
 

 
 

  
Abstract—In solving many practical mathematical 

programming applications, it is generally preferable to formulate 
several quantifiably good alternatives that provide very different 
approaches to the particular problem. This is because decision-
making typically involves complex problems that are riddled with 
incompatible performance objectives and possess competing 
design requirements which are very difficult – if not impossible – 
to quantify and capture at the time that the supporting decision 
models are constructed. There are invariably unmodelled design 
issues, not apparent at the time of model construction, which can 
greatly impact the acceptability of the model’s solutions. 
Consequently, it is preferable to generate several alternatives 
that provide multiple, disparate perspectives to the problem. 
These alternatives should possess near-optimal objective 
measures with respect to all known modelled objective(s), but be 
fundamentally different from each other in terms of the system 
structures characterized by their decision variables. This solution 
approach is referred to as modelling to generate-alternatives 
(MGA). This paper provides a biologically-inspired simulation-
optimization MGA approach that uses the Firefly Algorithm to 
efficiently create multiple solution alternatives to stochastic 
problems that satisfy required system performance criteria and 
yet remain maximally different in their decision spaces. The 
efficacy of this stochastic MGA method is demonstrated using a 
waste facility expansion case study.   
 

Index Terms— Firefly Algorithm, Stochastic Modelling-to-
generate-alternatives, Biologically-inspired Metaheurisic 
Algorithms 
 

I. INTRODUCTION 
“Real world” decision-making typically involves 

multifaceted stochastic problems that possess design 
components which are very difficult to incorporate into 
corresponding mathematical programming models and tend to 
be riddled with unquantifiable design specifications [1]-[4]. 
While mathematically optimal solutions provide the best 
answers to these modelled problems, they are generally not the  

 
Manuscript received February 18, 2013.  
R. Imanirad is with the OMIS Area, Schulich School of Business, York 

University, Toronto, ON, M3J 1P3 Canada (e-mail: 
Rimanirad09@schulich.yorku.ca).  

X-S. Yang is with the School of Science and Technology, Middlesex 
University, Hendon Campus, London NW4 4BT, UK (e-mail: 
xy227@cam.ac.uk). 

J.S.. Yeomans is with the OMIS Area, Schulich School of Business, York 
University, Toronto, ON, M3J 1P3 Canada (corresponding author.  phone: 
416-736-5074; fax: 416-736-5687; e-mail: syeomans@schulich.yorku.ca). 

 
best solutions to the fundamental “real” problems as there are 
invariably unquantified issues and unmodelled objectives not 
apparent during model construction [1][2][5]. Hence, it is 
generally considered desirable to generate a judicious number 
of dissimilar alternatives that supply multiple distinct 
perspectives to the formulated problem [6][7]. These 
alternatives should possess near-optimal objective measures 
with respect to the known modelled objective(s), but be as 
different as possible from each other in terms of the structures 
characterized by their decision variables. Several approaches 
collectively referred to as modelling-to-generate-alternatives 
(MGA) have been developed [5][7] in response to this multi-
solution creation requirement. The primary motive behind 
MGA is to produce a manageably small set of alternatives that 
are good with respect to the modelled objective(s) yet are as 
far apart as possible from each other within the decision space. 
This set of maximally different alternatives provides solutions 
that perform similarly with respect to the known objectives, 
yet very differently with respect to any unmodelled issues [4]. 

In this paper, it is shown how to efficiently construct a set 
of maximally different solution alternatives by integrating a 
modified version of the computationally efficient Firefly 
Algorithm (FA) of Yang [8][9] into a new stochastic MGA 
approach that employs simulation-optimization (SO). The 
MGA procedure provided in this study extends the earlier 
approaches of Imanirad et al. [10][11] by employing an SO-
based FA approach to concurrently generate the desired 
number of solutions in a one-pass algorithm. Hence, this 
stochastic FA procedure is very computationally efficient from 
an MGA perspective. The procedure is demonstrated on a 
municipal waste management (MSW) facilities expansion case 
study taken from Yeomans [12].    

 

II. FIREFLY ALGORITHM FOR FUNCTION OPTIMIZATION 

While this section provides a brief outline of the FA 
procedure, more specific details can be found in 
[8][9][10][11]. The FA is a nature-inspired, population-based 
metaheuristic. Each firefly in the population represents one 
potential solution to the problem. The initial firefly population 
is distributed randomly and uniformly throughout the solution 
space. The solution procedure employs the following three 
idealized rules: (i) All fireflies within a population are unisex, 
so that one firefly will be attracted to other fireflies 
irrespective of their sex; (ii) Attractiveness between fireflies is 
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proportional to their brightness, implying that for any two 
flashing fireflies, the less bright one will move towards the 
brighter one. Attractiveness and brightness both decrease as 
the distance between fireflies increases. If there is no brighter 
firefly within its visible vicinity, then a particular firefly will 
move randomly; and (iii) The brightness of a firefly is 
determined by the landscape of the objective function. 
Namely, for a maximization problem, the brightness can 
simply be considered proportional to the value of the objective 
function. Based upon these three rules, the basic operational 
steps of the FA are summarized within the pseudo-code of 
Figure 1 [9]. 

 
Figure 1: Pseudo Code of the Firefly Algorithm 
 

Objective Function F(X), X = (x1, x2,… xd) 
Generate the initial population of n fireflies, Xi, i = 1, 2,…, n 
Light intensity Ii at Xi is determined by F(Xi) 
Define the light absorption coefficient γ 
while (t < MaxGeneration) 
 for i = 1: n , all n fireflies 
  for j = 1: n ,all n fireflies (inner loop) 
   if (Ii < Ij), Move firefly i towards j; end if 
   Vary attractiveness with distance r via e- γr   
  end for j 
 end for i 
 Rank the fireflies and find the current global best solution G*   
end while 

     Postprocess the results 
 

In the FA, there are two important issues to resolve: the 
variation of light intensity and the formulation of 
attractiveness. For simplicity, it can always be assumed that 
the attractiveness of a firefly is determined by its brightness 
which in turn is associated with the encoded objective 
function. In the simplest case, the brightness of a firefly at a 
particular location X would be its calculated objective value 
F(X). However, the attractiveness, β, between fireflies is 
relative and will vary with the distance rij between firefly i and 
firefly j. In addition, light intensity decreases with the distance 
from its source, and light is also absorbed in the media, so the 
attractiveness should be allowed to vary with the degree of 
absorption. Consequently, the overall attractiveness of a firefly 
can be defined as  
     β = β0 exp(-γr2) 
where β0 is the attractiveness at distance r = 0 and γ is the 
fixed light absorption coefficient for a specific medium. If the 
distance rij between any two fireflies i and j located at Xi and 
Xj, respectively, is calculated using the Euclidean norm, then 
the movement of a firefly i that is attracted to another more 
attractive (i.e. brighter) firefly j is determined by 
     Xi = Xi + β0 exp(-γ(rij)2)(Xi – Xj) + αεi . 
In this expression of movement, the second term is due to the 
relative attraction and the third term is a randomization 
component. Yang [9] indicates that α is a randomization 
parameter normally selected within the range [0,1] and εi is a 
vector of random numbers drawn from either a Gaussian or 
uniform (generally [-0.5,0.5]) distribution. It should be pointed 
out that this expression is a random walk biased toward 

brighter fireflies and if β0 = 0, it becomes a simple random 
walk. The parameter γ characterizes the variation of the 
attractiveness and its value determines the speed of the 
algorithm’s convergence. For most applications, γ is typically 
set between 0.1 to 10 [9]. In any given optimization problem, 
for a very large number of fireflies n >> k where k is the 
number of local optima, the initial locations of the n fireflies 
should be distributed relatively uniformly throughout the 
entire search space. As the FA proceeds, the fireflies would 
converge into all of these local optima (including the global 
ones). By comparing the best solutions among all these 
optima, the global optima can easily be determined. Yang [9] 
demonstrates that the FA will approach the global optima 
when n  ∞  and the number of iterations t, is set so that t 
>>1. In reality, the FA has been shown to converge extremely 
quickly into both local and global optima [8][10][11]. 

 

III. MODELLING TO GENERATE ALTERNATIVES WITH THE 
FIREFLY ALGORITHM 

Notwithstanding their fundamental limitations, most 
mathematical programming approaches have focused almost 
exclusively upon producing optimal solutions to single-
objective problem formulations or generating noninferior 
solutions to multi-objective problem instances. While such 
algorithms may determine solutions to the derived complex 
mathematical models, whether their results actually establish 
“best” approaches for providing appropriate decisions to the 
underlying real problems is certainly questionable. In most 
“real world” decision problems, there are numerous system 
objectives and requirements that are never explicitly apparent 
or included at the decision formulation stage [1][4]. 
Furthermore, it may never be possible to explicitly express all 
of the subjective considerations because there are frequently 
numerous incompatible, competing, design requirements and, 
perhaps, adversarial stakeholder groups. Therefore most 
subjective aspects of a problem remain unquantified and 
unmodelled in the construction of the resultant decision 
models. This is a common occurrence in situations where the 
final decisions are constructed based not only upon clearly 
stated and modelled objectives, but also upon fundamentally 
subjective, political and socio-economic goals and stakeholder 
preferences [7]. Numerous “real world” examples of this type 
of incongruent modelling duality are described in [5] and [13]-
[15].  

When unmodelled objectives and unquantified issues exist, 
different approaches are required in order to not only search 
the decision space for the noninferior set of solutions, but also 
to explore the decision space for inferior alternative solutions 
to the modelled problem. In particular, any search for good 
alternatives to problems known (or suspected) to contain 
unmodelled objectives must focus not only on the non-inferior 
solution set, but also necessarily on an exploration of the 
problem’s inferior region. To illustrate the implications of an 
unmodelled objective on a decision search, assume that the 
optimal solution for a quantified, single-objective, 
maximization decision problem is X* with corresponding 
objective value Z1*. Now suppose that there exists a second, 
unmodelled, maximization objective Z2 that subjectively 
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reflects environmental/political acceptability. Let the solution 
Xa, belonging to the noninferior, 2-objective set, represent a 
potential best compromise solution if both objectives could 
somehow have been simultaneously evaluated by the decision-
maker. While Xa might be viewed as the best compromise 
solution to the real problem, it would clearly appear inferior to 
the solution X* in the quantified model, since it must be the 
case that Z1a ≤ Z1*. Consequently, when unmodelled 
objectives are factored into the decision making process, 
mathematically inferior solutions for the modelled problem 
can be optimal for the real problem. Therefore, when 
unmodelled objectives and unquantified issues might exist, 
different approaches are required in order to not only search 
the decision space for the noninferior set of solutions, but also 
to simultaneously explore the decision space for inferior 
alternative solutions to the modelled problem. Population-
based procedures such as the FA permit concurrent searches 
throughout a feasible region and thus prove to be particularly 
adept methods for searching through a problem’s decision 
space.  

The primary motivation behind MGA is to produce a 
manageably small set of alternatives that are quantifiably good 
with respect to modelled objectives yet are as different as 
possible from each other in the decision space. In doing this, 
the resulting alternative solution set is likely to provide truly 
different choices that all perform somewhat similarly with 
respect to the known modelled objective(s) yet very 
differently with respect to any unmodelled issues. By 
generating these good-but-different solutions, the decision-
makers can explore alternatives that may satisfy the 
unmodelled objectives to varying degrees of stakeholder 
acceptability.  Obviously the solution-setters must then 
conduct a subsequent comprehensive comparison of the 
alternatives to determine which options would most closely 
satisfy their very specific circumstances. Thus, an MGA 
approach should necessarily be considered as one of decision 
support rather than of explicit solution determination. 

In order to properly motivate an MGA search procedure, it 
is necessary to provide a more formal definition of the goals of 
the MGA process [5][7].  Suppose the optimal solution to an 
original mathematical model is X* with objective value Z* = 
F(X*).  The following model can then be solved to generate an 
alternative solution that is maximally different from X*:  
 
    Max Δ  = ∑i

| Xi - Xi* | 

    Subject to:    X ∈  D 
          | F(X) - Z* | ≤  T 
 
where Δ  represents some difference function (shown as 
absolute in this instance) and T is a tolerance target specified 
in relation to the original optimal function value Z*.  T is a 
user-supplied value that determines how much of the inferior 
region is to be explored for alternative solutions. The FA-
based MGA procedure is designed to generate a small number 
of good but maximally different alternatives by adjusting the 
value of T and using the FA to solve the corresponding, new 
maximal difference problem instance. In this approach, 

subpopulations within the algorithm’s overall population are 
established as the Fireflies collectively evolve toward different 
local optima within the solution space. Each desired solution 
alternative undergoes the common search procedure of the FA. 
The survival of solutions depends upon how well the solutions 
perform with respect to the modelled objective(s) and by how 
far away they are from all of the other previously generated 
alternatives in the decision space. 

 

IV. A SIMULATION-OPTIMIZATION APPROACH FOR 
STOCHASTIC MGA 

In this section, it is shown how the FA-based MGA method 
can be extended to incorporate stochastic uncertainty using 
simulation-optimization (SO) in order to efficiently generate 
sets of maximally different solution alternatives. SO is a 
family of optimization techniques that incorporates stochastic 
uncertainties expressed as probability distributions directly 
into the computational procedure [16][17]. Suppose the 
mathematical representation of an optimization problem 
contains n decision variables, Xi, expressed in vector form as 
X = [X1, X2,…, Xn]. When stochastic conditions exist, values 
for the constraints and objective can only be efficiently 
estimated by simulation. Thus, any solution comparison 
between two distinct decisions X1 and X2 necessitates the 
evaluation of some statistic of F modelled with X1 to the same 
statistic modelled with X2 [12][16][17]. SO is a broadly 
defined set of solution approaches that combine simulation 
with some type of optimization method for stochastic 
optimization [16]. In SO, all unknown objective functions, 
constraints, and parameters are replaced by one or more 
discrete event simulation models in which the decision 
variables provide the settings under which the simulation is 
performed. Since all measures of system performance are 
stochastic, every potential solution, X, examined would 
necessarily need to be evaluated via simulation. As simulation 
is computationally intensive, an optimization component is 
employed to guide the solution search through the problem’s 
feasible region using as few simulation runs as possible. 

The new FA-driven stochastic MGA procedure extends the 
earlier approach of Imanirad et al. [10][11] by extending FA 
into SO for stochastic optimization and by exploiting the 
concept of co-evolution within the FA’s solution approach to 
concurrently generate the desired number of alternatives. FA-
directed SO consists of two alternating computational phases; 
(i) an “evolutionary phase” directed by the FA module and (ii) 
a simulation module. As described earlier, the FA maintains a 
population of candidate solutions throughout its execution. 
The evolutionary phase considers the entire population of 
solutions during each generation of the search and evolves 
from a current population to a subsequent one. Because of the 
system’s stochastic components, all performance measures are 
necessarily statistics calculated from the responses generated 
in the simulation module. The quality of each solution in the 
population is found by having its performance criterion, F, 
evaluated by simulation. After simulating each candidate 
solution, the respective fitness values are returned to the FA 
module to be utilized in the creation of the next generation of 
candidate solutions. One primary principle of an FA is that 
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fitter solutions in the current population possess a greater 
likelihood for survival and progression into the subsequent 
generation. The FA module evolves the system toward 
improved solutions in subsequent populations and ensures that 
the solution search does not become fixated at some local 
optima. After generating a new candidate solution set in the 
FA module, the new population is returned to the simulation 
module for comparative evaluation. This alternating, two-
phase search process terminates when an appropriately stable 
system state (i.e. an optimal solution) has been attained. 

 

V. SIMULATION-OPTIMIZATION COMPUTATIONAL ALGORITHM 
FOR STOCHASTIC MGA USING THE FIREFLY ALGORITHM 

An obvious approach to generate alternatives with an FA-
directed SO algorithm would be to iteratively solve the 
maximum difference model by incrementally updating the 
target T whenever a new alternative must be produced.  This 
approach would be somewhat similar in scope to the original 
Hop, Skip, and Jump (HSJ) MGA algorithm [13] in which an 
initial problem formulation is optimized and then 
supplementary alternatives are generated by systematically 
adjusting the target constraint to force the creation of 
suboptimal solutions. While this approach is straightforward, 
it would require repeated execution of the optimization 
algorithm, which could prove computationally expensive [7]. 
The new stochastic MGA procedure is designed to 
concurrently generate a small number of good but maximally 
different alternatives in a single pass of the FA procedure (i.e. 
the same number of runs as if FA were used solely for 
function optimization purposes) and its efficiency is based 
upon the concept of co-evolution (see [11]). Namely, the 
algorithm can simultaneously produce the overall best solution 
together with n locally optimal, maximally different 
alternatives to it in a single computational run.  

In the co-evolutionary approach, pre-specified stratified 
subpopulation ranges within the FA algorithm’s overall 
population are established that collectively evolve the search 
toward the formation of the stipulated number of very 
different solution alternatives. Each desired solution 
alternative is represented by each respective subpopulation 
and each subpopulation undergoes the common operations of 
the FA. This approach can be structured upon any standard FA 
solution procedure containing appropriate encodings and 
operators that best correspond to the problem. However, the 
survival of solutions in each subpopulation depends upon how 
well the solutions perform with respect to both the modelled 
objective(s) and by how far away they are from all of the other 
solutions in the decision space. Thus, the evolution of 
solutions in each subpopulation is directly influenced by those 
solutions contained in all of the other subpopulations, which 
forces the co-evolution of each subpopulation towards good 
but maximally distant regions of the decision space. This co-
evolutionary concept enables the simultaneous production of a 
set of quantifiably good solutions that are maximally different 
from each other [7]. 

By using the co-evolutionary concept, it becomes possible 
to implement an FA-directed stochastic MGA procedure that 
concurrently produces alternatives which possess objective 

function bounds that are somewhat analogous, but superior, to 
those created by an iterative HSJ-styled approach. Co-
evolution is also a much more efficient procedure than HSJ in 
that it exploits the population-based searches of FA algorithms 
in order to generate the multiple maximally different solution 
alternatives concurrently. Namely, while an HSJ-styled 
approach would be required to run n different times in order to 
generate n different alternatives, the new algorithm need be 
run only a single time to produce its entire set of alternatives 
irrespective of the value of n. Hence, it is a much more 
computationally efficient process. 

The steps in the co-evolutionary algorithm are as follows: 
1. Create an initial population stratified into P equally-sized 

subpopulations. The value for P must be established a priori 
by the decision-maker. P represents the desired number of 
maximally different alternative solutions within a prescribed 
target deviation from the optimal to be generated. Sp 
represents the pth subpopulation set of solutions, p = 1,…,P 
and there are K solutions contained within each Sp. 

2. Evaluate all solutions in Sp, p = 1,…,P, with respect to 
the modelled objective using the simulation module of SO. 
Solutions meeting the target constraint and all other problem 
constraints are designated as feasible, while all other solutions 
are designated as infeasible. 

3. Apply an appropriate elitism operator to each Sp to 
preserve the best individual in each subpopulation. In Sp, p = 
1,…,P, the best solution is the feasible solution most distant in 
decision space from all of the other subpopulations (the 
distance measure is defined in Step 6). Note: Because the best 
solution to date is always placed into each subpopulation, at 
least one solution in Sp will always be feasible. 

4. Stop the algorithm if the termination criteria (such as 
maximum number of iterations or some measure of solution 
convergence) are met. Otherwise, proceed to Step 5. 

5. Identify the decision space centroid, Cip, for each of the 
K’ ≤  K feasible solutions within k = 1,…,K of Sp, for each of 
the N decision variables Xikp, i = 1,…, N. Each centroid 
represents the N-dimensional centre of mass for the solutions 
in each of the respective subpopulations, p. As an illustrative 
example for determining a centroid, calculate Cip = (1/K’)∗

k∑ Xikp. In this calculation, each dimension of each 

centroid is computed as the straightforward average value of 
that decision variable over all of the values for that variable 
within the feasible solutions of the respective subpopulation. 
Alternatively, a centroid could be calculated as some fitness-
weighted average or by some other appropriately defined 
measure. 

6. For each solution k = 1,…, K, in each Sq, calculate Dkq, a 
distance measure between that solution and all other 
subpopulations. As an illustrative example for determining a 
distance measure, calculate Dkq = Min {

i∑ | Xikp - Cip | ; p = 

1,…,P, p ≠ q}. This distance represents the minimum distance 
between solution k in subpopulation q and the centroids of all 
other subpopulations. Alternatively, the distance measure 
could be calculated by some other appropriately defined 
measure.  
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7. Rank the solutions within each Sp according to the 
distance measure Dkq objective – appropriately adjusted to 
incorporate any constraint violation penalties. The goal of 
maximal difference is to force solutions from one 
subpopulation to be as far apart as possible in the decision 
space from the solutions of each of the other subpopulations. 
This step orders the specific solutions in each subpopulation 
by those solutions which are most distant from the solutions in 
all of the other subpopulations. 

8. In each Sp, apply appropriate FA “change operations” to 
the solutions and return to Step 2. 

 

VI. CASE STUDY OF STOCHASTIC MGA FOR THE EXPANSION 
OF WASTE MANAGEMENT FACILITIES 

As mentioned earlier, “real world” decision-makers 
generally prefer to be able to select from a set of “near-
optimal” alternatives that significantly differ from each other 
in terms of the system structures characterized by their 
decision variables. The ability of the stochastic co-
evolutionary FA-directed MGA procedure to concurrently 
produce such maximally different alternatives will be 
illustrated using the municipal waste management (MSW) 
facilities expansion case study taken from Yeomans [12]. The 
region in the facility expansion planning problem consists of 
three separate municipalities whose MSW disposal needs are 
collectively met by a landfill and two waste-to-energy (WTE) 
incinerators. The planning horizon consists of three separate 
time periods with each of the periods covering an interval of 
five years. The landfill capacity can be expanded only once 
over the entire 15 year planning horizon. Each of the WTE 
facilities can be expanded by any one of four possible options 
in each of the three time periods. The expansion costs escalate 
over time to reflect anticipated future conditions and are 
discounted to present value cost terms for use in the objective 
function. The MSW waste generation rates and the costs for 
waste transportation and treatment vary both temporally and 
spatially. The MSW case requires the determination of the 
preferred facility expansion alternatives during the different 
time periods and the effective allocation of the relevant waste 
flows in order to minimize the total system costs over the 
planning horizon. 

Yeomans [12] produced a single best solution to the 
expansion problem costing $600.2 million. As outlined earlier, 
planners generally prefer to be able to select from a set of 
near-optimal alternatives that differ significantly from each 
other in terms of the system structures characterized by their 
decision variables. In order to create three alternative planning 
options, it would be possible to place extra target constraints 
into the maximal difference model which would force the 
generation of solutions that were different from this newly 
determined, optimal solution by target values of, for example, 
2%, 5%, and 8%, respectively. By adding these specific target 
constraints to the original model, the problem would need to 
be resolved an additional three times. However, to improve 
upon the process of running four separate instances of the SO 
algorithm to determine these solutions, the stochastic FA-
directed MGA procedure described in the previous section 

was run once to produce the objectives for the 4 alternatives 
shown in Table 1.   

Table 1. System Expansion Costs ($ Millions) for the 4 
Alternatives 
 Overall 

“Optimal” 
Solution 

 
Best 2%
Solution 

 
Best 5% 
Solution 

 
Best 8% 
Solution 

System 
Expansion 
Costs 

 
600.21 

 
602.78 

 
612.54 

 
616.38 

 
This example has demonstrated how the stochastic FA-
directed MGA modelling approach could be used to efficiently 
generate a good set of policy alternatives that satisfy required 
system performance criteria according to prespecified bounds 
within stochastic environments and yet remain as maximally 
different from each other as possible in the decision space. 
Given the performance bounds established for the objective in 
each problem instance, decision-makers would be reassured 
by the stated performance bounds for each of these options 
while also being aware that the perspectives provided by the 
set of dissimilar decision variable structures are as maximally 
different from each other as is feasibly possible. Hence, if 
there are stakeholders with incompatible standpoints holding 
diametrically opposing viewpoints, the policy-makers could 
conduct an assessment of these different options without being 
myopically constrained by a single overriding perspective 
based solely upon the objective value. In addition to its 
alternative generating capabilities, the FA component within 
the MGA algorithm simultaneously performs extremely well 
with respect to its role in function optimization. It should be 
explicitly noted that the overall best solution produced by the 
MGA algorithm for the case is indistinguishable from the 
optimal solution determined in [12]. 

In the computational testing of this section, the results from 
the example highlight several important characteristics with 
respect to the new stochastic FA-based MGA method: (i) An 
FA can be employed as the underlying search process for 
optimization in SO; (ii) By the design of the MGA algorithm, 
the alternatives generated are good for planning purposes 
since all of their structures will be as mutually and maximally 
different from each other as possible (i.e. these differences are 
not just simply different from the overall optimal solution as 
in the HSJ-style approach to MGA); (iii) The co-evolutionary 
capabilities within the FA can be exploited to generate more 
good alternatives than planners would be able to create using 
other MGA approaches because of the evolving nature of its 
population-based solution searches; (iv) The approach is very 
computationally efficient since it need only be run once to 
generate its entire set of multiple, good solution alternatives 
(i.e. to generate n solution alternatives, the MGA algorithm 
needs to run exactly the same number of times that the FA 
would need to be run for function optimization purposes alone 
– namely once – irrespective of the value of n); and, (v) The 
best overall solutions produced by the stochastic MGA 
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procedure will be very similar, if not identical, to the best 
overall solutions that would be produced by the FA for 
function optimization alone.   
 

VII. CONCLUSIONS 
“Real world” decision-making problems generally possess 

multidimensional performance specifications that are 
compounded by incompatible performance objectives and 
unquantifiable modelling features. These problems usually 
contain incongruent design requirements which are very 
difficult – if not impossible – to capture at the time that 
supporting decision models are formulated. Consequently, 
there are invariably unmodelled problem facets, not apparent 
during the model construction, that can greatly impact the 
acceptability of the model’s solutions. These uncertain and 
competing dimensions force decision-makers to integrate 
many conflicting sources into their decision process prior to 
final solution construction. Faced with such incongruencies, it 
is unlikely that any single solution could ever be constructed 
that simultaneously satisfies all of the ambiguous system 
requirements without some significant counterbalancing 
involving numerous tradeoffs. Therefore, ancillary modelling 
techniques used to support decision formulation have to 
somehow simultaneously account for all of these features 
while being flexible enough to encapsulate the impacts from 
the inherent planning uncertainties.  

In this paper, a new stochastic FA-directed MGA approach 
was introduced that demonstrated how the structures of the 
computationally efficient, population-based FA could be 
exploited to concurrently generate multiple, maximally 
different, near-best alternatives via its co-evolutionary solution 
technique. In this stochastic MGA capacity, the FA-directed 
approach produces numerous solutions possessing the 
requisite problem characteristics, with each generated 
alternative guaranteeing a very different perspective. Since the 
new FA-directed stochastic technique could be adapted to 
solve a wide variety of problem types, the practicality of this 
stochastic MGA approach can clearly be extended into 
numerous “real world” applications. These extensions will 
become the focus of future research.   
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