
 

  
Abstract—Collision avoidance of moving systems is a well-

studied problem. The use of an Artificial Potential Field function 
is a popular approach to compute in real time a path that avoids 
collision between agents. It involves the minimization of a 
weighted sum of an attractive force and a repulsive force. 
Previous studies consider these weights to be fixed design 
parameters, to be determined experimentally. In particular, these 
parameters do not change during the run of the algorithm. Our 
main result is based on the observation that by dynamically 
changing these parameters one can obtain a guarantee on a 
minimum safety distance between the agents. Specifically, if the 
agents compute their path by minimizing the potential field with 
properly chosen weights, there will always be a guaranteed safety 
distance between each pair of agents. Our earlier studies show 
promising experimental results and we extended the studies on 
avoiding trajectory symmetry.Our simulation validates our 
model and demonstrated its effectiveness for a group of non-
cooperative agents moving in a small area. 
 

Index Terms—Collision Avoidance, Guaranteed Safety, 
Unsymmetrical, Unconstrained Optimization  
 

I. INTRODUCTION 
Collision avoidance is a critical issue in any moving system. 

The cost of collision ranges from damages to equipment to the 
loss of human lives. Traditionally, vehicles and airplanes are 
controlled solely by a human operator. The possibility of 
collision is largely dependent on the operator's ability to 
respond to a situation effectively. Today, aside from high 
volume traffic, the addition of autonomous and semi-
autonomous systems has made the problem even more 
complex. Meanwhile, many human operators, particularly 
those on the road, are more distracted than ever due to talking 
and texting on their cell phones. The need for effective 
collision avoidance control is tremendous. For simplicity, we 
will focus our discussion on vehicles, though many of the 
issues and models are applicable to other systems. 

Many researchers have studied and proposed various  
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models of collision avoidance. See, e.g., [1] and reference 
therein. The popular artificial potential field approach [2] is 
one such example. The environment is created as a vector field 
of attractive and repulsive forces. The vehicle's goal is an 
attractive force to it while obstacles or other vehicles are 
repulsive forces. These forces increase when a vehicle is close 
to its goal or an obstacle (or a neighbor vehicle) and decreases 
when the vehicle and its goal or obstacles are further away. 
The classical potential field method suffers from local minima 
issue. Many works, such asthose using Harmonic potential 
function [3],have resolved thislimitation. Furthermore, some 
of them are even able to guarantee collisionavoidance [4],[5], 
[6] under specific scenarios.One of the issues these workshave 
to address is how to react in time under high velocity and 
within theconstraints imposed by a vehicle's dynamics [7]. 
The issue is furthercomplicated if there is a crowding of the 
vehicles. Many times, admissiblepaths are not obtainable at 
the last moment [8]. 

Another approach includes a decision making component in 
their model. Forexample, trajectory planning, generally 
receives input parameters such asvehicle dynamics, location of 
obstacles and goal, and computes either a fullor partial motion 
plan for a vehicle system [9]. There are two issues with 
planners - first, it incurs high computational costs. Second, it 
is sensitiveto unexpected changes in the environment. Another 
example is the coordinationof multiple vehicle systems.See, 
e.g., [10],[11] and reference therein. Coordination is 
performed either by a centralized planner thatfactors all the 
vehicles' information and sends each vehicle a motion plan, or 
if the centralized planner is not available, the coordination is 
performeddirectly between these vehicles. One of the issue 
with planners is maintaininga stable communication link and 
high computational. Another deliberateapproach is predictive 
models. Predictive model performs a “look ahead”, verymuch 
like a human operator would do. A common predictive control 
model thatone can find in literature is the Receding Horizon 
(HC) controls [12],[13],also known as Model Predictive 
Control(MPC) [14]. RH is used as an optimizersince the key 
strength of this model is that it only looks a few time 
stepsahead for each move the vehicle makes instead of 
planning the wholeroute. Nevertheless, this method cannot 
guarantee collision avoidance as thecollision point may be 
right after its look-ahead time [15]. Thus the method 
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issensitive to initial conditions of the vehicles. There are a lot 
more othercollision avoidance techniques that are not 
described here, such as road-map [16] and distance transform 
[17]. 

In the previous decades, many motion models did not 
consider dynamics in their design. These models raised issues 
when they are implemented into physical systems. For 
example, these models may expect a vehicle to arrive at a 
specific location in a specific time frame to avoid collision but 
the vehicle control system has dynamic constraints that 
prevent it from executing these instructions in time. Hence, 
many researchers started to shift their focus to incorporating 
physical laws into their motion models and produced a lot of 
excellent work. However, these models may not be applicable 
if a system is not constraint by dynamics.Our work is focused 
on how to produce a motion control model at a higher, more 
abstract level, such that systems governed by dynamics and 
systems not governed by dynamics, can both utilize. 

In review of many works, we argue that by making sure our 
model guarantees a user defined minimum safety distance; we 
have indirectly incorporated dynamic and kinematic 
constraints. For example, many airplane safety regulations 
require some specific minimum safety distance to avoid 
colliding with another plane or obstacle. The distance is 
computed based on an airplane's kinematics, dynamics, 
turbulence, and various other factors. Similar techniques can 
be applied to compute safety distances for vehicles and vessels 
by their motion controllers or some lower level modules. For 
example, [4],[6] defined collision and avoidance regions for 
an agent based on control laws. Our adaptive collision 
avoidance motion model takes in the distance as a parameter 
and guarantees the vehicle will always maintain the specified 
safety distance at any point.  

Our method utilizes the weighted artificial potential field 
approach with unconstrained optimization. We chose the 
potential field approach due to its simplicity. The approach 
consists of two forces - the attractive force to the goal and the 
repulsion of its neighbors. Generally, these forces are 
represented as objective and avoidance functions. In most of 
the work we reviewed, there is also a weighted term on the 
functions. While there are many techniques that use weights in 
their models, most of these models emphasize on custom 
objective and avoidance functions while the weights play a 
secondary role. Hence, these weights are either manually 
configured or a product of inverse square distance between a 
vehicle and its goal or obstacle. See e.g.[18],[4],[19],[6] and 
reference therein. We argue that the choice and computation 
of these weights can greatly affect the outcome and results of 
the collision avoidance. Hence our technique takes the 
opposite approach - we use basic objective and avoidance 
functions and attach custom derived weighting parameters to 
drive these functions. The focus of this paper is to present a 
model that derives these weights.  

Some of the researchers such as Park et al [20] and Barnes 
et al [21] have proposed dynamic weights. Park et al's model 
derived the weight through "reverse engineering". The model 
requires the system to imitate the human motion from start to 

goal. Then the system backtracks to compute the weight at 
each location from goal to start. This model cannot be used in 
an autonomous system or systems with no human intervention. 
Barnes et al's model is closest to ours. Their weights are 
derived from "limiting functions" that decreases to zero as the 
vehicle gets close to the goal or avoids obstacle. However, 
while their model has a minimum distance parameter, the 
distance is not guaranteed as there are situation where the 
avoidance vector magnitude is zero. 

We tested our model on a group of non-cooperative agents 
moving in a small area. The test results validate our model and 
demonstrate its effectiveness. For simplicity of discussion, we 
will use the term "agents" hereafter to refer to any vehicles, 
robots or autonomous moving objects.  

 

II. MODEL OVERVIEW 

A. Background 
We consider n agents a1…anmoving around and attempting 

to reach their respective goals.We use the following notation: 
 
x:  the location of the agent 
g : the goal location of the agent} 
S:  the (squared) safety distance that the agent wants to keep 
xj:  the location of Agent j that should be avoided, j=1..m 
gj:  the goal of Agentj 
 

III. MODEL SPECIFICATION 
At any given time we denote the location of the ith agent by 

xt, and the location of its target by gt. The squared distance 
between xt and gt is given by: 

2t t t
iL x g= −‖ ‖  (1) 

We will use (1) as our attractive potential force in our 
computation later on.In moving toward its goal, agent i 
attempts to avoid collisions with other agents by keeping a 
minimum safety distance S between itself and all other agents. 

This can be expressed by the following constraint: 

min t t
j jx x S− ≥‖ ‖  (2) 

Our main result is a simple procedure that minimizes (1) 
subject to (2) utilizing a gradient based optimization [22] 
procedure.In order to apply gradient based optimization we 
need to replace (2) by a smooth function.We propose the 
following: 

2
1

1m
t
a t t

j j

L
x x=

=
−∑

‖ ‖
 (3) 

We will use (3) as our repulsive potential force. 
Observe that a small value of ܮ௜௧ indicates that ܽ௜is near its 

goal, and similarly, a small value of ܮ௔௧ indicates that ܽ௜is far 
from the other agents. This suggests that we attempt to 
minimize their weighted sum. Define ܮ௧ to be their weighted 
sum: 
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t t t t
i aL L Lδ= +  (4) 

As we show, it is possible to iteratively update the value of 
 ௜௧ thatܮ ௧ produces a minimization ofܮ ௧so that minimizingߜ
satisfies the constraint (2). 

In order to minimize L, we first compute the derivatives of 
the attractive and repulsive potentials, which are also known 
in many literatures as the objective and avoidance functions. 

 
The derivative of the function (1) and (3): 
 

2( )t t t
iL x g∇ = −  

4
1

2
| |

t tn
jt

a t t
j j

x x
L

x x=

−
∇ = −

−∑  

 
The derivative of the potential field function is: 

4
1

1
2 | |

t tn
jt t t t

t t
j j

x x
L x g

x x
δ

=

−
∇ = − −

−∑  

 
Direction the agent should go (negative gradient): 

Direction = 4
1 | |

t tn
jt t t

t t
j j i

x x
g x

x x
δ

=

−
− +

−∑  

 
Recall from (3), the repulsive potentialat time t is: 

2
1

1m
t
a t t

j j

L
x x=

=
−∑

‖ ‖
 

For simplicity, we use d to represent the difference term. So 
the repulsive force can be written as: 

21 , | |t t t t
a j jt

j j

L d x x
d

= = −∑  (5) 

The key idea that we introduce is the fact that the guarantee of 
a safety distance S can be made by properly adjusting the 
weight constant ߜ௧. We begin by introducing several simple 
lemmas: 

a) Lemma 1: If 
1t

aL
S

≤ then t
jd S≥ for all j. 

b) Proof:: 
1 1 1

t t
jj jd d S

≤ ≤∑
 

 
Since the potential to be minimized is ܮ௧ and not ܮ௔௧ ,we 

wish to determine what value of ܮ௧would providea guarantee 
of a safety zone.Suppose we know that ܤ௧, is lower bound on 
the value of ܮ௜௧. Using such bound we can generalize the result 
of Lemma 1 as follows: 

c) Lemma 2: If t t
iB L≤ and

t
t tL B

S
δ

≤ + , then 

t
jd S≥  for all j. 

 
d) Proof:: 

 
/ / 1t t t t t t

t i i
a t t t

L L B L S SL
S

δ δ
δ δ δ
− − +

= ≤ ≤ =  

 
The result of the lemma now follows by applying Lemma 1. 

Observe that the value of ߜ௧ is a free parameter. From Lemma 
2 it follows that the following constraint is necessary and 
sufficient to satisfy the second condition of the lemma: 

( )t t tL B Sδ ≥ −  (6) 

Now suppose that at time t1 the agent has a current value of 
 ௧ଵ. Since the agent can observe its surrounding, it canߜ
calculate the values of ܮ௜௧ଵand ܮ௔௧ଵ. The value of ܮ௧ଵ is 
determined from Equation(4). We wish to determine a good 
value of ߜ௧ଶfor t2>t1, so that the minimization of ܮ௧ଶሺݔሻ= 
 ሻ would guarantee the existence of the safetyݔ௔௧ଶሺܮ௧ଶߜ + ሻݔ௜௧ଶሺܮ
zone S around the agent. First assume that the minimization 
reduces the value of the potential.  

e) Lemma 3: If 2 2 2 1, ,t t t t
iB L L L≤ ≤  and 

 2 1 2( )t t tL B Sδ ≥ −  (7) 

then t
jd S≥  for all j. 

 
f) Proof:: 

2 1 2 2 2( ) ( )t t t t tL B S L B Sδ ≥ − ≥ −  
 

and the proof follows by applying Lemma 2. 
Since we are only interested in satisfying the safety zone 

constraintwe should select the smallest ߜ that comes with the 
safety zone guarantee. 

This is the value obtained with an equality in (7): 
2 1 2( )t t tL B Sδ = −  (8) 

The condition 2 1t tL L≤ , one of the conditions in Lemma 3, is 
sufficient but not necessary.Even if it does not hold the 
minimization outlined in the lemma may produce a solution 
satisfying ܮ௔௧ଶ ൑ 1ൗܵ  which would guarantee the safety zone 
around the agent. If this condition does not hold, the value of 
 ௧ଶ should be increased. The following argument suggests aߜ
heuristic for increasing the value. Consider the following 
choice for ߜ௧ଶ: 

2 1 2( )t t tL B K Sδ = − +  (9) 

Suppose the minimization of ܮ௧ଶሺݔሻ = ܮ௜௧ଶሺݔሻ + 
ଵሻݔ௔௧ଶሺܮ ሻ gives the minimum value as x1, butݔ௔௧ଶሺܮ௧ଶߜ ൐
1 ܵ⁄ .Then: 

2
2 2 2 2 2

1 1 1 1( ) ( ) ( ) ( )
t

t t t t t
i a iL x L x L x L x

S
δδ= + > +
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2 1 2 1
1( )t t t t

i i iL x L B K L K= + − + ≥ +  
 
This cannot hold at the point x1 if ܭ ൌ  ଵሻ.Settingݔ௧ଶሺܮ

௧ଶߜ ൌ   ሺܮ௧ଵ  െ ܤ௧ଶ ൅ ܮ௧ଶ ሺ1ݔሻሻܵ and minimizing of ܮ௧ଶሺݔሻ 
would produce a minimum point x2. Here, either ܮ௔௧ଶሺݔଵሻ ൑
1 ܵ⁄ , which guarantees the safety zone,or we must have: 

2 1 2
2 1( ) ( )t t t

iL x L L x> +  
Continuing with this procedure would increase the value of 
 it means thatthere is ,ߜ If a solution is not found for a large.ߜ
no solution satisfying ܮ௔௧ଶሺݔଵሻ ൑ 1 ܵ⁄ ,even if ܮ௜௧ଶ is ignored. 
The procedure described above suggests the following 
algorithm that is executed by an agent to determine where to 
move. 

 
Input: The value of x, g, S for the agent. 
 The previously used value of ߜ௧ଵ. 
 The values of xi and gi for all neighbors that are 

closeenoughto be considered. 
 A maximum number of iterations N. 

  
Output: The new location. 

 
1. Compute the values of 1t

iL , 1t
aL , 1tL , 2tB . 

2. Set 1 2( )t tL B Sδ = − , and 2tδ δ= . 
 

3. Iterate at most N times: 
 

3.1 Apply a gradient optimization method to compute x* 
that minimizes 2 2 2 2( ) ( ) ( )t t t t

i aL x L x L xδ= + . 

3.2 If 2 *( ) 1/t
aL x S< , add a very small random value   γ 

to x*, x*’ = x* + γ such that 2 * '( ) 1/t
aL x S< still 

holds. Return x*’ and terminate the algorithm. 
3.3 Otherwise update 2 2 *( )t tL xδ δ= + and continue 

with the iterations. 
 
Cases in which the algorithm will not find a suitable x* will 

be discussed later. 
 
The implementation of the algorithm requires a formulafor 

the bound ܤ௧ଶ.This plays a similar role to that of admissible 
heuristics in AI.Among all possible bounds we would like to 
select it as largeas possible.The following lemma gives the 
result that we have used in our experiments. 

 
g) Lemma 4:  Let σ be the maximum speed of the 
agent.Then 

2 1 2
2 1max{( ( ) )  , 0}t t

iB L t t σ= − −
 

(10) 

satisfies: 
2 2 ( )t t

iB L x≤  

 
h) Proof::  A lower bound on the value ofܮ௜௧ଶሺݔሻ is 
obtained if the motion between t1 and t2 is directly 
toward the goal ݃௧ଶ, ignoring all obstacles.Let r be a unit 
vector specifying the direction.This observation implies: 

 
1 1 22

2 1| ( ) |t t t
ig x t t r Lσ− − − ≤  

 
Applying the triangle inequality to the left hand side we get: 
 

1
2 1( )t

iL t t σ− −  

1 1 1 1
2 1 2 1| | ( ) | | | ( ) | |t t t tg x t t r g x t t rσ σ= − − − ≤ − − −  

 
So that 

1 2
2 1( )t t

i iL t t Lσ− − ≤  

 
To prove the lemma it remains to observe that trivially 

20 ( )t
iL x≤ . 

 
A. Limitation of the algorithm 
There are three cases in which the proposed algorithm fails 

to determinea move which guarantees a safety zone even after 
running a large numberof iterations. 
 

Case 1:  There is no solution. Collision is 
unavoidable. 

Case 2: Collision is avoidable, but the 
minimizationalgorithm fails because it gets 
stuck in a localminimum. 

Case 3:  There is no solution satisfying the 
constraintLୟ ൑ 1 S⁄ , butthere is a solution 
satisfyingd୨ ൒ S for all j. 

 
While there is nothing that can be done in Case 1, there are 

standard approaches to resolve Case 2. Specifically, one can 
employ other minimization algorithms(e.g., simulated 
annealing), or introduce a small amount of randomness in the 
solution. 

Case 3 indicates situations where our approach fails 
whileother algorithms based on the idea of artificial 
potentialmay work. We would like to point out that such cases 
are rare. They only occur under the following condition: 

 

෍
1
௝݀௝

ب   
1

݉݅ ௝݊ ௝݀
 

 
But this is unlikely to hold near collision, since then the 

right hand side is very large by itself. 
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IV. SIMULATION 

A. Setup 
We simulated the motion of various agents using our 

proposed model. Each agent starts at some initial location 
represented in (x,y) coordinates. The objective of each agent is 
to travel to the goal coordinates. There are three input 
parameters to the system - the minimum safety distance S, the 
speed of the agents, and the maximum iterations. 

 

B. Settings 
In our previous experiments [23], we were able to 

demonstrate that the agents will not violate the specified 
minimum safety distance using our model (Figure 1 and 2). 

 

 
Figure 1 Three agents moving 

 

 
Figure 2 Minimum distance between agents 

 
We extend the experiments of our previous algorithm to 

observe the effects of specific trajectories and goal location. 
We conducted two types of experiments - parallel trajectories 
and goal convergence. For the parallel trajectories test, the 
agents travel in direct, opposite direction (head-on collision) at 
the same speed and distance. For the convergence test, the 
agents have different trajectories but heading for the same goal 
at the same time. 

 
 
Experiment *4: Parallel Trajectories, 2 agents head-on 
 

Agent 1: start=(0,5), goal=(10,5), speed=1, S=1 
Agent 2: start=(10,5), goal=(0,5), speed=1, S=1 
 

Experiment 5: Parallel Trajectories, 4 agents head-on 
 

Agent 1: start=(0,2), goal=(10,2), speed=1, S=1 
Agent 2: start=(10,2), goal=(0,2), speed=1, S=1 
Agent 3: start=(0,5), goal=(10,5), speed=1, S=1 
Agent 4: start=(10,5), goal=(0,5), speed=1, S=1 

 
Experiment 6: Same Goal, 2 agents 
 

Agent 1: start=(0,0), goal=(10,0), speed=1, S=1 
Agent 2: start=(10,10), goal=(10,0), speed=1, S=1 

 
*Experiment 1,2, and 3 are shown in the ATAI 2012 conference paper. 
 

C. Analysis 
In our previous algorithm, there was an inherent symmetry 

issue. This issue occurs when two agents are coming at exact 
opposite position, heading directly at each other and their goal 
is each other’s' starting point (Experiment 4). As shown in 
Figure 3a, a stalemate occurred. However, this does not occur 
when there are two pairs or more of such agents (Experiment 
5, Figure 3b) as each agent are now influenced by three 
agents, two with different positions. To address the symmetry 
issue, we added a small random value to each location 
calculation. Step 3.2 in the new algorithm (Section III) reflects 
this modification from our previous paper.  

 

 
Figure 3 Symmetry observed in two agents head-on (left) 

 
The added randomness breaks the symmetry and the two 

agents altered their trajectories and avoided each other (Figure 
4a) without violating the minimum safety distance (Figure 5). 
We repeated the previous experiments with the modified 
algorithm and the results show that the added random value 
barely altered the trajectories from the previous experiments 
(Figure 4b). 

 

 
Figure 4 Symmetry avoided and trajectory preserved 
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Figure 5 Safety distance maintained with randomness 
 
However, one limitation still exists in the new algorithm. 

When the agents have the same goal and are all arriving at the 
same time, the agents will stalled at the perimeter of the goal 
as they cannot converge to the same position (Figure 6). 

 

 
Figure 6 Agents with the same goal  

 

V. CONCLUSION 
We presented a model that adaptively avoids collision 

amongst multiple agents moving in the same space using a 
novel weighted potential field function with unconstrained 
optimization technique. The model guarantees a minimum 
safety distance between these agents while minimizing the 
diversion from their goal trajectories. The algorithm also 
prevents agents from entering a stalemate due to symmetrical 
trajectories. Furthermore, because our technique is based on 
artificial potential field function, it does not require 
coordination or communication between the agents. Apart 
from reducing communication overhead, it can also be utilized 
in situation where there are communication interference or 
non-cooperating agents. There are still much work to be done, 
future plan includes extending this model with prediction 
strategies, investigating the benefits of incorporating game 
theory, particularly in environments with antagonist and non-
antagonist agents. 
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