

Increasing Consonance and Resonance in Agile
Teaching Methodologies

Angela Guercio*, Member, IEEE and Paolo Maresca+, Member, IEEE

Abstract - In a cooperative environment technical
excellence and high quality students’ artifacts is what
teachers strive to achieve while educating computer
science students and facing the challenges of this new
century. When agile techniques and accelerators and
injected in the process in a cooperative environment the
consonance and resonance in groups increases. This
speeds up the learning process and the quality of the
material produced by the students improves. Two
observational studies at Kent State University at Stark
and Ohio University are described in this paper. The
studies observe the usefulness of using agile teaching
techniques and analyze the quality of deliverables
produced. A post questionnaire gathered students’
feedback. The observation shows that cooperative
learning produces better results than individual
learning however consonance and resonance must be
reached before the speed is achieved.

Keywords – Collaboration, Agile Methods, Computer
Science Education.

I. INTRODUCTION
A group of working people can be seen as a

strongly connected network with its own life and
evolution. There are some aspects of programming in
group that can be guided. In a group programming
activity is important to define some objectives for the
activity and let the harmonization process of the
groups to self organize the group and to produce an
evolution within the group itself.

A group, as a strongly connected network, can be
seen as a vital system [2, 4, 5] that is able to evolve
and modify its structure due to internal or external
modification agents. If we consider the following
definition of vital system: “A set of components
interacting with each other in a coordinated manner,
directed and guided toward the pursuit of an end “
[25] it is clear that the network in question (the
group) is intrinsically a vital system since in addition
to being communicating and structured it can be
reconfigured through shared goals.

*Angela Guercio is with the Department of Computer Science,
Kent State University at Stark, aguercio@kent.edu

+Paolo Maresca is with the Dipartimento di Ingegneria Elettrica
e Tecnologie dell'Informazione (DIETI) of the University of
Naples, “Federico II”, Napoli, Italy, paomares@unina.it

However, in order for a vital system to be capable
of achieving objectives, it is necessary that the
relationships created inside the network can be
qualified in terms of consonance and/or resonance. In
music, consonance (from the Latin cum+sonare “to
play with”) provides for the listener the impression of
stability and repose contrary to the impression of
tension or clash obtained in dissonance. As in an
orchestra, its members must reach a level of
consonance before playing together. Then this
consonance must be transformed in a resonance that
lets the music vibrate and permeate throughout the
air. In a similar way, we believe that a working team
must reach a level of consonance before their work
starts to resonate. The concept of consonance in a
team refers to the potential mutual compatibility of
the structures (groups), while that of resonance
actualizes the concept of consonance by making
possible an efficient operational collaboration that
aims to achieve a shared goal. It is interesting to
consider that the ability of an individual to interact
with other subjects is characterized by the action of
two forces [19]: the first one (consonance) which is
fundamental to reach a state of harmony; the other
one (competition) in opposition to the first one
creates resistance to collaboration. The presence of
these forces during the interaction implies, as the law
of Requisite Variety states [2], that variety absorbs
variety, i.e. a change of variety within a system aligns
all the different varieties existing in the system. The
group is comparable to a vital system whose
varieties, in terms of categories of values that each
participant in the group holds, must be aligned to be
consonants.

A Viable System Approach (VSA) [6] offers
schemes of interpretation useful for analyzing and
governing the structure of the relationships and the
process of interactions in these organizations, while
taking into account the specific conditions of the
relationships. In particular, for the alignment of the
varieties of each individual, we suggest to check the
condition of consonance at the level of the
categorical values of each individual.

According to the model of the categorical variety
[4, 5, 7, 8], the knowledge that identifies an effective
system is constituted not only of objects or of

 DOI: 10.5176/2251-3043_3.1.236

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

82 © 2013 GSTF

organized structures of information (such as
databases), but above all of deeply rooted values,
beliefs and opinions, as well as cognitive and
interpretation schemes.

Common or harmonic values, present in
cooperating people, act as facilitators of interaction
between different actors and will accelerate the
attainment of the consonance which is fundamental
for the creation of an effective project-system
characterized by informal and temporary
relationships. Consonants categorical values generate
a gravitational center which attracts the shared goal.
What we observe and it is particularly interesting, is
that in these cases there is less need for a role of
government, because the alignment between the
actors naturally emerges from the bottom.

The question is: “How can individuals who
possess different values, different patterns, and
different cognitive and behavioral models interact
effectively as nodes in a networking organization
aimed at achieving shared goals?”

Obviously this occurs through a process of
spontaneous governance that starts from the bottom
and leaves to its participants how to manage the use
of the instruments and mechanisms of collaboration.
The teacher as a coach must then train their teams to
identify points of consonance and teach them to reach
the level of resonance in the fastest way.

Working in group or in teams has become more
than ever an essential part of the learning process in a
teaching environment in this century whose
challenges are generated by the globalization of our
world. In particular, in the area of Computer Science,
we must prepare students to the fast changing world
requirements which expect cooperation across the
globe and at the same time fast production of good
quality artifacts. The authors believe that while
teaching, we can observe the groups as real vital
systems. As a consequence by working on elements
that stimulate the concepts of consonance and
resonance we are able to inject some accelerators in
the groups’ development: accelerators that can speed
up both the learning process and the quality of the
product.

With this goal in mind the observational studies
presented in this work have been conducted. The first
study was conducted at Kent State University at Stark
and Youngstown State University with an activity
that required computational thinking. 45 Computer
Science students taking classes at different levels
participated in the study. Some students worked in
pairs, while others worked individually. The goal was
to identify the quality of the work in a small group (a
pair) with respect to the quality of the work
performed by a single individual and to observe if a
speed up in the learning process was detected in the

pair with respect to the work of a single individual.
A post questionnaire was used to gather feedback
from the students about the experience.

The second observational study was conducted at
Kent State University at Stark and involved 18
Computer Science students from the Software
Engineering course. The students were paired to form
small VSAs. The goal was to observe the group
cooperation and the quality of the work in groups
when stress factors are added such as the physical
distance and the time constraints. Software tools were
allowed to support the cooperative process and the
design.

The paper is organized as follows. In Section 2 we
discuss some of the issues in computer education
raised by this century. In Section 3 we show how
agile software techniques can be used in a teaching
environment. In Section 4 we identify two agile
techniques that will be used in the two observational
studies that are discussed in Section 5. Finally in
Section 6 we present the conclusions and our future
research.

II. ISSUES IN EDUCATION
Computer education is an extremely important

topic in an era that develops so quickly and that has
opened the doors to large communities of people and
interests. As stated in the ACM Computer Science
curriculum 2008 Computer Science education must
seek to prepare students for lifelong learning that will
enable them to move beyond today’s technology to
meet the challenges of the future. The Computer
Science community recognizes that it is important to
identify the fundamental skills and knowledge that all
computing students must possess [1]. The ability to
cooperate is one of them. E-learning has shown great
potential in speeding the learning process among
people physically distant. The explosion of massively
open online courses (MOOCs) is providing and will
continue to provide alternative avenues of learning
for those who are looking for self-paced learning in
their midst of their daily life and for those in search
of an alternative to the costly education [27].
However in those courses beyond a strong self-
discipline, cooperative projects across the distance
require high collaboration abilities.

In this century where students work across the
distance an updated curriculum must be accompanied
by a proper set of teaching techniques that are aligned
with the fast innovative process, that guide the
learning experience, and help in the formation of the
individuals. Teaching technical excellence and good
design acquisition in a Computer Science curriculum
require fostering cooperative abilities and achieving
excellence in the quality of the students’ deliverables
in a timely manner. The question is “while teaching
Computer Science, are there techniques that can be

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

83 © 2013 GSTF

set in place to foster cooperation and to improve the
quality of material produced by the students given
certain time constraints?”

In the attempt to answer this question we observe
that there is a certain degree of similarity between the
goals to be reached in software development and the
goals to be reached in teaching. As a consequence we
think that applying some software development
methodologies and techniques in a teaching
environment can be beneficial. In particular we
believe that agile teaching methodologies, as we
explain in next section, can be used to speed up the
learning process and the quality of the material
produced by the students.

III. THE AGILE METAPHOR

In this section we first briefly recall the main
aspects of the agile methodology and then we
incorporate some of its techniques in a teaching
environment to develop an agile teaching
methodology.

Agile computing [3] is a new computing paradigm
designed to overcome the needs of modern-day
system software development. Teaching in an agile
way involves students in an agile process that
prepares them for the real world. Since agile
processes are used in software development as well
as in business and manufacturing [14] we believe that
it is possible to use the agile teaching both in courses
where programming and software design is required
as well as in courses where computational thinking
[32] is aimed.

The word agile refers to something that is fast to
adapt, extremely flexible and quick in movement. In
the area of Software Engineering, research has
created efficient tools and methodologies for the
software development that increase the production of
software systems while maintaining high quality
standards. Tools such as the Unified Modeling
Language (UML) [12] have been used to help
engineers in the design of software systems.
Development methods such as structured methods,
object-oriented approach, refactoring, etc., have been
used to produce software that is more flexible and
that stands the continuous changes produced by the
dynamic set of requirements. The principles behind
the Agile Manifesto [10] point the attention towards
“individuals and their interactions” over “processes
and tools”, “working software” over “comprehensive
documentation”, “customer collaboration” over
“contract negotiation”, and finally “respond to
changes” over “following a plan”. Several agile
techniques have been created and selected to favor
such principles; for example pair programming,
refactoring, works in team, short stand up daily
meeting for quick update and continuous interaction,

etc.. Most of those have become core principles and
practice of eXtreme Programming (XP), an agile
software development technique that fosters the
principles of the Agile Manifesto [9, 11, 26].

We believe that in the classroom, teachers and
students face some of the same difficulties that
software engineers and customers face while
developing software in the real world. In agile
software development, small teams of engineers
(often in pairs) produce quick executable deliverables
that satisfy the customers’ requests. In a teaching and
learning environment students, as engineers, are
required to produce deliverables (i.e. solution to
problems, completion of homework, small programs,
etc.) to satisfy the teacher’s request who is their
customer. We do understand that in reality the
teacher often wears two hats. It plays the role of the
customer, as the person that must be satisfied, as well
as the role of the expert or the coach of the team
while guiding the students in the process. However
for simplicity we refer to the teacher simply as the
customer.

As the customer, the teacher provides
requirements to the students; the students interact
with the teacher for clarifications of the requirements,
for problem specifications, and for possible changes
of such requirements. Then the students design and
implement the solution that is later delivered to the
teacher. In some cases, as in the case of a class
project development, the teacher returns the material
to the students with feedback that forces the students
to adapt or rethink the produced material to create
new deliverables. As in the case of the software
development, high quality of the deliverables is
expected and adaptability of the generated material
increases the chance to produce the deliverable
within the deadlines. For example, if during a project
a student is collecting and printing large amount of
material, it would be wise to modularize the
collection of the material (i.e. in chapters, in sections,
etc.) and avoid page numeration in order to be able to
add the last minute additional material in place
without reorganizing the whole collection.

The agile process is geared towards the
satisfaction of the customer which becomes the
success of the team or the company, the teaching
process is geared towards the satisfaction of
requirements set forth by the teacher which becomes
the success of the student.

While pondering at these similarities we have
asked ourselves: can we increase the learning speed
and quality of material produced by students by using
agile techniques in a teaching environment? In agile
software development, good time management
together with agile techniques is a good recipe for
success. Similarly we expect in a teaching

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

84 © 2013 GSTF

environment that good time management together
with some agile teaching techniques is a good recipe
for the success of a course.

We wish to clarify that the methodology is only
one of the components of the agile development. The
other two components are the tools and the
collaboration. A good balance between these
components provides a really effective teaching agile
process. The crucial point is represented by the
collaboration. In a team the communication is very
important. It is a process through which it is possible
to coordinate the work of the team participants. This
process requires the existence of consonance and
resonance within the team. Only with these two
characteristics we can be sure that the different
activities performed by the team participants
converge towards a common goal. In other words, the
factors that influence the cooperative development
are three:
1. the communication, which implies the existence

of consonance and resonance, and aims to
"harmonize" the team before their "performance"

2. the coordination, i.e. the set of activities required
to conduct the work in an autonomous way,
obtained by dividing the work in tasks or
subtasks, by planning the meeting of verification,
by structuring a plan of work and so on.

3. the cooperation, i.e. the set of activities that the
team will perform together in order to reach the
target goal.

With these ideas in mind we conducted two
observational studies at two different universities by
using computer science students of different levels of
expertise. In addition to selecting two agile
methodologies, we have chosen to leave the students
free to choose both the tools required for the process
as well as to establish their own communication. This
activity to let free the students was then monitored
with a questionnaire after the development.

IV. SELECTION OF AGILE TECHNIQUES

In this section, we briefly describe two core
principles of eXtreme Programming (XP) [16], an
agile software development technique, which have
been used for two observational studies: pair
programming, and refactoring. Both techniques have
been applied in a cooperative environment and in one
study stress factor such as high time constraints and
distance have been added.

Refactoring [18] is the process of improving the
design of code without changing the functionality.
Problems in the low quality of code can be addressed
by refactoring the source code. Clean code [21] is
both maintainable and extensible, which are two
benefits that are essential for high quality code. The
process of refactoring is performed via an iterative

process that analyzes each section of the code and
applies the selected refactoring rules. Such rules
perform minimal changes in the structure of the code
but do not change its functionality. In the end the
refactored code is easy to read, well-organized,
modularized, and documented. Refactoring is a very
common activity since most of the time developers
work with existing code and allows for improving the
quality of code produced.

Pair programming has gained interest as a tool
that helps build better software in a more efficient
and agile manner [15]. Pair programming is a process
where two programmers, a driver and a tactician,
synergistically work towards the solution. The driver
controls the keyboard and focuses on the task of
coding while the navigator observes and reviews the
work of the driver and focuses more on the strategic
architectural issues [30]. In reality in pair
programming, there is more communication during
the work than what is indicated by Williams [33].
While pair programming is beneficial, it is also
controversial [29]. People either love it or hate it.
Many studies have been conducted in pair
programming both in a software development
environment as well as in academic environment that
identify its benefits and its downsides [13, 17, 20, 22,
23, 24, 28, 31].

While pure pair programming involve solely the
activity of writing code in pair, we believe that the
methodology used in pair programming can be
extended and applied as a collaborative learning
technique to computational thinking [32] activities
and to learn-by-example activities.

The selection of these techniques for our
observational study is dictated by the need to achieve
in team cooperation products of high quality. We
believe that while refactoring injects quality in the
final product, the activity in pair injects speed during
the production. Based on these observations we have
chosen to extend pair programming to a
computational thinking activity which is part of the
first observational study described in this paper. The
second observational study, instead, incorporates
both pair programming and refactoring.

V. THE HAILSTONE SEQUENCE

In this first observational study we have extended
the pair programming technique as a collaborative
learning technique by replacing the pure coding
activity with computational thinking activities and
learn-by-example activities. While the study did not
require any special programming ability, the use of
analytical and computational thinking was required.
The study involved students of an introductory CS
course who were asked to answer a set of questions
regarding the “hailstone sequence”. The hailstone

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

85 © 2013 GSTF

sequence starts with any positive integer and
produces the next number in the sequence in the
following way: if the number is odd, then multiply it
by 3 and add 1; otherwise, divide it by 2. It is
conjectured that, no matter what positive integer you
start with, the hailstone sequence eventually reaches
the pattern 4-2-1. This conjecture has yet to be
proven. An algorithm in pseudo code and a webpage
that simulated the generation of the hailstone
sequence were provided.

See Table 1 for the questions asked in the study.
The first 3 questions were designed to observe the
behavior of the sequence. For example, Question 3
asked to “identify a starting number for which the
hailstone sequence is at least 30 numbers long, to
compute the length of that sequence, and to observe
how long are the hailstone sequences associated with
the new starting number if 1 is added and subtracted
from that starting number.” Question 4 was designed
to identify the ability to apply specific knowledge in
a more a general context. Finally question 5 was
designed to observe computational thinking ability.
In the questions students were asked to modify the
hailstone sequence to generate an infinite sequence
that starts at any given number and alternates an even
number with an odd number.

TABLE 1. THE HAILSTONE STUDY
 Questions
Q1 What is the smallest starting number that generates

a hailstone sequence with a length of at least 15?
Q2 Identify a starting number for which the hailstone

sequence is at least 30 numbers long. What is the
length of the sequence? If you add and subtract 1
from this starting number, how long is the hailstone
sequences associated with the new starting
numbers?

Q3 What is the length of the hailstone starting at 100?
Starting at 200? Starting at 400?

Q4 In general if the hailstone sequence starting at some
number N has length L, how long would the
hailstone sequence starting at 2N be? Explain your
reasoning.

Q5 Can you write an algorithm in pseudo code similar
to the one you have seen for the hailstone sequence
for the generation of an infinite sequence that starts
at any given number and alternates an even number
with an odd number? (NOTE: There are many
possible sequences that can be generated. Write an
algorithm that is generic. The only requirement for
the sequence is that the numbers must alternate odd
and even numbers.)

With the exception of writing a small algorithm in

pseudocode, no coding was required. A web page
that contained the hailstone sequence generator was
used during the experiment for the observation of the
sequence’s behavior.

The focus of this study is primary the cooperation
and especially the consonance achieved by the team.
Because of this the students were separated into two
subgroups. One simulated a VSA of two components
and the other a VSA with a single component. 45
students participated in the study, both undergraduate
and graduate across at Kent State University at Stark,
and Youngstown State University. Of the 45 students
involved in the study, 15 worked individually and 30
were grouped in 15 pairs. Only one computer was
available for each VSA pair. Each student in the VSA
had to act alternatively as driver or navigator, and
they exchanged roles at the beginning of each
question. The role of the driver was to use the
keyboard and to interact with the program and the
machine. The navigator, on the other hand acted as a
second pilot, observed the driver and engaged in
discussion by proposing alternative paths or
solutions, by correcting mistakes, or by guiding the
driver throughout the activity. The students were
asked to spend up to 4 minutes for each question.
They timed themselves on paper for each question,
reported their difficulty and confidence level in a
small table and move on to the next question.

The answers to the study were graded as correct
or incorrect and no partial credits were given.
Therefore even a small mistake would make the
answer incorrect. While this option would cut
dramatically the number of accepted answers, it will
help us to observe only the answers of best quality. It
is worth noting that the rigor used for the evaluation
of the responses served to check the degree of
consonance reached by each VSA team.

Fig. 1. Total number of correct answers.

As we can see in Figure 1, with the exception of
questions 1 and 2, the total number of correct
answers is greater in a pair than individually. We
believe that this due to the fact that the pair at the

0

5

10

15

20

25

30

1 2 3 4 5

N
um

be
r o

f C
or
re
ct
 A
ns
w
er
s

Question Number

Number of Correct Answers

Number of
Correct
Answers

Total Correct
Answer per
Individual

Total Correct
Answers per
Pair

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

86 © 2013 GSTF

beginning had to establish a pattern of
communication thus reducing the amount of time that
would be spent in producing the correct answer. After
the first training attempt in question 1 we see this
training gap reducing in question 2 and it definitely
disappears in all the remaining questions. This means
that the team has reached consonance and the
resonance is shown by the largest amount of correct
answers per pair with respect to individual in
question 3, 4, and 5.

This provides us with an empirical result of what
we stated in the previous sections about cooperating
vital systems. Before reaching a resonance which
provides an "amplified" performance, the team is
required to reach a consonance of the components of
the team and this requires additional time than in
single individuals. However, after this transitional
stage a team offers better performance than a single
individual.

If we observe the degree of difficulty perceived
by each student per question we see that question 2
together with question 5 was considered among the
most difficult questions. This makes us think that it is
possible that the training gap would have been filled
faster if an easier question had been encountered at
the beginning of the study.

Fig. 2. Degree of difficulty per question.

The results also show that pairs produce quality
results in less time than singles as it can be seen in
figure 3, even though more communication is
involved during their activity and that the extension
of the pair programming technique can be used in
other context were pure coding is not required.

The students’ comments collected in a post
questionnaire indicate that the majority of the
students who worked in pair thought that the
experience was beneficial. Some comments related to

the question “Did you feel the pair programming
environment helped you in this assignment?” are
given below:
• “Yes working with another person helped us to

figure out how to answer the questions”
• “Yes, we tend to complement each other”
• “Yes, reassurance and quicker work.”
• “Yes, because I'm lost and he helped explain”
Only 3 students (out of 45) commented that

pairing was slowing them down or that they didn’t
think they received any benefit from it. Here are their
comments:
• “No I don’t work well with other people and I

felt my partner was holding me back.”
• “It would be if we were both at the same level of

programming.”
• “Working in a pair had no effect on the difficulty

of the assignment.”

Fig. 3. Average time spent per question by pairs vs. individuals.

It may be interesting to observe why 3 VSA failed
to cooperate. In other words, it should investigate
better categorical values of those participants. In fact,
an effective system of cooperation is composed
primarily of deeply rooted values, beliefs and
opinions, as well as cognitive schemas and
interpretation. Common or harmonic values,
available in people who cooperate, act as facilitators
of interaction in order to accelerate the achievement
of the consonance.

Categorical consonants values generate a
gravitational center that attracts toward the shared
goal. What is particularly interesting is that in these
cases there is less need for a role of government,
because the alignment between the actors naturally
emerges from the bottom and that has been found in
the majority of the groups. Discordant categorical
values generate instead "cognitive traps", i.e. those

0

5

10

15

20

25

30

35

1 2 3 4 5

Fr
eq

ue
nc
y

Question Number

Questions Difficulty

0

1

2

3

4

1 2 3 4 5

Ti
m
e
in
 M

in
ut
es

Question Number

Average Time Spent

Average
Time Spent
per Question
by a Student
NOT in a
Pair

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

87 © 2013 GSTF

places where the VSA gives up due to obstacles to
learning. These obstacles are caused by widespread
opinions, prejudices, syndromes (e.g. “prima-donna”
syndrome, too many details, search of the guilty
person, etc.) and they do not allow the consonance
and consequently the resonance.

The work of removing these obstacles before a
working session may be of help to improve the
results.

VI. TOOLS, COLLABORATION AND DISTANCE: THE

REFACTORING STUDY
The previous study has identified an important

problem that arises in pair activities: there is a
communication gap at the beginning of the working
activity which can or cannot be filled. When this gap
is not filled the result is chaos and frustration of the
team participants and the quality of the work suffers.

In an agile teaching environment where both the
quality of the product and the time required for its
production are essential the minimization of this gap
is required.

The second study, named the “Refactoring
Study”, was conducted at Kent State University at
Stark to observe consonance and resonance of VSA
under stress with some process accelerators.

The study used an agile application of pair
programming activity in the context of refactoring.
Nine pairs of CS undergraduate students from a
Software Engineering course participated in the
study. The participating students had never applied
refactoring before.

The refactoring study was conducted over 48
hours. The code of a system which implemented a
Video store that keeps track of rented movies by
customers was used. The code consisted of 5 classes,
2 test cases, a makefile and a readme file containing
information on how to build the system. Specific
requirements of refactoring of part of the code were
given. Additional questions required code
comprehension and reverse engineering application.
Out of the 8 questions, five of them were specifically
on code refactoring. See Table 1 for the type of
refactoring asked. As an example, the exact text of
the Replace Temp with Query refactoring asked in
Question 4 is presented below.

Question 4: Loops that do more than one thing at
a time are more difficult to comprehend and extend
in the future. The loop in method statement is
performing multiple duties; including accumulating
the total charge for all movies. Perform a Replace
Temp with Query refactoring to eliminate the
variable totalAmount by creating a private
method getTotalCharge in class Customer.

Use a call to this new method where totalAmount
is being output.

TABLE II
THE REFACTORING STUDY

 Questions
Q1 Draw an initial UML class diagram
Q2 Write a unit test
Q3 Extract method refactoring
Q4 Replace temp with query refactoring
Q5 Move method refactoring
Q6 Replace type code with state/strategy refactoring-I
Q7 Replace type code with state/strategy refactoring-II
Q8 Draw the final UML class diagram from the code

To stimulate the consonance we added some
stress conditions. In particular we challenged the
communication by physically dividing each pair. The
pairs were split in two different classes and
communications was going only through virtual
applications. The following accelerators were
injected before the study:
• Two days before the study the students were

informed of the study, how it would be
performed, and who would be their partner.
Students were informed that they were supposed
to be able to share thoughts, code, diagrams, and
any other data during the activity. At that time the
students had the freedom to identify possible and
preferred tools for communication and team
cooperation.

• On the day of the study the students were
informed that a 3 minutes face to face standing up
pair meeting was performed before starting the
study. In the meeting the students had to agree on
the means and the tools of communication and
cooperation that they would use. After that, the
students spoke and cooperated only through the
chosen digital means of communications.
During the study we observed that the students

talked, shared their screen with their partner, wrote
and shared code and diagrams, shared sketches and
drawings when necessary. The team participants were
asked to alternate the role of the navigator and the
driver as pair programming requires. This
requirement was used to share responsibilities within
the group. At the beginning of the study a set of tools
and applications including a common repository was
made available for those groups that either did not
reach an agreement or that they needed additional
support; however no one was forced to use any of the
listed applications.

All the teams returned the entire assignment
within the given time with 62.5% of the teams
scoring an A/A- grade, 37.5% of the teams scoring a
B-/B/B+ grade. Of the 62.5%, 32.5 completed the

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

88 © 2013 GSTF

study with >95% accuracy, while the remaining 25%
were in the range 90-95.

One team did not complete question 7, and 1 team
did not complete question 8. Considering that nearly
50% of the groups stated in the post-questionnaire
that more time should have been allotted to complete
the work this result is highly encouraging.

In Fig. 4, we observe that students agreed on
communications tools they were most familiar with.
For code sharing 46% chose Skype, 28% used Email,
while the remaining 36% used Eclipse, the Kent
Dropbox, SVN, and Github. 32% used more than one
application. For talking 50% preferred Skype over
phone texting and email. Again 32% used more than
one application. To share data, display, diagrams, et
al, 60% of the students used Skype with respect to
other applications. Only 25% of the students used
more than one application.

If we observe the degree of difficulty (see Fig. 5)
perceived by each student per question we see that
the difficulty of question 2 is perceived by over 50%
of the students and the value of difficulty continues to
increase with question 3 and 4, to drop for question 5
before spiking in question 7. This means that the
students had to face a degree of difficulty
immediately as in the previous hailstone study.
However this time we do not have the spike in Fig. 6
that we detected in the previous study, rather we
observe that the students spent an amount of time
proportional to the degree of difficulty of the
question which is what we would like expect.

We think that the accelerators that we have
injected in the process and the freedom of choice
have played a speed up role in reaching the
consonance in the VSA.

Fig. 4. The Collaboration Tools chosen by the students.

Qualitative information was extracted from the
post questionnaires and the individual answers to the
exercise. For those teams who completed the work it
was found that there was at least one individual in
these teams who was very well versed in
programming. However, even these individuals who
thought who were at a higher ability level confessed
that their partner really helped them in achieving
their goal faster and raise their limitation awareness.
For instance one student mentioned: “It was an
interesting project, and it definitely made me feel like
I need to learn more about C++. I understood
exactly what the questions were asking me to do but
when it came to the coding part Andrew was much
more efficient than I was at that point.”

One group complained about the distance as a
barrier to the work activity for the communication
and they struggled to reach consonance. Here is the
original comment: ”It was hard not being at to talk to
Doug in person. We did not use the talk function on
Skype and that could have helped too. We were stuck
typing back and forth to each other. I think this would

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

89 © 2013 GSTF

have gone more smoothly if we could have worked
together in person.”

Fig. 5. Degree of difficulty per question.

The teams perceived the time constraint as these
comments show: “This assignment is much too
difficult to finish in the time allotted. A week would
have been much more sufficient to allow for technical
issues and other problems that groups may have..”;
“I thought this project would of worked better if we
had more time, or that didn’t take away so much of
my time …”; “More time for the assignment would
have made things easier”.

Fig. 6. Average time spent per question.

A benefit that emerges from this study is that
students get to know their fellow students more and
eventually interact more in class. For example one
student mentioned that he didn’t know his partner too
well but he found he was a very competent partner.

VII. CONCLUSIONS AND FUTURE RESEARCH
Producing deliverables of high quality is what

both teachers and students should try to achieve. In
this paper, we show that when agile teaching
techniques are used in Computer Science classrooms,

the quality of the work produced by students greatly
improves.

Two observational studies that use agile
methodologies have been conducted. The study
involved a total of 63 computer science students. The
first study used and extension of pair programming as
a collaborative learning technique. In the extension,
the pure programming activity was replaced by
computational thinking activities and learn-by-
example activities. The study performed a
comparison between deliverables produced by
individuals working in pairs versus deliverables
produced by singles and showed that cooperative
learning produces better results than individual
learning. Answers of better quality were produced in
cooperative learning in a smaller amount of time
even though more time was spent in communication
especially at the beginning of the exercise when both
the interaction and the protocol of communication
had to be established (consonance).

The second study used the agile technique of
refactoring in a collaborative environment. In the
study we have injected some accelerators and added
at the same time as stress factors the distance and a
strict amount of time for the completion of the work.
On the other side we gave them the freedom to
choose the tools of communications to use in the
process. The quality of the deliverables produces by
the VSA was high and we have observed that the
teams have quickly reached consonance and
identified interpretative schema for the production of
the solution, which let us think that the accelerators
injected in the process have been beneficial.
Empirically we have observed that they have
overcome some of the time constraints by using any
medium of communication they were very familiar
with. While these results are encouraging, we are
aware that there are still open problems to examine.
The future research developments of this work will
be towards the evaluation of the quality of the
collaboration. The questionnaire that was delivered
has examined aspects of the collaboration and the
tools used in the refactoring observational study but
did not examine how the teams, as vital systems,
have been able to achieve the results, or to what
extent they have cooperated. In other words, while
observing Fig. 5 and 6 we recognize that, if we
overlap them, there is a sort of pulse that makes them
to oscillate in unison, as if to emphasize the drive to
reach a harmony in the teams (understood as vital
system) in response to a survival instinct in the team
itself, necessary to complete the required tasks within
the required time.

This dynamic should be more closely investigated
and constitutes the third axis of this investigation, in
addition to the tools and the collaboration

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
%Easy 75. 43. 26. 25. 40. 20. 6.6 20.

%Diff 25. 56. 73. 75. 60. 80. 93. 80.

A
xi
s
Ti
tl
e

Question difficulty

0.0

20.0

40.0

60.0

80.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Avg Time per Question

Avg Time

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

90 © 2013 GSTF

investigated in this observational study. This dynamic
is part of the entropy of the vital systems that should
be measured and that probably has a bell-shaped as
shown in [4, 5, 19]. In other words understanding in
which way the students have taken some decisions
(and then answered the questions) cannot be
separated from the categorical values they have
adopted and from the interpretative schemes used.
They can themselves be the process accelerators for
their work, if intercepted and stimulated.

In fact, if we consider, that the students were left
free to evolve independently in their group while
working in a small and limited amount of time, it is
clear that the way they operated was composed of 4
phases as shown in figure 7: chaos, complexity,
complication and certainty [7, 8]. The figure, which
represents the ideal curve of knowledge of a vital
system, shows the entropy as a function of the
information that they are involved in the process of
resolution of the problem. It is clear that when the
assignment is given, in that instant, the groups are in
a state of chaos because they have not focused the
problem yet. Immediately after, the disorder
paradoxically increases because people do not know
what to do (complexity) and they can only entrust
and hold on the beliefs and values held by each
individual to continue working (abduction). After
that, the entropy is expected to decrease. This occurs
when a hypothesis of solution is formulated.
However it is necessary to check such hypothesis
(complication). This requires the application of an
interpretative schema that represents the working
hypothesis which evolves into an interpretative
schema of synthesis that represents the true inductive
movement. If the verification has been successful
then the interpretative schema of synthesis converges
to the solution, the process is simplified, and the
interpretative schema becomes reusable for similar
problems (deductive movement).

During the process, the teams had to apply the
following 3 approaches to knowledge: abduction,
induction, deduction.

Figure 7. The 4 phases of the collaboration process

The first element, the abduction, descends from
the knowledge that the individual of the vital system
owns. It is influenced by the context in which he/she
lives and depends on the variety information that the
subject possesses. The abduction is a source of
inexplicable knowledge, and irrational in some
respects, that the students sometimes use to identify
and create working hypothesis. The second element,
the induction, is a process that, starting from special
cases, derives a general law. However the process
leads to a law that is not certain but only probable.
Finally, the deduction is the logic process that
deduces the required conclusion given some
assumptions and some rules which ensure the
correctness of the logical process.

In conclusion we can divide the curve in regions
in which we can apply accelerators capable of
facilitating the decrease of the entropy and the
acquisition of the correct interpretative schemes in
order to converge rapidly towards a solution. It is
clear that the problem is not the chaos, which is in
itself complex. The chaos is such if it is seen by the
subject of the team in relation to his/her knowledge.
By improving his/her knowledge the perception of
the problem will improve.

ACKNOWLEDGEMENTS

Thanks to Dr. Michael Collard for the Video store
assignment used in the Refactoring study. Special
thanks to all the participants.

REFERENCES

[1] ACM Computer Science Curriculum 2008: An Interim
Revision of CS 2001 - Report from the Interim Review Task
Force,http://www.acm.org/education/curricula/ComputerScie
nce2008.pdf, 2008.

[2] Ashby, W. R., An introduction to cybernetics. Chapman and
Hall, London, 1956.

[3] Aydin, M., and Harmsen F., “An agile information systems
development method”, Information Systems Journal, vol. 12,
no.2, 2004, pp.127-138.

[4] Barile S., Management sistemico vitale, Giappichelli, Torino,
2009.

[5] Barile S., The dynamic of Information Varieties in the
Processes of Decision Making. In: Proceeding of the 13th
WMSCI - World Multi-Conference on Systemics,
Cybernetics and Informatics, Orlando, 2009.

[6] Barile, S. and Polese, F., “Linking Viable Systems Approach
and Many-to-Many Network Approach to Service-Dominant
Logic and Service Science”, in International Journal of
Quality and Service Science, vol.2, n.1, pp. 23–42, 2010.

[7] Barile, S., Saviano M., “Foundations of systems thinking: the
structure-systems paradigm”, in AA.VV., Contributions to
theoretical and practical advances in management. A Viable
Systems Approach (VSA), International Printing Srl Editore,
Avellino, 2011.

[8] Barile, S., Saviano M., “Qualifying the concept of systems
complexity”, in AA.VV., Contributions to theoretical and
practical advances in management. A Viable Systems
Approach (VSA), International Printing Srl Editore, Avellino,
2011.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

91 © 2013 GSTF

[9] Beck, K. Extreme programming explained: Embrace change.
Addison Wesley, 2000.

[10] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M. et al., Manifesto for Agile
Software Development. http://agilemanifesto.org/, 2001.

[11] Beck, K., and Andres, C. Extreme Programming Explained:
Embrace Change. 2nd Edition. Upper Saddle River, NJ, USA:
Pearson Education, 2004.

[12] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified
Modeling Language User Guide, Addison Wesley, 1999.

[13] Bryant, S., Romero, P., and du Boulay, B. "Pair
programming and the mysterious role of the navigator."
International Journal of Human-Computer Studies, vol. 66,
no.7, 2008, pp. 519-529.

[14] Cao, J. “Agile Computing.” C&C Research Laboratories
NEC Europe Ltd., Rathausallee 10, D-53757 St. Augustin,
Germany,htpp://www.mit.edu/~caoj/pub/doc/jcao_t_agileco
mp.pdf, 2003.

[15] Coman, I., D., Sillitti, A., Succi, G. “Investigating the
Usefulness of Pair-Programming in a Mature Agile Team.”
Agile Processes in Software Engineering and Extreme
Programming in Lecture Notes in Business Information
Processing, vol. 9, no.5, 2008, pp. 127-136.

[16] Conboy, K., Fitzgerald, B. “Method and developer
characteristics for effective agile method tailoring: A study of
XP expert opinion”, ACM Trans. Softw. Eng. Methodology.
vol. 20, no.1, Article 2, July 2010, pp. 1-30.

[17] Dybå, T., Arisholm, E., Sjøberg, D., I., K., Hannay, J., E.,
Shull, F. “Are two heads better than one? On the
effectiveness of pair programming.” IEEE Software, vol. 24,
no. 6, 2007, pp. 12–15.

[18] Fowler, M. Refactoring: Improving the design of existing
code. Addison Wesley, 1999.

[19] Golinelli, G.M., L’Approccio Sistemico Vitale (ASV) al
governo dell’impresa. Cedam, Padova, 2011.

[20] Höfer, A. “Video analysis of pair programming.”
Proceedings of ICSE 2008, 2008, pp. 37-41.

[21] Martin, R. Clean Code. Prentice Hall, 2009.
[22] McDowell, C., Hanks, B., and Werner, L. “Experimenting

with pair programming in the classroom.” SIGCSE
Conference on Innovation and Technology in Computer
Science Education (ITiCSE '03), 2003, pp. 60-64.

[23] McDowell, C., Werner, L., Bullock, H.E., and Fernald, J.,
Pair programming improves student retention, confidence,
and program quality, Communications of the ACM, vol. 49,
no. 8, 2006, pp. 90-95.

[24] Mendes, E., Al-Fakhri, L. B., Luxton-Reilly, A. “A replicated
experiment of pair-programming in a 2nd year software
development and design Computer Science course.” SIGCSE
Conference on Innovation and Technology in Computer
Science Education (ITiCSE '06), 2006, pp. 108-112.

[25] Pellicano, M. Il governo strategico dell'impresa. Torino:
Giappichelli, 2004.

[26] Succi, G., Marchesi, M. eds. Extreme programming examined.
Pearson Education, ISBN-13: 978-0201710403, 2001.

[27] Vardi Moshe Y. “Will MOOCs Destroy Academia?”
Communications of the ACM, 10.1145/2366316.2366317,
vol. 55, no. 11, 2012, p. 5.

[28] Velasco Berba, V. “The pitfalls and perils of pair
programming”.http://ezinearticles.com/?The-Pitfallsand-
Perils-of PairProgramming&id=356042, 2006.

[29] Williams, L. “But, isn't that cheating?” Frontiers in
Education (FIE '99) Session 12B9, 1999, pp 26-27.

[30] Williams, L., and Kessler, R.. Pair programming illuminated.
Addison-Wesley, 2003.

[31] Williams, L. “Lessons learned from seven years of pair
programming at North Carolina State University.” Inroads:
ACM SIGCSE Bulletin, vol. 39, no.4, 2007, pp. 79-83.

[32] Wing, J. M., Computational thinking, Communications of the
ACM (CACM ’06), vol. 49, no. 3, 2006, pp. 33-35.

[33] Wray, Stuart. “How pair programming really works”, IEEE
Software, January/February, 2010, pp. 50–55.

Angela Guercio received her Ph.D. in computer science from
Kent State University, Kent, OH in 2004, the M.S. in Computer
and Information Sciences from the Knowledge Systems Institute,
Chicago, in 2000 and the Doctor in Computer Science “cum laude”
from the University of Salerno, Italy in 1984. She is currently an

Assistant Professor at Kent State
University in Ohio. She has been an
Assistant Professor at Hiram College and
Senior Research Associate at University of
Salerno, Italy.
Dr. Guercio’s research interests include
programming languages, software-
development environments, multimedia
computing, web programming, and

multimedia and visual languages. She is a co-author of several
papers published in scientific journals and refereed conferences.
She has been a winner of several awards and Fellowships for her
research. She has chaired and participated in the organization of
several international conference and coedited special issues of
international journals. Dr. Guercio is a member of the IEEE, the
IEEE Computer Society, and of the ACM.

Paolo Maresca is an Associate Professor of Sistemi per

l’Elaborazione delle Informazioni, at the
“Dipartimento di Ingegneria Elettrica e
Tecnologie dell' Informazione (DIETI) of
the University of Naples, “Federico II”.
He is a member of the AICA and senior
member of the IEEE and author of about
120 papers published in journal,
conferences, books and magazines of
national and international ICT topics. He is

an Associate Editor and referee of international journals and
coordinator of the Eclipse Italian community. He was awarded in
2011 for IBM faculty award and was IBM rational champion for
2012 and 2013.

GSTF Journal on Computing (JoC) Vol.3 No.1, March 2013

92 © 2013 GSTF

