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Abstract:  Young tableaux are certain tabular 
arrangements of integers. Alfred Young introduced 
them to describe irreducible representations of the 
symmetric group at the end of the 19th century. We will 
use combinatorial algorithms of permutations and 
Young tableaux to describe a modification of the 
research method of Ahnert et al for identifying 
significant genes in the biological processes studied in 
microarray experiments. In the last decade, DNA 
microarrays (DNA chips) have been used to study gene 
expressions in many diseases such as cancer and 
diabetes. To analyze data of microarray expression 
curves of genes, Ahnert et al associated permutations to 
the data points of the microarray curves. Using Monte-
Carlo simulation they established bounds 
corresponding to various maps of permutations for any 
microarray curve’s algorithmic compressibility which 
measures its significance in the underlying biological 
process. Using the Robinson- Schensted-Knuth 
procedure, we will associate Young tableaux to 
permutations corresponding to the data points of 
microarray curves. We will calculate the bound of 
Ahnert et al corresponding to the map which gives the 
length of the longest increasing or decreasing 
subsequence of a permutation. 

 
 

Index Terms: Algorithmic Compressibility, Hook Length, 
Microarray Curve, Young Tableaux 
 

I. INTRODUCTION 
 In the last twenty years, Bioinformatics has 
brought together mathematicians, computer 
scientists, and biologists to analyze biological data 
such as nucleic acid (DNA/RNA) and protein 
sequences. Studying various functions of genes is 
important in analysis of genetic diseases. Many 
scientists have used DNA microarray (DNA chip) 
technology to study gene expressions in various 
diseases including and most notably, cancer ([6], 
[14], [13], [12]), but also diabetes ([17], [18], and 
[11]). DNA microarrays consist of glass slides or 
membranes onto which sequences of many genes are  
 

 
attached at fixed locations. They offer an efficient 
method of gathering data about expression levels  
(amount of mRNA produced in the cell) of various 
genes under different conditions. In the analysis of 
such data, the goal is to identify the genes which are 
important in the underlying biological process. 
 Willbrand et al [21] found a new method of 
identifying significant genes in microarray expression 
curves. For each gene, they constructed a plot of 
expression level as a function of progression such as 
a function of time or severity of disease. Depending 
upon the consecutive data points as increasing 
(positive) or decreasing (negative), they associated an 
up-down signature, a string of pluses and minuses, to 
the expression curve of each gene. Their method is 
based on analysis of probabilities of up-down 
signatures. In 2006, Ahnert et al [5] generalized the 
method of Willbrand et al [21] by using concepts in 
the field of algorithmic information theory. They 
computed various bounds on any microarray curve’s 
algorithmic compressibility, which measures its 
significance in the underlying biological process. In 
order to do this, they introduced a two- step 
procedure for any microarray curve for a gene. In the 
first step of the procedure, they associated a rank 
permutation to the data points of the given 
microarray curve. In the second step, they chose a 
simple mapγ , which acts upon the rank 

permutation and gives as its output a real number. In 
their analyses, using Monte Carlo Simulation, they 
established bounds corresponding to various maps of 
permutations for any microarray curve’s algorithmic 
compressibility. For example, they found bounds 
corresponding to the maps longγ  and γ +−  which 

gives respectively the length of the longest increasing 
or decreasing subsequence of a permutation and the 
number of permutations with the same pattern of 
rises and falls. In this paper, we will focus on the 
bound corresponding to the map longγ  for the 

algorithmic compressibility. Moreover, in Vaidya 
(Joshi) [20], we computed the bound of Ahnert et al 
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[5] corresponding to the map γ +− ;we also computed 

the probabilities of up-down signatures of microarray 
curves defined by Willbrand et al [21]. For this we 
used Foulkes’[8] method for enumeration of 
permutations with prescribed up-down sequences and 
the hook-length formula of Frame et al [7]. The 
research methods of Willbrand et al [21] and Ahnert 
et al [5] have several advantages and are powerful 
tools to analyze large microarray data.  

In this paper, we will describe a 
modification of the research method of Ahnert et al 
[5] for identifying genes which are significant in the 
underlying biological process. We will use some 
combinatorial algorithms of Young tableaux and 
permutations to calculate the bound of Ahnert et al 
[5] corresponding to the map longγ  for the 

algorithmic compressibility of a given microarray 
curve. Young tableaux are certain tabular 
arrangements of integers. Alfred Young [22, 23] used 
these tableaux in his studies of irreducible 
representations of the symmetric group nS which is 

the group of all permutations of the set of integers 
from 1 to n.  Knuth [10] refined a sorting procedure 
for sequences of integers, which was originated by 
Robinson [15] and Schensted [16]. Robinson - 
Schensted - Knuth procedure gives a one-to-one 
correspondence between permutations of the set 
{1,2,3, }nL  and pairs of Young tableaux of the 

same shape. It may be noted that in Abhyankar-Joshi 
[1], [2], [3], [4] (Joshi is the maiden name of the 
author), they established many correspondences 
between multitableaux and multimonomials by 
generalizing the Robinson-Schnstead-Knuth (RSK) 
procedure in various ways. Additionally, Vaidya 
(Joshi) [19] gives a brief preview of Abhyankar-Joshi 
[1], [2], [3], and [4]. The RSK (Robinson [15], 
Schensted [16], Knuth [9]) correspondence is based 
on the procedures of inserting a positive integer in a 
standard Young tableau and deleting a positive 
integer from it. In this paper, we will use the RSK 
correspondence to associate pairs of Young tableaux 
to permutations corresponding to data series of genes. 
To calculate the bound of Ahnert et al [5] 
corresponding to the map longγ  for the algorithmic 

compressibility of a given microarray curve of a 
gene, we will use the Schensted’s algorithm [16] for 
computing the number of permutations having certain 

lengths of the longest increasing and decreasing 
subsequences and the hook-length formula of Frame 
et al [7] for computing the number of Young tableaux 
of a given shape. 

In Section III, we will describe the research 
method of Ahnert et al [5] for finding significant 
genes in the underlying biological process. In Section 
IV, we will review some theorems about Young 
tableaux and permutations. These theorems are 
proved in Part I of Schensted [16] and Frame et al 
[7]. In Section V, we will describe our modified 
research method of finding significant genes. Finally, 
in Section VI we will have discussion and 
conclusion. We will show that we can calculate the 
bound of Ahnert et al [5] on the algorithmic 
compressibility using the RSK correspondence 
between permutations and the Young tableaux and 
the hook length formula of Frame et al [7] instead of 
using Monte Carlo simulation. It is fascinating to see 
how combinational algorithms are useful in analyzing 
data of gene expressions and finding significant 
genes for target diseases. The analysis of gene 
expressions opens the door to improved diagnoses, 
individualized medical treatment, and earlier 
detections of diseases.  

II. NOTATION & TERMINOLOGY 

We will use the notation and terminology introduced 
in Ahnert et al [5] and Schensted [16].  

III. RESEARCH METHOD OF AHNERT ET AL 

In this Section, we will describe the research 
method of Ahnert et al [5] for determining the 
significant genes for the underlying biological 
process. 

Research Method: 

(1) Convert all microarray curves into their rank 
permutations. For example, a curve f of five data 
points with values 0.23, 0.54, 0.33, 0.78, 0.91 would 
be translated into the sequence 1, 3, 2, 4, 5, as 0.23 is 
the lowest data point, 0.54 is the third lowest point, 
0.33 the second lowest, etc.  

(2) Choose a simple map γ  which acts upon a 
permutation and gives as its output a real number. 
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Permutations which are associated to the same 
number are grouped together. 

(3) By using Monte Carlo Simulation, compute the 
value  

2 2( ) log ( ) logK f p f Nγ γ= − −   

which is a bound on the algorithmic compressibility 
of microarray curve f . If the number ( )K fγ  is 

positive, then the gene corresponding to the curve f  
is significant to the underlying biological process. 

In Ahnert et al [5], they used many simple maps from 
set of permutations to the set of all real numbers. For 
example, they used the map longγ which gives the 

length of the longest increasing or decreasing 
subsequence of a permutation. As said in Ahnert et al 
[5], the number ( )K fγ measures the significance of 

a given microarray curve f in a relation to the 
underlying variable of the series. For example, if the 
microarray curve f  is a time series of measurement 
of gene expression across the duration of a cell cycle 
and ( ) 0K fγ > , then the microarray curve f is more 

likely related to the cell cycle than others. This 
research method of Ahnert et al [5] has many 
advantages and is a powerful tool to analyze large 
microarray data. 

IV. REVIEW OF YOUNG TABLEAUX 

In this Section, we will review some results about 
Young tableaux and permutations. These results are 
proved in Schensted [16] and Frame et al [7]. 

The following lemma from Schensted [16] gives a 
one-to-one correspondence between the permutations 
and pairs of standard tableaux.  The correspondence 
is called Robinson–Schensted –Knuth 
correspondence. 

Lemma (4.1).  There is a one-to-one correspondence 
between sequences made with the n distinct integers 

1 2, , , nx x xL  and ordered pairs of standard tableaux 

of the same shape-the first containing 1 2, , , nx x xL

 and the second containing1,2, ,nL . 

In the above lemma the standard tableau containing 

1 2, , , nx x xL  is called the P-symbol and tableau 

containing 1,2, ,nL  is called the Q-symbol. The 
following Theorems (4.2 and 4.3) give relationships 
between the longest increasing and decreasing 
subsequences of a permutation and the number of 
columns and rows of the P-symbol. They are proved 
in Schensted [16]. 

Theorem (4.2): The number of columns in the P-
symbol (or the Q symbol) is equal to the length of the 
longest increasing subsequence of the corresponding 
sequence. 

Theorem (4.3): The number of rows in the P-symbol 
(or the Q symbol) is equal to the length of the longest 
decreasing subsequence of the corresponding 
sequence. 

The following Theorem of Schensted [16] gives 
relationship between longest increasing and 
decreasing subsequences of a permutation and 
standard tableaux with certain shapes. 

Theorem (4.4): The number of sequences consisting 
of the distinct numbers, 1 2, , , nx x xL  and having a 
longest increasing subsequence of length α  and a 
longest decreasing subsequence of lengthβ , is the 
sum of the squares of the numbers of standard 
tableaux with shapes having α  columns and β  
rows. 

The following Theorem of Frame et al [7] gives the 
number of standard tableaux of a given shape. 

Theorem (4.5). The number of standard tableaux of a 
given shape containing the integers 1, 2, nL  is 

1

!
n

j
j

n

h
=
∏

 

where for 1 j n≤ ≤ , the number jh  is the hook 

length of the element j . 

V. MODIFICATION OF THE RESEARCH METHOD 
OF AHNERT ET AL  
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In this section, we will describe our 
modification of the research method of Ahnert et al 
[5]. We will need the following Theorem to calculate 
the bound on the algorithmic compressibility, which 
measures the significance of the genes. 

Theorem (5.1): Let f  be a given microarray curve 
of n  data points, where n  is a positive integer. Let 

( )fσ  be the rank permutation associated to the n
data points.. Let ( ( ))long fσγ  = the length of the 

longest increasing or decreasing subsequence of the 
permutation ( )fσ . Let nS  be the set of all 

permutations of the set {1, 2, , }.nL Let

{ : ( ) ( ( ))}n long longH S fμ γ μ γ σ= ∈ = . For each 

positive integer m , let mN  be the set of all m
ordered tuples of positive integers. Let  

1 2

1 2 1 2

1 2

1

1 2

1

{ ( , , ) :
, }
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For each Kλ∈ , let nλ =  number of standard 

tableaux of shape λ  containing the integers 
1, 2,3 .nL  Then we have the following. 

(1)  The cardinality of the set H = 2( )
K

nλ
λ∈
∑   

(2)    For each Kλ∈ ,  

1

!
n

j
j

nn
h

λ

=

=

∏
 

where for 1 j n≤ ≤ , the number jh  is the 

hook length of the element j . 

(3)   ( )p f  = 2( ( ) )
K

nλ
λ∈
∑ / n!  

Proof: For any permutation nSμ∈ , we note that 

Hμ ∈ if and only if the length of the longest 

increasing subsequence of μ  = ( ( ))long fσγ and 

the length of the longest decreasing subsequence of 
μ ≤  ( ( ))long fσγ or the length of the longest 

decreasing subsequence of μ  = ( ( ))long fσγ and 

the length of the longest increasing subsequence of 
μ  < ( ( ))long fσγ . Then (1) follows from Lemma 

(4.1) and Theorems (4.2), (4.3), and (4.4) Clearly (2) 
follows from Theorem (4.5) and (3) follows from (1). 

Now we will describe our modified research method 
step by step and explain it for five data points. 

Modified Research Method: 

(1) Assign a permutation ( )fσ  to the given 
microarray curve f of n data points as described in 
Ahnert et al [5]. 

(2) Find the value ( ( ))long fσγ = the length of the 

longest increasing or decreasing subsequence of the 
permutation ( )fσ . 

(3) Use Theorem (5.1) to find the probability ( )p f  

of a random curve having the same longγ  value 

that f  has and compute the value  

2 2( ) log ( ) log
long long

K f p f Nγ γ= − −
 

 If this number is positive then gene corresponding to 
the curve f is significant to underlying biological 
process.

 

Example: Suppose the given microarray curve f has 
the following data points:- 

0.41,  0.52,  0.31,  0.20,  0.11. 

(1) The permutation ( )fσ is 4, 5, 3, 2, 1. 

(2) Length of the longest increasing or decreasing 
subsequences of the permutation ( )fσ  = 4. 

 (3) We will use Theorem (5.1) to calculate the 
probability ( )p f .Let 5{ : ( ) 4}longH Sμ γ μ= ∈ =
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To find the cardinality of the set H , we consider the 
shapes of standard Young tableaux that have 4 rows 
or 4 columns. 

 By Theorem (4.5), the number of standard tableaux 
of these shapes will be  

5! 4
(1.2.3.5.1)

=  and 
5! 4

(1.5.3.2.1)
= . So by 

theorem 5.1, the cardinality of the set H = 
2 24 4 32+ = . Consequently, ( ) 32 /120.p f =  

Clearly, 3
long

Nγ =  and we could compute 

2 2( ) log ( ) log
long long

K f p f Nγ γ= − −  This 

number is positive. So the gene corresponding to 
curve f  is significant to the underlying biological 
process. 

VI. DISCUSSION AND CONCLUSION 

Many genetic diseases are caused by deletions, 
duplications, and rearrangements of chromosomal 
regions. Studying which genes are active in different 
types of tissues helps scientists to analyze various 
genetic diseases. In the last decade, many scientists 
used DNA microarray (DNA Chip) technology to 
identify genes which play a crucial role in the 
underlying biological process. 

Ahnert et al [5] found a new method for finding 
significant genes in microarray experiments. Using 
Monte Carlo Simulation, they computed various 
bounds on any microarray curve’s algorithmic 
compressibility, which measures its significance in 
the underlying biological process. Their method 
involves associating permutations to the microarray 
curves and computing various simple maps of 
permutations to real numbers. This method has 
several advantages. For example, it is unbiased 
towards any pattern in the data series. 

In this paper, we described a modification of the 
research method of Ahnert et al [5] for identifying 
genes which are significant to the underlying 
biological process. We computed the bound 
corresponding to the map longγ  (which gives the 

length of the longest increasing or decreasing 
subsequence of a permutation) of Ahnert et al [5] on 
algorithmic compressibility using algorithms of 

Young tableaux and permutations. There is no loss of 
information since the Robison-Schensted-Knuth 
procedure gives a one-to-one correspondence 
between Standard Young tableaux and permutations 
corresponding to the data points of the microarray 
curves of genes. The method is also not biased 
toward any anticipated pattern. The hook length 
formula of Frame et al [7] gives a precise way of 
computing number of tableaux of a certain shape. 
Consequently, using Schensted’s algorithm [16], we 
could calculate the bound corresponding to the map 

longγ of Ahnert et al [5] on the algorithmic 

compressibility for a given microarray curve of a 
gene, instead of using Monte Carlo Simulation. Thus, 
we could determine significance of genes using 
combinatorial algorithms of Young tableaux. This is 
simply amazing! 
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