹f1, f2, …, fn›,
 fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow, 1 ≤ j < n
 such that
 f1 = fstart and fn = fend
 and

 {fi : 1 ≤ i ≤ n} ⊇ Compulsory?

This problem can be proven to be NP-Complete by

showing (a) that it is in NP, and (b) that another, previously
proven, NP-Complete problem can be transformed into it in
polynomial time.

The first part of the proof, showing that it is in NP, i.e.,
that a non-deterministically obtained solution (if one is

available) is verifiable in polynomial-time, is trivial. This
process simply involves checking that the figures used in the
amalgamation are valid with respect to Follow, that they are all
contained in Compulsory, and that the first and last figures are
as specified in the problem instance. Since similar processes
are involved in the proofs of other Dance Choreography
decision problems presented below, they are omitted in these
other proofs.

In the second part of the proof, we select a known NP-
Complete problem, called the HAMILTONIAN CIRCUIT
(HC) [9], and show that it is many-one reducible to DC (HC
∝ DC). The proof technique used here is that of restriction [5].

HAMILTONIAN CIRCUIT (HC)

INSTANCE:
 A graph G.

QUESTION:
 Does G have a Hamiltonian Circuit (simple cycle
 containing all the vertices)?

THEOREM 1: DC is NP-Complete.

PROOF: Restrict to HC: Make n = |Figures| + 1, Compulsory =
Figures, fstart = fend. ♦

In order to define conveniently a related optimization
problem, we modify DC slightly by introducing the notion of
distinctness of figures used in an amalgamation, resulting in the
problem we call Dance Choreography k (DCk). The modified
problem is defined as follows, and shown also to be NP-
Complete (DC ∝ DCk):

DANCE CHOREOGRAPHY k (DCk)

INSTANCE:
 A finite set Figures;
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;
 n ∈ ;
 fstart, fend ∈ Figures;
 a set Compulsory ⊆ Figures;
 k ∈ 0.

QUESTION:
 Is there a sequence Amalgamation = ‹f1, f2, …, fn›,
 fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow,
 1 ≤ j < n
 such that
 f1 = fstart and fn = fend

 and
 {fi : 1 ≤ i ≤ n} ⊇ Compulsory
 and
 k ≤ |{distinct elements f1, .. fn}| ?

THEOREM 2: DCk is NP-Complete.

PROOF: Restrict to DC: Make k = 0. ♦

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

158 © 2013 GSTF

We are now able to define the optimization version of
DCk, which we call Dance Choreography Optimization
(DCO), a modification of the decision problem. This problem
is shown to be NP-Hard.

DANCE CHOREOGRAPHY OPTIMIZATION (DCO)

INSTANCE:
 A finite set Figures;
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;
 n ∈ ;
 fstart, fend ∈ Figures;
 a set Compulsory ⊆ Figures.

QUESTION:
 What is the optimal Amalgamation = ‹f1, f2, …, fn›,
 fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow,
 1 ≤ j < n,
 in the sense that |S| is maximal,
 where S = {distinct elements f1, .. fn};
 that satisfies
 f1 = fstart and fn = fend
 and

 {fi : 1 ≤ i ≤ n} ⊇ Compulsory?

In this definition, the optimality measure is that of set
cardinality: the more varied the figures used in the
amalgamation, the better. Informally, the optimization problem
is one of maximizing the variety of figures used. We can show
that this problem is NP-Hard by describing a Turing reduction
from an NP-Complete problem, such as DCk, i.e., DCk ∝T
DCO.

THEOREM 3: DCO is NP-Hard.

PROOF: DCk is Turing-reducible to DCO in the following
manner: Let max be the optimal solution for an instance of
DCO, where max = |{f1, .. fn}|. Then, the answer for an
instance of DCk is “yes” if k ≤ max, “no” otherwise. ♦

DCO is specialized in that the only optimality measure is
cardinality of the set of figures used in the amalgamation. The
problem can be generalized through the optimality measure. In
other words, other optimality measures could be included and
brought under a general optimality measure, defined by a
fitness function F: {‹f1..fn›} → 0. We call this version Dance
Choreography Optimization 2 (DCO2), which is also NP-Hard
because DCO ∝T DCO2. In the following sections, we discuss
algorithmic implementations of DCO2. These implementations
offer various specific optimality measures: “No preference”
(meaning no optimality measure is in place, so all valid
amalgamations are considered equally good), “Variety”
(essentially the optimality measure used by DCO),
“Simplicity,” and “Repetition avoidance” (see fig. 6 below).

DANCE CHOREOGRAPHY OPTIMIZATION 2 (DCO2)

INSTANCE:
 A finite set Figures;
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;

 n ∈ ;
 fstart, fend ∈ Figures;
 a set Compulsory ⊆ Figures;
 a function F: {‹f1, f2..fn›} → 0.

QUESTION:
 What is the Amalgamation = ‹f1, f2, …, fn›,
 fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow,
 1 ≤ j < n,
 that satisfies
 f1 = fstart and fn = fend
 and
 {fi : 1 ≤ i ≤ n} ⊇ Compulsory
 for which F (‹f1, f2, …, fn›) is maximal?

THEOREM 4: DCO2 is NP-Hard.

PROOF: An algorithmic solution with specialization of the
evaluation function F of DCO2 to compute set cardinality
provides the solution to DCO. ♦

We now show that the optimization problem DCO is NP-
Easy, and hence, NP-Equivalent. To facilitate our task, we first
define yet another decision problem that is a modification of
DCk, Dance Choreography Extension (DCE):

DANCE CHOREOGRAPHY EXTENSION (DCE)

INSTANCE:
 A finite set Figures;
 a set Follow of tuples ‹fi, fj›, fi, fj ∈ Figures;
 n ∈ ;
 fstart, fend ∈ Figures;
 a set Compulsory ⊆ Figures;
 k ∈ 0;
 a partial amalgamation ‹f1, f2, …, fm›, m ≤ n,
 fi ∈ Figures, 1 ≤ i ≤ m, ‹ fj, fj+1 › ∈ Follow,
 1 ≤ j < m.

QUESTION:
 Can the partial amalgamation be extended to length n, i.e.,
 ‹f1, f2, …, fm,…, fn›,
 fi ∈ Figures, 1 ≤ i ≤ n, and ‹ fj, fj+1 › ∈ Follow,
 1 ≤ j < n
 such that

 f1 = fstart and fn = fend,
 {fi : 1 ≤ i ≤ n} ⊇ Compulsory, and

 k ≤ |{distinct elements f1, .. fn}|?

The optimization problem DCO can now be shown to be
NP-Easy by showing how it is polynomial-time Turing
reducible to DCE.

THEOREM 5: DCO is NP-Easy.

PROOF: We show that DCO is polynomial-time Turing
reducible to DCE (DCO ∝T DCE) in two stages, both of which

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

159 © 2013 GSTF

can be accomplished in polynomial time. Let DCEAlg be a
hypothetical polynomial-time algorithm for DCE. (a) A binary
search (a polynomial-time process) for the best score (k),
bounded by cardinality of the set of figures used (n), can be
performed using DCEAlg. (b) To determine the actual
amalgamation, we call DCEAlg no more than (n–1)(n–2) times
if a solution exists. This is also is a polynomial-time process.
Hence the reduction from DCO to DCE is a polynomial-time
Turing reduction. ♦

Similar arguments can be advanced for the classification
of the other optimization problems defined here. In our present
case, since DCO is both NP-Hard (Theorem 4) and NP-Easy
(Theorem 5), it is, by definition, NP-Equivalent. We have seen
that finding an efficient solution for DCO automatically
ensures an efficient solution for DCk. Now we find that the
reverse is also the case, i.e., since DCE is in NP and DCk is
NP-Complete, we can claim DCE ∝ DCk. Thus, we can use an
efficient solution for DCk (if one were ever to be discovered)
to solve DCO efficiently as well. In fact, the reductions we
have shown during the various proofs form many cycles in a
transformation graph, such as the one shown in fig. 1.

DC DCk DCO
DCO2

DCE

∝ ∝ ∝Τ
∝Τ

∝Τ

∝

HC

Figure 1. Transformation sequence of dance NP problems.

Among other things, this shows that we do not lose
generality in dealing with only the decision versions of an
optimization problem. For practical reasons, however, it is
more useful to use the optimization versions of the problems,
especially if we intend to implement algorithmic solutions to
these problems.

In general, all the dance choreography problems here
defined (including DCE, which, incidentally, can also be
shown to be NP-Complete) are conceptually connected to all
other NP-Complete problems, those known and those yet to be
discovered. It is entirely possible, for example, that in the
future these dance choreography problems may be used to
prove that a newly identified problem is NP-Complete or NP-
Hard.

C. A Solution Procedure For NP Problems
Besides accomplishing their theoretical purpose of

establishing the complexity classes of computational problems,
these proofs also furnish transformational descriptions that are
useful in actually solving these problems. For example, any
instance of the HAMILTONIAN CIRCUIT problem (HC) can
be solved by transforming it into an instance of the Dance
Choreography problem (DC), along the lines described in the
NP-Completeness proof of the latter. Incidentally, another
well-known computational problem, the so-called
TRAVELING SALESMAN problem (TS), also used HC to
prove that it was NP-Complete. Thus, HC can also be solved
using a solution to TS. The key unanswered question is

whether the solution of these problems can be accomplished
efficiently.

Example 1. An instance of DC is shown in fig. 2. The
graph on the left represents a simplified hypothetical syllabus
of four figures (R[ight] F[oot] Closed Change, L[eft] F[oot]
Closed Change, Reverse [Turn], and Natural [Turn]) with their
permissible interactions. By imposing the constraints n =
|Figures| + 1 and Compulsory = Figures, fstart = fend, this
instance becomes also one of HC. Thus, the same algorithmic
solution to DC problems can be used to solve HC problems.
The graph on the right represents a solution to the present
instance (the dark arcs indicate a possible amalgamation).

RF Closed
Change

LF Closed
Change

NaturalReverse

RF Closed
Change

LF Closed
Change

NaturalReverse

Figure 2. Solution of a DC and HC problem instance.

In a paper published soon after Cook’s, Karp introduced
twenty-one new NP-Complete problems. Among them was
VERTEX COVER (VC), which Karp proved was NP-
Complete by showing how an instance of it could be
transformed to one of HC, thus showing that a solution for the
latter could be used to solve the former [9]. Both VC and HC
are graph theory problems, but these can be used to solve
propositional logic problems as well, such as the 3-
SATISFIABILITY problem (3SAT). This problem in turn was
proven NP-Complete by transformation of the
SATISFIABILITY problem (SAT). As noted above, SAT was
in fact the first ever proven NP-Complete problem: Cook
proved it to be so by showing that an instance of any NP
problem was transformable to an instance of it [1].

Therefore, if direct transformations are not readily
available, an instance of any NP problem can be solved by first
transforming it into an instance of SAT using the procedure
outlined by Cook, which in turn can be transformed eventually
into an instance of any NP-Complete problem for which an
algorithmic solution is available. The practical application of
the conceptual link between dance and other significant
computational problems should now be apparent (fig. 3).

SAT 3SAT VC HC DC

TS
np ∈ NP

É

É

Figure 3. General transformation sequence of NP problems.

D. Exhaustive and Heuristic Algorithms for Dance
Choreography
Procedures designed to solve problems such as the dance

choreography problem are potentially very time consuming,
unless some concessions are made. If we insist on perfect
solutions, the procedure involved could become very
impractical once the problem reaches a certain size. In the case
of the dance choreography problem, once the number of figures

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

160 © 2013 GSTF

required, called the amalgamation length, exceeds about ten,
things very quickly go haywire.

The Exhaustive algorithm is one that tries to investigate
every eventuality, by using a backtracking process in the
search. In our implementation, we pruned the search tree as
soon as a figure was reached that could not be followed. Even
so, very many possibilities arise exponentially as the
amalgamation length increases. The NP-Complete theory
outlined above warns us that it is futile, at the present, to
investigate more efficient procedures while requiring perfect
results.

Example 2. As an indication of the exponential increase in
computing time, we show what can happen as we attempt to
create amalgamations of increasing length. We ran the
Exhaustive algorithm to search for amalgamations of
increasing length from one to twelve figures. The figures were
chosen from our proprietary Quickstep syllabus. To ensure a
uniform start, the opening figure in each trial was the figure
called “Quarter Turn to the Right.” No ending figure was
specified for any of the amalgamations. The optimality
measure was as defined in DCO, which is the degree of variety
of figures: within the specified length of the amalgamation,
preference was given to those amalgamations comprising as
many different figures as possible; the optimality values are
normalized to the interval [0..10]. The “optimal” column refers
to the number of optimal amalgamations found under this
measure for that particular amalgamation length; the
“suboptimal” column refers to all other otherwise valid
amalgamations found. The experiment was performed on a 2.3
GHz Intel Core i5 processor. Processing time was measured in
clock ticks (60 clock ticks equal one second). As Table I
shows, processing time increased exponentially with increasing
amalgamation length. ♦

TABLE I. PERFORMANCE OF THE EXHAUSTIVE ALGORITHM (QUICKSTEP)

length time optimal suboptimal total
1 <1 1 0 1
2 <1 5 0 5

3 <1 22 1 23
4 1 64 12 76
5 4 233 94 327
6 21 792 501 1293
7 95 2612 2732 5344
8 424 8198 13576 21774

9 1880 24431 64879 89310
10 8323 68431 296896 365327
11 36586 178856 1317186 1496042
12 161291 436003 5687687 6123690

Fine-tuning tactics in an Exhaustive search, such as
pruning of the search tree mentioned above, will still result in
exponential running time in the worst case. Fortunately
however, problems such as these do benefit from less idealistic
procedures. These procedures make use of various problem-
specific heuristics, and are often the most practical solutions
for non-trivial problem sizes.

A well-known heuristic approach is the so-called Greedy
algorithm. There is no moral attachment to the name of this
algorithm: it merely suggests that a search guided by the
concept of the “best” choice is attempted, with no intent to
backtrack, as happens in the Exhaustive algorithm. In our
implementation of the Greedy algorithm, the amalgamation is
built figure-by-figure, and the next figure chosen in the
sequence is the one that appears the most promising with
respect to the fitness function, as defined in DCO. Once a
figure is chosen, there is no turning back, i.e., there is no
backtracking. As a result, the Greedy algorithm runs much
faster than does the Exhaustive algorithm, at the risk of
producing non-optimal results (Example 3).

Example 3. The results of the application of the Greedy
algorithm to the same parameters as in Example 2 are shown in
Table II. The same fitness function, as defined in DCO, was
used. The “time” column shows the clock ticks; the “fitness”
column shows the optimality measure, with values in the range
[0..10]. Note that the speed trade-off is in the quality of
amalgamations: not all the amalgamations were optimal
compared to the results obtained by the Exhaustive algorithm.
Nevertheless, an overall acceptable quality was obtained in this
and several other trials not shown here. The running time was
drastically shortened, however. ♦

TABLE II. PERFORMANCE OF THE GREEDY ALGORITHM (QUICKSTEP)

length time fitness
1 <1 10
2 <1 10
3 <1 10
4 <1 10
5 1 10
6 1 10
7 1 10
8 1 10
9 1 9.4
10 1 9.0
11 1 8.6
12 1 8.3

Besides the Greedy algorithm, other heuristics-based

algorithms could be used. One promising method is the Genetic
Algorithm. We have used this approach in the NP-Hard music
composition problem of Species Counterpoint [6]. Smart
modifications to the Exhaustive algorithm are also possible, for
example, the branch-and-bound technique to implement best-
first searching.

III. MULTIMEDIA DANCE SOFTWARE
Terpsichore© is a multimedia-based interactive computer

software for dance training and education, copyrighted on July
1, 2011 (Registration Number TXu 1-762-479) [4]. It
generates ballroom dance amalgamations based on figures
formalized by various International Standard dance
associations: DVIDA (Dance Vision International Dance
Association), IDTA (International Dance Teachers’
Association), and ISTD (Imperial Society of Teachers of
Dancing) [2, 7, 8]. Based on structural and pedagogical
considerations, we have compiled our own syllabus by
grouping these dance figures into three categories:

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

161 © 2013 GSTF

“Foundational,” “Intermediate,” and “Advanced.” We now
describe some features of Terpsichore© related to
implementations of the problems defined above.

A. Simplified Implementation of the Optimization Problem
Using the Exhaustive and Greedy Algorithms
Two simplified implementations in our software using the

Exhaustive algorithm omit the Compulsory set specification.
One enables specification of both fstart and fend, while the other
omits the specification of fend. In fig. 4, they are labeled
“Thorough Search (with specified starting and ending figures)”
and “Thorough Search (with specified starting figure),”
respectively. The latter implementation was used to generate
the output shown in Table I.

Similarly, two simplified implementations using the
Greedy algorithm are labeled “Quick Search (with specified
starting and ending figures)” and “Quick Search (with specified
starting figure),” respectively (fig. 4). The latter
implementation was used to generate the output shown in
Table II.

B. Full Implementation of the Optimization problem Using
the Exhaustive Algorithm
The various components of the generalized optimization

problem described above (DCO2) are realized as follows. The
Exhaustive algorithm that implements this problem is called
“Thorough Search (with specified required figures)” (fig. 4).
The user selects a finite set Figures, specifies fstart and fend from
our proprietary syllabus (fig. 5), specifies the amalgamation
length, n, determines the evaluation function F (fig. 6, showing
the “Variety” criterion), and chooses a set of Compulsory
figures (fig. 7).

Example 4. With the settings as shown in figs. 2, 3, 4, and
Compulsory = ∅, 30 optimal and 33 suboptimal Quickstep
amalgamations were found (fig. 8 shows one of these optimal
amalgamations). Note that fixing the ending figure, fend, results
in far fewer amalgamations, compared to the number found in
the corresponding setting shown in Table I. ♦

Example 5. With the settings as shown in figs. 2, 3, 4, and
5 (two figures chosen for the Compulsory set: “Progressive
Chassé” and “Natural Spin Turn”), only 9 optimal and 0
suboptimal amalgamations were found (fig. 9). Not
surprisingly, with the added restriction imposed by the
compulsory figures, the overall number of optimal
amalgamations is substantially less than that in Example 4. ♦

Figure 4. Implementations of dance choreography problems.

Figure 5. Figures, fstart, fend selections.

 Figure 6. n, F selections. Figure 7. Compulsory figures selection.

Figure 8. Output for Compulsory = ∅. Figure 9. Output for |Compulsory| = 2.

IV. CONCLUSION
We have formulated several Dance Choreography problems

and shown them to be variously NP-Complete, NP-Hard, and
NP-Easy. The significance of these classifications lies in their
relatedness to problems in computer science, mathematics, and
operations research. We evaluated various algorithmic
solutions to these problems, as implemented in our software,
Terpsichore©.

Terpsichore© was designed to be extensible and portable.
Therefore, we intend to pursue future software development
along those lines. Theoretically, more such problems can be
formulated, and we intend to make further relations apparent,
not only between dance problems, but also to problems in
related performing arts, such as music composition.

ACKNOWLEDGMENT
The author wishes to thank the Editors of the Journal of

Computing for their kind invitation to publish this paper, and
their attention to its preparation. Thanks are also extended to
the reviewers of this paper for their invaluable suggestions. Mr.
William (“Bill”) Davies, Dancesport Adjudicator and
Examiner, and former North American and United States
Ballroom Dance Champion gave artistic advice during the
development of Terpsichore©, for which the author is very
grateful. The author is also very grateful to Attorney Frances
Ball for legal advice in the copyrighting of the software.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

162 © 2013 GSTF

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Proc.
3rd Annual ACM Symposium on Theory of Computing, Shaker Heights,
Ohio: Association for Computing Machinery, 1971, pp. 151–158.

[2] Dance Vision International Dance Association, Bronze (Silver/Gold)
Level International Style Standard Manual, Las Vegas, Nevada: Dance
Vision, 2008.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, 20th printing. New York: Freeman,
1999.

[4] N. Gwee, “Software copyright: A programmer’s perspective,”
Technology and Innovation, vol. 14, no. 3/4, 2012, pp. 237–247.

[5] N. Gwee, “Terpsichore©: From NP-Complete problem to multimedia
software,” Proc. 3rd Annual International Software Engineering &
Applications Conference, Singapore, pp. 189–193, 2012.

[6] N. Gwee, “Effective heuristics for algorithmic music composition,”
Proc. International Conference on Artificial intelligence, Las Vegas,
Nevada, vol. III, pp. 1027–1033, 2002.

[7] G. Howard, Technique of Ballroom Dancing, Brighton, England:
KenadS Design & Print, 2007.

[8] Imperial Society of Teachers of Dancing, The Ballroom Technique,
London, England: Lithoflow Ltd, 1994.

[9] R. M. Karp, “Reducibility among combinatorial problems,” In
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds. New York: Plenum, pp. 85–103, 1972.

Nigel Gwee is an associate professor of computer science at Southern
University, Baton Rouge, Louisiana. He received his Ph.D. in
musicology and his Ph.D. in computer science from Louisiana State
University, Baton Rouge. He has written papers on software
engineering and complexity analysis, and computer programs on
music and dance. Recently, he won the Best Research Paper Award
at the Third International Conference on Software Engineering &
Applications, 2012, Singapore.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

163 © 2013 GSTF

