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Abstract: We will describe modifications of the 
research methods of Willbrand et al and Ahnert et 
al for identifying significant genes in the biological 
processes studied in microarray experiments. 
Willbrand et al introduced a new method of 
identifying significant genes by analyzing 
probabilities of up-down signatures of microarray 
expression curves of genes. Ahnert et al generalized 
the method of Willbrand et al and established 
various bounds on any microarray curve’s 
algorithmic compressibility which measures its 
significance in underlying biological process. We 
will compute the probabilities of up-down 
signatures of microarray curves defined by 
Willbrand et al by using Foulkes’ method for 
enumeration of permutations with prescribed up-
down sequences and the hook length formula of 
Frame et al. Moreover, we will compute the bound 
of Ahnert et al corresponding to the map which 
gives the number of permutations with the same 
pattern of rises and falls for any microarray 
curve’s algorithmic compressibility. It is 
fascinating to see that how combinatorial 
algorithms of permutations and Young tableaux 
are useful in analyzing data of gene expressions 
and identifying significant genes in biological 
processes. 
 
Index Terms: Algorithmic Compressibility, Hook 
length, Microarray curve, Young tableaux 
 

I. INTRODUCTION 

Various mutations in genes can lead to serious 
diseases. In the last decade, many scientists have 
used DNA microarrays (DNA chips) to study 
gene expressions in various diseases such as 
cancer, diabetes, arthritis, and Alzheimer’s 
disease ( [6], [14], [13], [12], [17], [18],[11]). A 
DNA microarray is a tool that consists of a small 
membrane or a glass slide containing samples of 
many genes. In the past scientists were able to do 
genetic analysis for only a few genes at once. 
DNA microarrays allow scientists to monitor 
gene expression values for thousands of genes in 
one experiment quickly and efficiently. 
Microarray experiments generate massive 
amount of data. Various computational methods 
are required to analyze such data and identify 
genes which are significant to the underlying  

 
biological process. Willbrand et al [21] found a 
new method of identifying significant genes in 
microarray expression curves. For each gene, 
they constructed a plot of expression level as a 
function of progression such as a function of 
time or severity of disease. Depending upon the 
consecutive data points as increasing (positive) 
or decreasing (negative), they associated an up-
down signature, a string of pluses and minuses, 
to the expression curve of each gene. Their 
method is based on analysis of probabilities of 
the up-down signatures of the expression curves 
of genes. In 2006, Ahnert et al [5] generalized 
the method of Willbrand et al [21] by using 
concepts in the field of algorithmic information 
theory. They computed various bounds on any 
microarray curve’s algorithmic compressibility, 
which measures its significance in the underlying 
biological process. In order to do this, they 
introduced a two- step procedure for any 
microarray curve for a gene. In the first step of 
the procedure, they associated a rank 
permutation to the data points of the given 
microarray curve. In the second step, they chose 
a simple map, γ  which acts upon the rank 
permutation and gives as its output a real 
number. In their analyses, using Monte Carlo 
Simulation, they established bounds 
corresponding to various maps of permutations 
for any microarray curve’s algorithmic 
compressibility. For example, they found bounds 
corresponding to the mapsγ +−  and longγ , which 
respectively gives the number of permutations 
with the same pattern of rises and falls and the 
length of the longest increasing or decreasing 
subsequence of a permutation. The research 
methods of Wilbrand et al [21] and Ahnert et al 
[5] are powerful tools to analyze large 
microarray data. 
 
In this paper, we will describe modifications of 
the research methods of Wilbrand et al [21] and 
Ahnert et al [5] for identifying genes which play 
an important role in the underlying biological 
process. Our modified research methods will use 
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some combinatorial algorithms of Young 
tableaux and permutations. Young tableaux are 
certain tabular arrangements of integers. Alfred 
Young [22, 23] used these tableaux in his studies 
of irreducible representations of the symmetric 
group nS which is the group of all permutations 
of the set of integers from 1 to n. The hook-
length formula of Frame et al [7] computes the 
number of standard Young tableaux of a given 
shape and gives a combinatorial way of finding 
the dimensions of the irreducible representations 
of the symmetric group. Foulkes [8] described a 
method for enumeration of permutations of 
{1,2,3 }nL  with a prescribed up-down 
sequence. This enumeration method of Foulkes 
[8[ is based on the dimensions of the irreducible 
representations of the symmetric group given by 
the hook-length formula of Frame et al [7] and 
the coefficients in the product of Schur 
functions. We will use Foulkes’ method [8] to 
calculate the probabilities, given in Wilbrand et 
al [21], of the up-down signatures of microarray 
curves of genes. Additionally, we will use 
Foulkes’ method [8] to compute the bound of 
Ahnert et al [5] corresponding to the map γ +−  
for the algorithmic compressibility of a given 
microarray curve of a gene. It may be noted that 
Vaidya(Joshi)[20], computed the bound of 
Ahnert et al [5]  corresponding to the map longγ  
which gives the length of the longest increasing 
or decreasing subsequence of a permutation 
using the Robinson-Schensted-Knuth 
(RSK)[9,10,15,16] correspondence between 
permutations and Young Tableaux and the hook 
length formula of  Frame et al [7]. Further it may 
also be noted that Abhyankar-Joshi (Joshi is the 
maiden name of the author) [1,2,3,4] generalized 
RSK correspondence and established various 
correspondences between multi tableaux and 
multimonomials and Vaidya (Joshi) [19] gave a 
summary of them. 
 
In Section III, we will describe the research 
methods of Wilbrand et al[21] and Ahnert et al 
[5] for finding significant genes in the 
underlying biological process. In Section IV, we 
will review Foulkes’ [8] method of enumeration 
of permutations with a prescribed up-down 
sequence and the hook length formula of Frame 
et al [7].In Section V, we will describe our 
modifications of research methods of Wilbrand 
et al [21] and Ahnert et al [5] for finding 
significant genes. Finally, in Section VI we will 
have discussion and conclusion. It is fascinating 

to see how combinational algorithms are useful 
in analyzing data of gene expressions and finding 
significant genes for target diseases. The analysis 
of gene expressions is crucial in earlier 
detections of diseases and their treatments. 
 

II. NOTATION & TERMINOLOGY 

We will use the notation and terminology 
introduced in Wilbrand et al [21],  Ahnert et al 
[5], Foulkes’ [8] and Schensted[16].  
 
III. RESEARCH METHODS OF WILBRAND 

ET AL & ANHERT ET AL  

In this Section, we will review the research 
methods of Wilbrand et al [21] and Ahnert et al 
[5] for determining the significant genes for the 
underlying biological process. 
 
Research Method of Wilbrand et al 
 
(1) Assign an up-down signature to a given 

gene or a microarray curve of N + 1 data 
points as follows: Connect consecutive pairs 
of data points by line segments and attach to 
each of these line segments a plus (+) if it is 
increasing and a minus (-) if it is decreasing. 
This forms a string of  +’s and –‘s of length 
N, which is its  an up-down signature σ . 

(2) Calculate the probability ( )P σ of an up-
down signature σ  as follows:  Since the 
probability ( )P σ  that N + 1 random data 
points have signature σ  is identical to the 
probability that a random permutation of the 
integers 1,2, , 1N +L  has the same 
signature σ , they used the formula    

( ) ( ) ( 1)!P C Nσ σ= +   where ( )C σ  
equals the number of permutations that have 
the signature σ . They used the recurrence 
relation 

 1 1

1

( , ) ( 1, )
( , 1)

n n

n

C i i C i i
C i i

= − +
+ −

L L L

L
 

with boundary condition  
( , ,0, , ) ( , , )C i j C i j= +L L L L  and 
(0, , ) ( , )C i C i=L L  where ( , , )i j L  

denotes a group of i  pluses, followed by a 
group of j  minuses. 
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(3) Place the genes in the ascending order of the 

frequency ( )C σ . The first gene is most 
likely to be correlated with the independent 
variable and the last gene least likely.  

 
Research Method of Anhert et al 
 
Ahnert et al [5] generalized the method of 
Wilbrand et al [21] by using concepts in the field 
of algorithmic information theory. Their method 
is as follows: 
 
(1) Convert all microarray curves into their rank 
permutations. For example, a curve f of five data 
points with values 0.23, 0.54, 0.33, 0.78, 0.91 
would be translated into the permutation 1, 3, 2, 
4, 5, as 0.23 is the lowest data point, 0.54 is the 
third lowest point, 0.33 the second lowest, etc.  
 
(2) Choose a simple map γ  which acts upon a 
permutation and gives as its output a real 
number. Permutations which are associated to 
the same number are grouped together. 
 
(4) By using Monte Carlo Simulation, compute 

the value  

2 2( ) log ( ) logK f p f Nγ γ= − −  

which is a bound on algorithmic 
compressibility of microarray curve f . If 

the number ( )K fγ  is positive, then the 

gene corresponding to the curve f  is 
significant to the underlying biological 
process. 

 
In Ahnert et al [5], they used many simple maps 
from set of permutations to the set of all real 
numbers. For example, they used the map γ +−  
which gives the number of permutations with the 
same pattern of rises and falls. As said in Ahnert 
et al [5], the number ( )K fγ measures the 

significance of a given microarray curve f in a 
relation to the underlying variable of the series. 
For example, if the microarray curve f  is a 
time series of measurement of gene expression 
across the duration of a cell cycle and

( ) 0K fγ > , then the microarray curve f is 

more likely related to the cell cycle than others. 

These research methods of Wilbrand et al [21] 
and Ahnert et al [5] have many advantages and 
are powerful tools to analyze large microarray 
data. 
 
IV. FOULKES’ METHOD & HOOK 

LENGTH  FORMULA 

 
In this section we will review Foulkes’[8] 
method for enumeration of permutations of 
1,2,3,….n with a prescribed up-down sequence 
and the hook-length formula of Frame et al[7]. 
The following theorem is Theorem 2.1 of 
Foulkes[8].  
  
Theorem (4.1): The number of permutations of 
1,2, nL  with a prescribed up-down sequence is 

( )g fϑμη μ∑ , where  

1. ( )η  is the partition whose Ferrers diagram 
has as its rim the skew-hook of the up-down 
sequence, 
2. ( )ϑ  is the partition whose diagram is 
determined from the ( )η - diagram by removal 
of its rim, 
3. gθμη  is the coefficient of the Schur-function 

{ }η  in the product  { }{ }θ μ , 
4. ( )f μ  is the dimension of the irreducible 

representation of the symmetric group nS  

corresponding to ( )μ  
 
In Section V of Foulkes[8], a step by step 
method for calculating the coefficients gϑμη  is 
given. The set of all permutations of 1,2,…..,n  
with a given up-down (U-D) sequence is 
classified into disjoint subsets, each subset is 
characterized by the “line of route”, prescribed 
by the standard tableau defining the subset, that 
is, the line joining 1,2,…..,n in succession in the 
tableau. As said in section 5 of Foulkes [8], this 
“line of route” can be regarded as a way of 
fitting a suitably “deformed” version of the 
mirror image of the skew-hook, labeled 1,2,….,n 
from the top, into the ( )μ - diagram so that the 
flats (-) of the skew-hook become either 
horizontal lines in the route or lines going 
upwards from left to right, whereas the downs 
(+) of the skew-hook become either vertical lines 
in the route or lines going downwards from right 
to left. Further, when each node is reached in 
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traversing the “line of route” a Ferrers diagram 
has been covered by the route. The line-of-route 
preserves the U-D sign sequence of the skew-
hook. 
 
The following Theorem of Frame et al [7] gives 
the number of standard tableaux of a given 
shape. 
 
Theorem (4.2): The number of standard tableaux 
of a given shape containing the integers 
1, 2, nL  is 

1

!
n

j
j

n

h
=
∏

 

where for 1 j n≤ ≤ , the number jh  is the hook 

length of the element j . 
 

V. MODIFICATIONS OF RESEARCH 
METHODS 

In this section we will describe our modifications 
of research methods of Wilbrand et al [21] and 
Anhert et al [5] and explain them by examples. 
 
Modification for research method of 
Wilbrand et al 
 
1. Assign an up-down signature to a given 

gene or a microarray curve of N + 1 data 
points as described in Wilbrand et al [21].   
 

2. Calculate the probability ( )P σ of an up-
down signature σ  using Foulkes’ [8] 
method as follows: Since the probability 

( )P σ  that N + 1 random data points have 
signature σ  is identical to the probability 
that a random permutation of the integers 
1,2, , 1N +L  has the same signature σ , 
Wilbrand et al [21] used the formula  

( ) ( ) ( 1)!P C Nσ σ= +   where ( )C σ  
equals the number of permutations that have 
the signature σ . We will calculate ( )C σ  
using Theorem 4.1 (which is Theorem 2.1 of 
Foulkes [8]) and the step-by-step method of 
Section V of Foulkes [8]. 

  
3. Place the genes in the ascending order of the 

frequency ( )C σ . The first gene is most 

likely to be correlated with the independent 
variable and the last gene least likely.  

 
Example 5.1 : Suppose the given microarray 
curve has the following data points: 0.41, 0.52, 
0.63, 0.35, 0.21 
1. By connecting these data points, the up-

down signature of the microarray curve is  
+ + − −  

2. As shown in Fig. 1, if we use Theorem 4.1 
(which is Theorem 2.1 of Foulkes[8]) and 
the step-by-step method of Foulkes [8] we 
get a shape of a standard Young tableau 
consisting of 3 elements in the first row, 1 
element in the second row, and 1 element in 
the third row.  

So using Theorem (4.2) we get 
5!( ) 6(1.2.5.2.1)C σ = =   and ( )P σ  = 

6/120. 
 
3. Place the genes in the ascending order of the 

frequency ( )C σ . The first gene is most 
likely to be correlated with the independent 
variable and the last gene least likely.  

 
Modification for research method of Ahnert 
et al 
 
(1) Convert all microarray curves into their rank 

permutations as described in Ahnert et al 
[5].  
 

(2) Find the values γ +−  of ( )fσ and ( )p f  

by using Theorem 4.1 (which is Theorem 
2.1 of Foulkes[8]) and the step-by-step 
method of Section 5 of Foulkes[8]. 

 
(3) Compute the value 

2 2( ) log ( ) log .K f p f Nγ γ= − −  for 

γ γ +−= . 

Example 5.2: Suppose the given microarray 
curve has the following data points: 0.41, 0.52, 
0.31, 0.20, 0.11 
1. The permutation ( )fσ  is 4,5,3,2,1 and the 

up-down sequence is + − − −  
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2. As shown in Fig. 2, if we use Theorem 4.1 
(which is Theorem 2.1 of Foulkes[8]) and 
the step-by-step method of Foulkes[8] we 
get a shape of a standard Young tableau 
consisting of 4 elements in the 1st row and 1 
element in the 2nd row. So by using Theorem 
(4.2) we get γ +−  of ( )fσ  = 

5! 4(1.5.3.2.1) =  and ( )p f  = 4/120. 

  
3. Now we could compute the value 

2 2( ) log ( ) logK f p f Nγ γ= − −   

      for γ γ +−= . It is positive. So the gene 
corresponding to the curve f  is significant. 
Thus instead of using Monte-Carlo 
simulation we could use Foulkes’ [8] 
method. 
 

VI. CONCLUSION 

In the last decade, many scientists have used 
DNA microarray (DNA chip) technology to 
study many diseases caused by mutations in 
genes. Various computational methods are 
required to analyze biological data of microarray 
experiments and identify genes which are 
significant to the underlying biological 
processes. Wilbrand et al [21] found a new 
method for finding significant genes in 
microarray experiments. Their method is based 
on the probabilities of up-down signatures 
associated to microarray expression curves. 
Anhert et al [5] generalized the method of 
Wilbrand et al [21]. Using Monte Carlo 
simulation they computed various bounds on any 
microarray curve’s algorithmic compressibility 
which measures its significance in the underlying 
biological process. The methods of Wilbrand et 
al [21] and Anhert et al [5] are powerful tools to 
analyze large microarray data. 
 
In this paper we described modifications of 
research methods of Wilbrand et al [21] and 
Ahnert et al [5]. Using Foulkes’[8] method and 
hook length formula of Frame et al [7], we 
computed probabilities of up-down signatures of 
microarray curves. Additionally, we computed 
the bound corresponding to the map γ +−  (which 
gives the number of permutations with the same 
pattern of rises and falls) of Ahnert et al [5] on 

algorithmic compressibility of any microarray 
curve. Foulkes’ method gives a step-by-step 
procedure to calculate the number of 
permutations with the same pattern of rises and 
falls. The hook length formula of Frame et al [7] 
gives a precise way of computing number of 
standard Young tableaux of a certain shape. Thus 
we could determine the significance of genes 
using combinatorial algorithms of permutations 
and Young tableaux. This is really wonderful! 
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