
A Semi-Automatically Assessable Design for a
Hands-On Compilers Course

Omar Mohammad Othman, German University in Cairo

Abstract—This paper describes the author's experience with a
hands-on compilers course designed and carried on in the
German University in Cairo. The five main points are the course
objectives, the course organization, the author's approach to
formulating the lab exercises – an approach recommended for
programming courses in general (which is also the main
contribution as it offers a method for “semi-automatic” grading
without the need for an automatic assessment system, besides
documenting the author's experience categorizing and offering a
hands-on compilers course), the small language “invented” for
which the lexical analyzer, syntactic analyzer and interpreter are
to be written by the students (which is the course's ongoing
project) and the adopted grading scheme. Besides, having the
course’s project seamlessly integrated within the other exercises
(as opposed to a separate bulk at the end of the course) is another
point stressed in its design. An idea for a system for automating
the whole process is proposed at the end.

Keywords-Compilers; Semi-Automatic Assessment; Hands-On
Course; ACM-ICPC Problems; Seen Language

I. INTRODUCTION
One of the fundamental problems in computer science

education is adapting the exercises at hand to fit certain
constraints in the everyday educational process – such as
available equipment, available time and the need to grade the
work of a large number of students in a limited amount of
time. It is always challenging to design a course that fulfills
the required scientific goals and is still easy for the instructor
to maintain and grade. Grading is always a key factor
regarding the success of the educational process. It is the only
assessment method the instructor possesses to measure their
success delivering the course content clearly and satisfactorily.
Besides, it is often the case that some important questions are
not posed in class simply because there is no clear vision for
their grading. Clear grading schemes also assure academic
fairness (ensuring students are treated equally), students’
satisfaction and instructor unbiasedness.

The main motive behind writing this paper is that – to the
author’s knowledge – there is no publication out there in the
literature that discusses the design of a hands-on compilers
course with this point of easy and precise grading as the major
design decision. Besides, documenting the course itself serves
as a road map for other instructors teaching the same course.

II. RELATED WORK
There are many systems out there for automatic

assessment, surveyed in [1] and including – for example –
those in [2] and [3]. The approach here – on the contrary – is
not to use a system; it actually tries to avoid that burden

(especially to new universities and/or those having no funds
for creating their own or purchasing one). This is more similar
to [4], where his system's automated part is “simulated” here
by the use of the file comparison tool [6]. To the author's best
knowledge, a paper that focuses solely on designing a hands-
on compilers course is not available in today's literature.

III. PAPER ORGANIZATION
The course outlined in this paper was a hands-on lab

course working in parallel with an undergraduate compilers
course (thus serving as its practical part). The paper mainly
discusses the course’s objectives, methodology and
organization – a concrete example of the author's vision
regarding facilitating the administrative role of the instructor
that has no access to an elaborate automatic assessment
system, as opposed to the academic role (creating the syllabus
itself). Meanwhile, the paper serves as a roadmap to a hands-
on compilers course in particular (the material is available
upon request to those interested in teaching the course in their
universities… including the small language created to support
achieving the goals of the course). The paper is organized as
follows:

[Section 2 – Course Objectives] Lists the course’s objectives
which will guide its illustration in subsequent sections.
Throughout the paper, goals are referred to by their names.

[Section 3 – Course Organization] The course’s organization
(the types of exercises encountered, their order and their
categorization).

[Section 4 – Course Map] Illustrates how the course can
actually be done in twelve weeks (once a week).

[Section 5 – Grading Schemes] Discusses the adopted grading
process and suggests another, more practical one.

[Section 6 – Automation Option Proposal] Briefly describes
an idea for automating the whole course management process.

The conclusion and the acknowledgements come at the end.

 DOI: 10.5176/2251-3043_3.1.241

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

119 © 2013 GSTF

IV. COURSE OBJECTIVES
The objectives of this course are mainly five points, named

here for easy reference throughout the paper:

|G1| Introducing an easy-to-follow track of exercises.

|G2| Making exercises (and even the project) clear and strict
regarding grading scheme.

|G3| Creating an interesting environment for attracting the
students to the relatively hard compilers hands-on course.

|G4| Avoiding having a burden at the end of the course when
most students are busy with the projects of other courses.

|G5| Constraining the work to be on campus (even the project)
so as to improve the skills of working under pressure and
meeting strict deadlines, besides organizing students’ time.

A. Adopting ACM-ICPC Problem Style
To achieve G1 and G2, the ACM-ICPC [5] problem style

was adopted. Each problem has a very clear set of rules, a
fixed-format input and output (usually via text files) judged
automatically – simply by comparing the correct file vs. the
file output from running the submitted code. In ACM-ICPC
[5] the correct files (both input and output) are always unseen,
but to avoid making things quite hard; students always had the
correct files (both input and output) so as to continuously
know the “cases” their codes fall in. The files can be easily
compared using a file comparison tool like KDiff3 [6],
available on their machines. Mimicking the ACM-ICPC [5]
competition style in the lab also helps satisfying G3, where
there is a continuous sense of competition every week to finish
first and score a certain bonus. Besides, students know their
task from Day 1: The exercise is to be solved by producing a
correct output file and that’s all. Another plus adopting this
approach is to develop the “software engineering sense” of
meeting requirements exactly – in this context a single space
or period (or even a case change) is simply a sort of “wrong
answer” and the code has to be modified (more details on
grading are discussed in Section 5: Grading Scheme). Yet
another advantage is the varying sophistication of the same
exercise (from easy to very hard) just by varying the input. For
example, in lexical analysis exercises; one can list in the input
file all possible combinations of tokens (generated
automatically using two nested loops). This is a very hard
exercise where any minor error in the code will be
undoubtedly detected, and it actually happened in an exercise
on lexical analysis that one of the students had a single wrong
case out of more than 25000 cases (here tokens) in the input
file! Obviously this exercise can be set easier by avoiding
listing tricky combinations of tokens in the input file.

B. Handling Time Constraints
To achieve G5, a “lab manual” is always sent to the

students 5 – 7 days before the session. Hence any theoretical
part is to be revised beforehand, thus the work is always
supposed to be started and finished in the lab. The exercise
itself is always unseen.

Figure 1. Typical J-Series, M-Flavor Exercise

V. COURSE ORGANIZATION
To achieve G1 together with G4, the entire course is based

on three “series” of exercises: The J-Series, the M-Series and

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

120 © 2013 GSTF

the X-Series, each subdivided into the M-Flavor (everything is
written from scratch – M for Manual) and the A-Flavor (a
generator is used: JLex [7] for generating lexical analyzers and
CUP [8] for generating parsers, A for Automatic). Thus the
same exercise always has two flavors, for achieving both
goals… thorough concepts grasping and practicality.

A. The J-Series
These are exercises that use Java (which is the adopted

language in GUC), and thus is suitable for massy exercises
involving a large number of varying tokens (mainly lexical
analysis) – besides being known to the students. Figure 1 is an
example of an exercise from the J-Series, M-Flavor.

B. The M-Series
The Math series is the most commonly used for compiler

exercises due to its simplicity, as arithmetic formulae possess a
simple lexical structure yet demonstrate fundamental issues
regarding parsing – mainly those of operator precedence and
associativity – besides balancing structures (brackets). Figure 2
is a complete example of an exercise from the M-Series, A-
Flavor. Figure 3 is a more advanced problem from the M-
Series, M-Flavor that focuses on building the abstract syntax
tree before evaluation.

Figure 2. Typical M-Series, A-Flavor Exercise

Figure 3. Advanced M-Series, M-Flavor Exercise

C. The X-Series
This is the series where students implement their project.

Three phases are required: The lexical analyzer, the parser and
the interpreter of a small language called Seen, which was
specifically created for being used in such courses (Seen is
how the Arabic letter س is pronounced, which is used for
unknowns like X in English, and hence the name of the series).

Seen is somewhat similar to Lisp [9], in the sense that it is
dynamically-typed, supports lambda-expressions and closures,
and is expression-based (as opposed to statement-based). The
Seen language is more or less Scheme [13] with a more
“natural” syntax as opposed to the bracket-based Scheme [13]
style. It was chosen among other Lisp [9] dialects due to the
support of lexical scoping (evaluating the function expression
in a new environment extending the definition environment).
The Scheme [13] language specification is available at [14].
In brief, the language basically contains:

[Literal] A literal is an expression that evaluates to itself. One
can only use integer literals and string literals in Seen.

[Operation] Arithmetic operations (addition, subtraction,
multiplication and division), relational operations (less than,
greater than and the equality test), and logical operations
(conditional OR and conditional AND).

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

121 © 2013 GSTF

Figure 4. Seen’s Lexical Specification

Figure 5. Seen’s Syntactic Specification

[If Expression] The condition is evaluated. A zero result
gives the expression the value of the else part. Otherwise the
expression is assigned the value of the if part (this is the
behavior of the conditional operator ? : in C). Note that –

unlike conventional languages – this is an expression, not a
statement; which means its value can be assigned to a variable.

[Lambda Expression] The same as lambda expressions in
Scheme [13], but the keyword is called func. This expression
evaluates to a function object.

[Function Application] Invoking the function object created
by the Lambda Expression. Actual parameters are evaluated,
formal parameters are substituted by calculated arguments and
the expression is then evaluated as a whole.

[Let Expression] The language does not support assignment
operations. A variable is given a value through “binding” it in
the let part and using it in the in part.

[Letrec Expression] A flavor of the Let Expression that
supports recursion.

1) Lexical Analyzer
The lexical analyzer is done after two labs on lexical

analysis (one written from scratch and one using JLex [7]).
Figure 4 is the lexical specification for Seen. One of the
important exercises was to design a lexical analyzer that is
capable of detecting lexical errors and actually correcting them.
Three types of errors were handled: (i) A strange character
(ignored + informative message), (ii) | instead of || for
representing the OR operator or & instead of && for
representing the AND operator (completed and returned
normally to the parser + informative message) and (iii)
erroneous string literals having line breaks inside (line breaks
removed automatically and the string literal returned normally
to the parser + informative message).

2) Syntactic Analyzer
The syntactic analyzer (parser) is done after two labs on

parsing (one written from scratch and one using CUP [8]).
Figure 5 is the syntactic specification (context-free grammar)
for Seen. One of the important exercises was to design a
parser that is capable of detecting parse errors and actually
correcting them. For error recovery, the “panic mode”
technique discussed in the famous Dragon Book [10] was
adopted. The language was extended a little bit to be a series
of expressions terminated by a semicolon rather than a single
expression. Upon detecting an error, the rest of the tokens till
the next “synchronizing token” (the semicolon in our case)
were skipped, an error message issued, and parsing was
continued starting from the next statement. If the error were a
missing terminal, it was automatically inserted, an informative
message issued and parsing the same statement continued
normally. This is usually not the case with real compilers
(which normally refrain from changing anything), but the
exercise gives true insight into how much powerful the
technique is.

3) Interpreter
The interpreter is done on the last day of the course. The

“lab manual” is a collection of three video lectures given in a
previous course in the Faculty of Computer and Information
Sciences, Ain Shams University as an informal introduction to
programming languages and interpreters – during which the
Seen language and the complete steps for writing the lexical
analyzer, syntactic analyzer and interpreter were illustrated
(the video lectures are available upon request. They are in
Arabic, however). It is noteworthy that doing the project labs
in the aforementioned times helped achieve G4, because at the
end of the semester, only one last mainstream lab was needed
to finalize the project.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

122 © 2013 GSTF

Figure 6. Seen’s Error Recovery

VI. COURSE MAP
After highlighting each of the three series, the course map can
be followed easily:

[Lab 0] Simplified ACM-ICPC-Style Programming Contest –
(Exercise: Miscellaneous). This is just a programming
reminder and an example of how future labs are organized.

[Lab LM] “Lexical – Manual” A handwritten lexical analyzer
(Exercise: J-Series, M-Flavor).

[Lab LA] “Lexical – Automatic” A lexical analyzer using
JLex [7] (Exercise: J-Series, A-Flavor).

[Lab PLM] “Project – Lexical – Manual” A handwritten
lexical analyzer for Seen (Exercise: X-Series, M-Flavor).

[Lab PLA] “Project – Lexical – Automatic” A lexical
analyzer for Seen using JLex [7] (Exercise: X-Series, A-
Flavor).

[Lab SM] “Syntactic – Manual” A handwritten syntactic
analyzer <<predictive parser>> (Exercise: M-Series, M-Flavor).

[Lab SA] “Syntactic – Automatic” A syntactic analyzer using
CUP [8] (Exercise: M-Series, A-Flavor).

[Lab PSM] “Project – Syntactic – Manual” A handwritten
syntactic analyzer for Seen (Exercise: X-Series, M-Flavor.
See Figure 6. The sample input and output are not shown).

[Lab PSA] “Project – Syntactic – Automatic” A syntactic
analyzer for Seen using CUP [8] (Exercise: X-Series, A-
Flavor). This was the hardest exercise.

[Lab ST] “Syntactic – Tree” A handwritten syntactic analyzer
(Exercise: M-Series, M-Flavor). The difference is that the
abstract syntax tree must be built explicitly and then traversed
to produce the correct output. This is as opposed to solving
during predictive parsing which is essentially building a
“logical” abstract syntax tree. This lab is important because all
subsequent compilation phases (semantic analysis,
intermediate code generation, code optimization and final
code generation) depend on this data structure, thus at least
one lab must tackle this point.

[Lab PIM] “Project – Interpreter – Manual” A handwritten
interpreter for Seen (Exercise: X-Series, M-Flavor).

[Lab PIA] “Project – Interpreter – Automatic” An interpreter
for Seen using CUP [8] (Exercise: X-Series, A-Flavor). This
one is optional (just for completeness). We didn’t do it.

VII. GRADING SCHEMES
For grading the lab exercises, the hard method of

completing the missing code (or debugging the code if only
some of the cases in the final output file failed) was adopted.
The student’s grade was reduced for every added “piece of
code” for solving a certain problem. Comments were inserted
in accordance with the added code so that the student always
knew his mistakes, thus both understanding the rationale
behind the grade and achieving the utmost scientific benefit as
the code was always massive (and thus knowing all the
mistakes was always enlightening).

A small point here to note is that this grading style was
always “psychologically” outstanding regarding those students
who completed most of the work but had some bugs. It
happened more than once that the students were delighted to
know their bugs, especially those very tricky ones like the
aforementioned student who had a single incorrect case out of
more than 25000! Obviously, an alternative less time
consuming method is just to estimate the missing code and
reduce the grade accordingly, as opposed to actually
completing the code.

Another suitable grading scheme may be to adopt a certain
grade (e.g. 70%) for a reasonable output file, and then dividing
the remaining 30% equally among the cases. So – for example
– an input file with 300 cases has a grade of 0.1% per case, and
a student with 280 correct cases acquires 98% (70% + 28%).
Note that KDiff3 [6] is used to visualize the wrong cases, hence
even this part can be easily automated. It's important to note
that this is rarely practical. In most cases, either everything (but
for some silly mistakes) is output, or nothing at all.

Another option (which is more appropriate as the cases will
always have different levels of difficulty) is to weight the cases
according to their hardness. That code that does not produce an
output file at all can be graded using the previous approach:
either completing the code or estimating the missing parts and
reducing the grade according to the actions taken.

VIII. AUTOMATION OPTION PROPOSAL
Three main “phases” are often present in most hands-on

courses. These are exercises’ submission, plagiarism detection
and grading. Automating the submission phase is easy – a web
application can be implemented that organizes the whole
process in a completely automated way. Plagiarism detection
also has its tools (e.g. The Plagiarism Checker [11] and
Plagiarismdetect [12]) and the research in this field is still

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

123 © 2013 GSTF

active. Automatic grading is a much more involved option. It
may be interesting to investigate the option of implementing an
intelligent system programmed with “common errors” so that a
portion of incorrect submissions becomes also automatically
handled. Such a system may be infeasible if it is to be
implemented as a general-purpose system. A better option is to
implement a “course-specific” system that can only grade – for
example – the twelve problems offered in this paper's course.
Adopting the ACM-ICPC-Style of problems partially supports
this point because of the fixed format of the output, and thus
the clear goal of the program code.

IX. CONCLUSION
The main objective is to encourage instructors involved in

programming courses to adopt the proposed style. The most
important point is to formulate the exercise at hand into an
ACM-ICPC-Style problem. Doing that is supposed to result in
an easy-to-manage course (for the instructor) that is real
benefit and also fun (for the students). Manageability comes
primarily from the ease and accuracy of grading this style of
exercises without a real need for an automatic assessment
system, besides having a uniform course easily tracked by the
students. Regarding compilers courses in particular,
instructors are encouraged to divide the work constantly
between handwritten and automatically generated modules in
an interleaved fashion so that the students understand the
concepts well while having a tool at hand to facilitate
accomplishing the task and to actually use in real life. It's also
very important to modularize the course's project and do it
incrementally throughout the whole course so as to have the
utmost understanding of each phase (as opposed to having the
whole project implemented at the end). Another interesting
point is the use of an expression-based language like Seen,
mainly because of conciseness and clarity – besides its
attractiveness for the students to have at the end of the course
a complete “compiler” that accepts user input and shows
results, even if the user supplies wrong inputs (if the error
recovery module is to be implemented). This makes the
student in front of a “real” product that he made himself,
giving him a sort of self-satisfaction and confidence (some
students actually made this comment).

ACKNOWLEDGMENTS
I would like to deeply thank my genius friend, Mohamed

Samy – Seen’s inventor – who gave me the exclusive rights to
use, modify and reimplement Seen in Java, inspired me to
create this course and reviewed this paper thoroughly and
patiently. I would like to thank Prof. Dr. Carmen Gervet (the
course’s supervisor) for giving me the complete freedom to
design the course according to my vision, and Prof. Dr. Slim
Abdennadher (the faculty's study dean) for patiently supporting

me to change the course’s initial official plans and for his
efforts to solve the administrative problems that aroused during
the semester. I would really like to thank all my students who
were the main reason this course was a real success (and even
fun). They exerted great efforts in each and every lab, and
insisted on finishing all exercises even after staying for several
hours in the lab (even after the allowed lab duration stated in
the exercise is over). Special thanks go to the perfect student,
Amr Labib for his extraordinary performance and to Heba
Hesham for her extreme persistence and amazing hard work.

REFERENCES
[1] C. Douce, D. Livingstone, J. Orwell. Article 4. Journal on

Educational Resources in Computing (JERIC), 5(3), Sept. 2005.
[2] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully automatic

assessment of programming exercises,” ACM SIGCSE Bulletin
Homepage, 33(3), pp. 133-136, Sept. 2001.

[3] M. Luck, M. Joy, “A secure on-line submission system,” Software
- Practice and Experience, 29 (8), pp. 721-740, 1999.

[4] D. Jackson, “A Semi-Automated Approach to Online Assessment,”
ACM SIGCSE Bulletin Homepage, 32(3), pp. 164-167, Sept.
2000.

[5] The ACM-ICPC International Collegiate Programming Contest
Web Site sponsored by IBM. Available:
http://cm2prod.baylor.edu/welcome.icpc.

[6] KDiff3 – Homepage. Available: http://kdiff3.sourceforge.net.
[7] JLex – A Lexical Analyzer Generator for Java(TM). Available:

http://www.cs.princeton.edu/~appel/modern/java/JLex.
[8] CUP – LALR Parser Generator for Java. Available:

http://www2.cs.tum.edu/projects/cup.
[9] The Lisp Programming Language. Available:

http://www.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.h
tml.

[10] A .V. Aho, R. Sethi, and J. D. Ullman 1986, “Compilers:
Principles, Techniques, and Tools”, Addison-Wesley, 164.

[11] The Plagiarism Checker. Available:
http://www.dustball.com/cs/plagiarism.checker.

[12] Plagiarismdetect. Available: http://www.plagiarismdetect.com.
[13] The Scheme Programming Language. Available:

http://groups.csail.mit.edu/mac/projects/scheme.
[14] Revised5 Report on the Algorithmic Language Scheme. Available:

http://schemers.org/Documents/Standards/R5RS.

Author:

Omar Mohammad Othman
Department of Computer Science and Engineering
Faculty of Media Engineering and Technology
German University in Cairo
New Cairo City, Cairo 11835, Egypt

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

124 © 2013 GSTF

