
Conceptualizing Quality in Software Industry

Nermine M. Khalifa, Mona M. Abd Elghany

Abstract— This paper investigates the different software

quality perceptions from the different stakeholders’ perspectives

and presents a critique to previously developed quality models

and measurement theory frameworks associated. It emphasizes

the rationale beyond the selection of the Goal Question Metric

(GQM) as an evaluation method for the development of the

software project with the desired quality needs satisfying the

software system. Then it ends up with several concluding

remarks that pinpoint the main discussion points and offers

guidance for further research.

Index Terms— Software; Quality; Perception; Evaluation

I. INTRODUCTION

ver the last twenty years, there has been an increasing
emphasis on quality in developing software [1], [2], [3],

and [4]. Software quality aspirations are more likely to be
achieved with a greater emphasis on customer satisfaction
through studying customer wants and needs, gathering
customer requirements and measuring customer satisfaction
[5], and [6]. The interest in quality is heightened as more
system failures are attributed to issues in software quality that
often lead to higher maintenance costs, longer cycle times,
customer dissatisfaction, lower profits and loss of market share
[7], [8], and [5].

Although the importance of quality is acknowledged,
managing quality efforts remains a major challenge in software
development. Despite the fact that most software developing
firms collect quality performance measures such as customer
satisfaction, but no operational measures are available for the
quality attributes of software projects.

The discipline of software metrics entails identifying
various attributes that need to be measured and determining
how to measure them in developing quality software [8].
Quality metrics must be utilized and tightly coupled with the
software development process. Identifying the applicable body
of knowledge required is the first step in equipping software
engineers with the essential skill set. The transition from
defining the “why” business objectives to defining the “what”
business or functional requirements is the most challenging
phase. A business analyst should elicit requirements from
different stakeholders to discover their concerns and needs.

Nermine M. Khalifa. is an assistant professor in Business Information

Systems (BIS) Department in the College of Management & Technology,
Arab Academy for Science & Technology, Alexandria, Egypt, e-mail:

nerminek@gmail.com

Mona M. Abd Elghany is an assistant professor in Financial & Accounting

Department (FAD) in the College of Management & Technology, Arab

Academy for Science & Technology, Alexandria, Egypt, Telephone:

+2/035565429, e-mail: mabdelghany2000@gmail.com

Software measurement theory addresses the issue of
whether the proposed metrics are valid with respect to the
attributes of the software entitled to measure. These evaluations
are based on the properties of the measurement scales. Various
development artifacts, such as requirements, design and code
documents have disclosed the majority of software faults prior
to testing and enhanced the ability to make meaningful
assessments and predictions of software product quality. As a
result, the principle of software measurement is the use of
substitute measures that could be available early during
evaluation process and hypothesized to be representative of the
measures of real interest.

II. SOFTWARE QUALITY PERCEPTION

Most of researchers argue that quality attributes can be
measured absolutely and neglect its contrast with business
objectives. On the whole literature deals with quality attributes
as standard attributes applicable for all types of software
regardless its fitness in various organizational setting and the
perception of stakeholder for the quality term. Therefore, the
fitness of software to organizational needs had been discussed
by many researchers to reflect the effect of IT expertise and
cultural issues on software appropriateness. The concept of
‘‘IT-Business alignment” has been recently engaged to define
the meaning of quality term and resolve the conflict of interest
and preferences between the stakeholders. The emergence of
aligning the software to organizational setting is mandatory in
order to justify its investments. Reference [9] focused on the
variance of quality perceptions between IT-expert and non-
expert while reference [10] investigated same issue and
included the managerial levels to indicate their perception.
Further, reference [10]’s study differentiates between thirteen
quality attributes to indicate their priorities.

Accordingly, some researches prefer to classify the non-
functional into consumer-oriented and technical-oriented
requirements [11]. Many researchers pointed that consumer-
oriented attributes are relative one and cannot be assessed by
absolute value. Customer acceptance coupled with the time
consumed and cost burden are key issue to be considered while
weighting software quality requirement [12]. In order to reach
an acceptable level of software requirement, the desired values
of attributes have to be defined in-advance. Fitness of software
in certain organizational setting may differ and indicate a
different scale of applicability for the same software used by
different users. Different users are dealing with the same
software from different perspectives so the term of software
quality differs. Therefore, decision makers and system

O

 DOI: 10.5176/2251-3043_3.3.276

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

87 © 2013 GSTF

mailto:nerminek@gmail.com
mailto:mabdelghany2000@gmail.com

developers are required to set an acceptable level of software
quality in accordance to the cost maintained.

Many researchers such as [13] indicate that it is hard to
obtain software that can totally satisfy the quality requirements.
Sometimes, direct more fund or human resource to improve
quality of software might lead to negatives consequences. As a
result, different quality measures may fit different business
environment and needs so managers need to define the
potential of quality measures for their business. Different
priorities can be defined to software quality attributes
according to its fitness in the organizational setting and its
value from stakeholders’ perspectives [10]. Software quality
attributes are considered to be subjective and have a variable
scale in conformity to stakeholders’ perception [14]. ISO
defines several quality attributes that are considered as
controllable attributes, these attributes are relative and variable
from different perspectives. Reaching an agreed upon
definition of quality attributes and classifications of their
specification would make it easier for stakeholder to prioritize
quality attributes and address business objectives and
requirements. As a result, optimized resource dedication and
human factor utilization would be tangible benefits for such IT-
Business alignment.

References [15] and [18] proposed hieratical models for
quality measures, accordingly it was agreed that there is no
need for estimating a measure subjectively. Preliminary level
of quality model will be assessed so low-level attributes will be
assigned to numerical value. Since, there is no formal
relationship model that can indicate how to relate quality
attributes with low level measures. Estimating time and effort
needed for each task would provide an objective measure for
each attribute [17]. Some researchers proposed comparison
techniques in order to validate subjective measurements where
this validation technique is to be used as an alternative of
referring back to a conceptual model or piece of theory. The
following sections presents a critique of quality models.

III. SOFTWARE MODELS’ CRITIQUE

Quality models are still being criticized, due to the vague
definition of quality models and the services they provide.
There is scarcity of clearly specified requirements for quality
models in reference to their application mode. If the
requirements for quality models are obtained, then they can be
benefited to guide further quality model development. It still
continues to be unclear how quality models can be applied to
define, assess and estimate the software quality.

Reference [18] discussed number of software quality
models in their publication. The McCall 77 quality model
specifies a number of aspects that can each be quantified
according to several factors. McCall uses a grading scheme
ranging from 0 (low) to 10 (high) and defines Usability as an
aspect that proposes operability, training and communication.
Reference [20] extended a quality model to describe “general
utility” that can be decomposed into as-is utility (how easily
the system can be used reliably and efficiently), maintainability
and portability. Reference [19] developed a quality evaluation
framework that investigates the quality of software components

using the measurement of quality properties. These properties
are used to evaluate the quality of the components. According
to ref. [19], components can be considered as variables,
functions, statements or requirements of the model.

Reference [21] proposed that quality models can be
classified as taxonomic models like the ISO 9126 found in
[22], metric-based models such as the maintainability index
(MI) detailed in [23] and stochastic reliability growth models
(RGMs) discussed in [24]. ISO 9126, for instance, provides a
definition for software quality but does not give clues for
assessment; the ML outlines an assessment nevertheless not so
clear to quality definition. RGMs as well proposed estimations
reliant on data that is not obviously related to quality
definitions. The variety in software systems is extremely large,
ranging from huge business information systems to tiny
embedded controllers. These differences must be accounted for
in quality models by defining a means of customization. In
current quality models, this is not considered [25], [26], and
[27].

During requirements’ engineering, quality models should
express quality attributes and requirements for desired software
systems [28], and [29]. “The earlier key quality attribute
requirements are identified and prioritized, the more likely it is
that the essential quality attributes will be built into the system.
It is more cost-effective to reason about quality attribute trade-
offs early in the lifecycle than later in the lifecycle when
modifications are often difficult, impractical, or even
impossible”. During implementation, quality models serve as
basis of modeling and coding standards or guidelines to
provide direct recommendations on system implementation and
thus constitute constructive approaches to achieve high
software quality [19]. During quality audits, they serve as a
basis of the performed audit procedure. Thereby, internal
measures that might influence external properties should be
monitored and controlled [28].

Most taxonomic models rely on a hierarchical
decomposition of quality attributes. This decomposition does
not adhere to well-defined guidelines and can be haphazard
[30], [21], [31], and [28]. Therefore, it is not easy to enhance
quality attributes. Further the communication between the
project developers and the software quality models is still
imprecise. A generic method of such information
communication is a set of guidelines and these guidelines are
often not sufficiently concrete and detailed or the document
structure of the guideline is not adapted to the application area.
Additionally, the defined quality attributes are so intangible to
be checked in a real software system [30]. For the reason that
current quality models do not describe checkable attributes and
even do not provide refining methods, they are difficult to be
measured [32], and [28].

Metric-based models extend quality definition model usage
to control compliance. During requirement engineering, they
can only be used to objectively specify and control stated
quality requirements [28]. Despite defining metrics, they miss
to weigh the influence that specified metrics could have on
software quality [28]. Another problem is that the provided
metrics have no clear motivation and validation. Moreover,
many existing approaches do not respect the most fundamental

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

88 © 2013 GSTF

rules of measurement theory and, hence, are prone to generate
dubious results [33]. Measurement is too important for
controlling processes and simultaneously the quality attributes
measurement is vital for an effective requirements engineering.

Most of stochastic models depend on regression through a
set of software metrics [21]. This regression outcomes in
equations that are not easy to be interpreted [34]. Furthermore,
these models tend to be strongly context-dependent, also
complicating their broad application in practice. Stochastic
models are used during project management. More specifically,
such models are used for release planning and in order to
provide answers to the classical “when to stop testing” problem
[35].

Based on the above critique of existing quality models,
general requirements are derived as a quality criterion for a
quality model. Any software quality model should state the
procedures for its integration with the development tasks where
further details are required [21]. The quality model is adequate
only if it encounters the business goals and the standards set for
the software product. The criteria for software quality could
have more than one rationalization thus; there can be overlaps
between them [21]. For example, the addition of an
authentication mechanism may secure the data in a system but
may also render its normal usage more difficult.

A satisfactory model should involve both the internal
characteristics as well as the external detectable characteristics
of the software product [30], [21], and [19]. The information
accessibility to software engineers for implementation added to
the detailed guidelines for assessable rules and structured
guidelines should be included in an appropriate model. Quality
criteria evaluation can be qualitative or quantitative
nevertheless, it should be described with measures.

Quality requirements are different across software systems.
Then quality models should specify the various required
quality profiles for the software development [31]. The
production of checklists for the criteria of software supports in
configuring clear description. Conversely, the whole research
area of software quality is diverse and fuzzy without a clear
defined measure. Further there exist still open problems that
have not yet been solved particularly in the adopted practice.
That explains the reason for the subjectivity of existing quality
models to several points of criticism.

Too often system requirements are not well understood.
Understanding and bounding the requirements in a
specification is an essential step to solving the problem of
unmanageable projects. In particular, requirements
specification drives effort required to build software systems
and the time it takes to build them. Thus, software engineers
can understand the sensitivity of requirements specification to
the likelihood of producing a workable system. Combining
functional requirements with effort estimation leads to a
holistic understanding of feature, cost, schedule and
trustworthiness.

When customers present ideas that need system solutions,
engineers should have an ethical and professional obligation to
help them define and simplify their problem. They must build
the best solution to the customer's problem, even if the

customer does not yet understand how to ask for it. For that
reason, the customer should be encouraged to write a short
outline that states the purpose of the system, its value and any
constraints essential to making it useful leading to a complete
set of requirements, which will emerge only through analysis,
prototyping and validation with an iterative process. The
requirements and design phases are important steps in a
software project. If these steps are not carried out correctly, the
quality of the final product will almost certainly be low.
Investing in prototyping is a very helpful to find the way
directly into the product quality.

Without an iterative plan for approaching the development
of requirements, the design organization can find itself, months
along on the project, developing the wrong software functions.
For example, the designer of an ordering system could not
guess that suppliers' invoices would not be directly related to
orders because suppliers grouped orders for their own delivery
convenience. Taking into consideration, the continuing stream
of requirements changes can prevent coding and testing from
moving along. So changes can be made in an orderly way in
future releases after evaluation, but not by altering the
requirements document. In brief, many design organizations do
not have the necessary human factors specialists to analyze the
users' tasks. Without specific attention to the people who will
use the product, the organization can develop the wrong user
interface.

Quality attributes impose specific constraints on software
projects. Features that raise the software projects have to be
considered from the earliest development stages. Whereas
investigating software quality features is likely to be beyond
the knowledge of most requirements engineers and developers.
The proposed approach is based on developing a questionnaire
that capitalizes on the key elements frequently used in the
software quality features elicitation and specification processes.
The use of those questionnaires provides requirements' analysts
with a knowledge repository to ask the right questions and
capture precise software quality requirements information.
Because building quality attributes into a software system has a
cost and calls for negotiation with users and other stakeholders
about which quality attributes features should be included
according to the software project type, the consequences of
their inclusion, how to provide them, etc., it is more cost
effective to reason about quality attributes trade-offs early in
the lifecycle.

Dealing with quality attributes in the shape of non-
functional requirements does not provide developers with
enough information about what kind of artifacts to use to
satisfy such requirements. The features represent particular
functionalities that can be built into a software system. Since
functional requirements describe the functions that the software
is to execute, these functional requirements need to be
explicitly specified, just like any other functionality.
Consequently, the proper description of these functionalities in
the requirements specification leads to the expected built-in
into the system.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

89 © 2013 GSTF

IV. COMPARSION BETWEEN SOFTWARE QUALITY MODELS

Reference [15] proposed the earliest software quality
model. The model defines software-product qualities as a
hierarchy of eleven quality factors, criteria and metrics. A
quality factor represents a behavioral characteristic of the
system. A quality criterion is an attribute of a quality factor that
is related to software production and design. A quality metric is
a measure that captures some aspect of a quality criterion.
More than one quality metric are associated with each criterion
such as portability is measured through aggregating
modularity, self-descriptiveness, software independence and
machine independence.

In 1987, reference [36] conceptualized the software quality
s into decomposed parts of component till each can be
expressed in terms of measurable attributes. Though he divided
software quality into various factors; nevertheless, he did not
suggest a universal set of concepts and measurements. Same as
other researchers who portrayed quality in a hierarchical way
as highlighted above.

After that efforts resulted in the development of a standard
for software-quality measurement named ISO 9126. The
standard consisted of six characteristics to establish an
elementary set of independent quality characteristics. The ISO
9126 refines the standard's features into sub-characteristics and
data elements to construct indicators to measure quality sub-
characteristics. Indicators are represented in ratios brought
from data elements. For instance, the ratio of number of faults
can be used to define the fault rate. The ISO 9126 standard
advised the direct measurement of characteristics, but did not
specify how to do so.

The ISO 9126 model is different from the McCall model in
the following. It uses other quality framework and terminology,
the term "quality characteristic" is exercised instead of quality
factor, the term "quality sub-characteristic" is used instead of
criterion and data element indicator is used instead of quality
metric in McCall’s. Additionally the ISO framework is totally
hierarchical regarding detectable quality aspects for the user,
instead of internal software properties.

Nevertheless, the two models reveal the same problems:
inadequate justification for the selection of the quality factors
that should be encompassed in the quality definition as well as
the quality criteria relative to a certain factor. The choice of
quality characteristics and sub-characteristics also seems
haphazard for instance; it is vague why portability serves as a
top-level characteristic of ISO 9126, whereas interoperability
serves as a sub-characteristic of functionality. Furthermore,
there exists no verification confirming that the selected metrics
impact the detected performance of the above quality factor.
Moreover, the used terminologies consist of multiple names
and represent highly theoretical terms in addition to their lack
of clear concise definitions.

Reference [19] established a model built of components
displaying a complete and consistent set of product properties
resulting in the materialization of software quality attributes.
He believes that hierarchical models using top-down
decomposition are so unclear in their definitions of lower levels
hence; providing little assistance to software developers for

constructing quality products. Reference [37] describes his
approach in that software engineers should construct
components exhibiting a complete set of product properties
results in the materialization of quality attributes. Dromey’s
model delineates the basis for the relationships between the
internal quality properties of the software products and the
external high-level quality attributes through stating the
methodological procedures to be tracked.

V. SOFTWARE EVALUATION METHOD

The software quality assessment became a vital aspect
in software development as discussed formerly. Continuous
computer application could not be broadly employed without
controlling efficient software. The software quality assurance
for both developers and users is essential. Nevertheless, it is
not easy to assess software quality in software engineering
field. Software quality evaluation is a significant approach to
further direct software quality forward independently of testing
besides granting quantitative assessment of software quality.

The authors see that software quality is mainly
characterized into external attributes in terms of practised
application using the predicted implicit characteristics of
software products that satisfies operating requirements and
customers’ demands. Software quality fundamentally impacts
the application and its maintenance, that’s why software
quality has come to be the hottest issue in software
engineering field. Software quality evaluation standard
involves the following for software evaluation [38]:
measuring software quality during development process,
revealing current software condition, predicting the following-
up as well as the provision of the powerful means to do so for
the buyer, the developer and the evaluator. The activities
involving evaluation could be generally acknowledged in the
identification of the project type with the related software
quality specifications as well as the definition the project plan
[38]. Accordingly, the evaluation plan serves as a verification
of the initial selected methodology. Nevertheless, the software
developer views the precondition for software quality
evaluation in that the development process should conform to
software engineering standards.

There are a lot of factors influencing software quality for
example: human factor, software demand, shortage in quality
management, testing control, traditional custom adopted
through the software developers, the development
specifications, inadequacy in development tools and other.
These factors are regarded with respect to administrators and
developers [39].

Referring to the administrator, the factors influencing
software quality involve: the inexistence of complete plan or
efficient measures verifying quality and the lack of adequate
concern to the quality from the beginning. Additionally,
developer’s personal does proceed irrelatively to his working
performance due to the absence of good personal performance
evaluation mechanism.

Whereas relating to the developer, the factors influencing
software quality involve the product quality assurance is

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

90 © 2013 GSTF

believed to be the responsibility of the quality inspector, which
illustrates the missing idea of the total quality management.
Also, the deficiency of ownership sense to realize the
importance of the enlarged quality is to the organization
development [40]. For instance, non-uniformity between
products’ versions comes from the inapplicability of the
administrator’s direction. Further, the lack of the idea of
rendering customers satisfaction could be added due to
unfamiliarity with customer’s quality requirement [41].

To users, when the developer, develops an application and
delivers it on time, it is far from enough with satisfaction.
Users have not got appropriate indicators for software quality
evaluation in addition to the developer who misses an indicator
for productivity in software development. Thus, the users are
incapable to evaluate correctly the working quality of the
developer. Such evaluation method for software will lead to a
life cycle shortage other than further development [42], [43],
and [44].

Software demand analysis and preliminary design for
software development customization should be established.
Yet several software types such as control software,
management software, educational software, internet software
and others will require different weights on evaluation
standards and quality requirements, as exemplified in [45] and
summarized in table 1. During the requirements’ analysis,
preliminary design and development, specified metric units for
rating quality elements and additional evaluation would be
practical to organizations in collaboration with software
developers. However, the ultimate purpose for software
quality metrics remains in controlling cost and enhancing
software development quality.

TABLE I. DIFFERENT FACTORS CONSIDERED BY DIFFERENT SOFTWARE

Software application features Factors to be considered

Software requiring long lifetime

period
Portability, Maintainability

Real time system Reliability, Efficiency

Software needed to be applied in

several environments
Portability

Banking system Reliability, Functionality

 Source: [45]

The users need to check if the software supplier company
or the software developers have determined their quality
metrics and evaluation data, if the constructed database has
saved software associated requirements to proper industry and
if it possess the adequate development expertise.

The Goal-Question-Metric (GQM) method results in
defining the metrics needed for the software system, consisting
of a set of rules to better understanding the perceived data [46].
The GQM method depends on such theory of a software
organization requiring interpretation of each project and then
describes operable data and finally carries a framework for data
interpretation. The GQM method is a levelled structure,
emerging from a high level goal. Following the software
levelled evaluation method, the project manager, assigned to

the current software, will rate the fundamental characteristic
factors.

According to reference [47], GQM can confirm the
appropriateness, uniformity and fullness of data collection and
measure plan. Further GQM helps in the discussion of measure
and the enhancement of goals, reliant on common
interpretation, and at the end accomplishes an agreement that
enable defining the widely accepted measure in the
organization, which is principle of effective measure. Though
the GQM technique provided a great help to defining realistic
measure, yet it has some limitations. GQM method produces a
measure definition through decomposing the goal. But the
process of this decomposition is not clearly described and its
quality is dependent on executor’s experience. Reference [48]
claimed the following limitations in the GQM method:

(1) Repetition is not granted: two different teams within the
same organization can produce different measures even the
same team can differ in the problem definition and measure
again after several months to produce other measure.

(2) The termination time is not determined: so the final
measure can be too large.

(3) The GQM application generates quite a great deal of
problems with prioritized measures.

(4) In addition, there exists no description of the way of
measure goal choice in the GQM. Then GQM can be viewed as
a guiding principle towards the measure definition direction
instead of a firm difficult engineering method for designing a
measurable system.

The analysis of measure results extends the perception of
modeling ability. The GQM method has been applied broadly
in software industry; many companies have accomplished
enhancement according to their practical experience to the
GQM method, as demonstrated in [49]. However, GQM has
not yet overcome the above mentioned limitations and measure
maker should have a thoughtful understanding of the software
desired in the organization to have meaningful segmentation of
the goal measure.

VI. CONTRIBUTION TO KNOWLEDGE

The software quality attribute definitions according to the
International Standard Organization (ISO) are relative to
participant perspectives. For instance, maintainability, usability
and portability could barely be designated objectively; they are
associated with the adoption, maintenance and applicability of
its use in different operational environment. Additionally,
effort needed and time spent or resources consumed for
maintenance operations varies in accordance to programmer
expertise, program complexity, used tools and simplicity of
documentation. Reference [50] considers important the
relationship between the program modules and source code
difficulty and the ability of applying further amendments.

Then software quality attributes are abstractly subjective.
For instance; the definition of maintainability represents the
simplicity to which maintenance tasks can be made.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

91 © 2013 GSTF

Consequently, subjectivity will make their measurement and
even the validation of their estimation systems challenging.
Few statistically valid attempts to estimate and measure these
attributes have been available. One of the followed approaches
is to request experts to designate if the estimates of the
estimation system confidentially comply with their insight
without taking into consideration if the experts are able to
generate direct consistent measurement thus, a statistical valid
predictive system cannot be obtained. This paper argues that
direct measurement of quality attributes has to be stimulated.

Other software quality attributes like readability, testability,
understandability have served as alternative strategy for
enhancing software engineering standards [34]. Moreover,
modern developed approaches in software management and
control entail ordinal scale measurement like Bayesian Belief
Networks in which the measurement of the internal process
attributes as code complexity and external attributes as
reliability could be consistent on ordinal scales through their
users [51] and [52]. However, reference [53] claimed that
Bayesian statistical tests require a skilled statistical capability
to practice than that most software managers and engineers do
have. Reference [54] attempts to distinguish between software
abstractions and their relative attributes that should be
associated with these abstractions and earlier in the same year
Circa explicitly tried to discuss the relationship between
abstracted features and the external attributes but could not
reach a comprehensive fundamental theory.

The theme of this paper agrees with the measurement
frameworks proposed in [54], [53] and [55] and consistent with
measurement theory provided in [56] and [57]. The authors
demonstrate the correlation between an abstracted software
artifact and the external quality attribute. Despite the fact that
such demonstrations needs the experts’ opinion for the
assessment of the quality attributes yet it is different than the
expert assessments employed to acquire quantified criteria for
validation in [58] and [54].

There appears to be a consensus that the quality
measurement is not fundamental, since this problem has not
reached a solution through hierarchical models for almost the
past 30 years as that of for instance references [16], [59] and
[60]. Then there exists no measurement problem and all that is
required is to describe a quality model measuring the lower
level attributes and developing a mathematical theory to
provide a quality attribute value. Nevertheless, the lower level
attributes are subjective, e.g. flexibility, understandability etc.
Further, there exists no theory providing a mechanism to grant
that current hierarchical models measure quality attributes. Or
in other words, no valid systematic relationships between the
lower level measures and the quality attributes were
acknowledged [55]. Due to the lack of such theoretical models
other models such as COQUAMO have been developed [17].
These models rather focusing on objective tasks measurement
relating effort and time to carry out tasks considered to be
associated with the quality attribute of interest like the effort
needed to learn how to use the software system as well as time
spent for learning which represents the usability attribute [17],
and [61].

For example, published papers produce predictive systems
for maintenance effort (i.e. maintainability) such as that of
reference [62]. Any maintenance effort measurement is
affected by the time needed to perform a maintenance activity
using a specific set of factors like the documentation available,
the maintenance engineers, the testing extent made after
maintenance and the expertise of the maintenance team. Yet,
maintainability is a non-specified measure of the maintenance
ease and maintenance effort should be measured through a
specific set of activities that should be performed on any given
system. Software developers need to obtain a measure for the
software quality attributes that is simple to achieve through
modest procedures for ensuring consistency.

It is challenging to establish consistency in case of
subjective measurements. The problem occurs if the attribute
needed to be measured is not well-defined. If the measure
follows a representation condition then it serves as consistent
measurement [56]. Consistent measurement is being capable of
repeatedly allocate the same value to an attribute of an entity;
in case of software development it is concerned on attributes of
software product entities (artifacts) or process entities.
Reference [57] declared that repeatability in measurement
exactly does not at all times employ. Even for objective
consistent measurement repeatability might be practiced but
within specific limits of error.

Through the conduction of an experiment that supports the
experts or the project managers to rate the true class of a set of
entities without being biased. The introduction of bias could
have happened if they were to convey their agreement with
values generated by a predictive system. Such predictive
systems for software quality attributes are appreciated at
architectural and detailed design [58], and [62]. The estimates
resulting from the true classes of the entities can be employed
to develop an independent and unbiased assessment of a
predictive system for a quality attribute. Predictive systems do
not often tend to give definitive values for quality attributes of
software entities.

Researchers and software developers tend to measure
attributes or processes that are well-thought-out to be
associated with quality attributes rather than direct
measurement of software quality. This is due to their belief that
direct measurement cannot be quantified and it would be just a
waste of time and money. However, there occur few attempts
for the quantification of quality attribute measurement
consistency through a measurement theoretic approach.
Current approaches for quality attribute assessment depend on
the measurement of time and effort to accomplish tasks
associated with the quality attribute as mentioned above. These
approaches generate objective measures but do not provide the
representation condition of measurement for the quality
attribute.

This paper addresses the correlation between an abstracted
objective measure of software artifacts and a subjective quality
attribute. Experiments should be further encouraged as they
are meaningful, they do provide a feedback loop to validate,
modify and improve on the discussed theory. Also, further
predictive systems can be developed for quality attributes
through the measurement of the software artifacts.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

92 © 2013 GSTF

VII. CONCLUDING REMARKS

To summarize in brief, the following act as concluding
remarks of the above discussion. Quality attributes evaluation
serves as a tool to cope with the increasing information
demands of users. This paper directs the attention of the
designers to the factors that affect the quality attributes of
software projects and the needs of users and demonstrates how
features evaluation is useful in discovering the just enough
quality attribute of a software project. Valuable insights were
gained and the paper suggested on the applicability and
significance of software quality features evaluation in the field
of information science. Its acceptance lies in the project
managers' perception and attitudes towards the system and its
ability to deliver the anticipated service.

Quality is a complex concept because it means different
things to different people; it is highly context-dependent. Just
as there is no way to satisfy everyone's needs, there is no
universal definition of quality either. Quality is an elusive
target hence; there exist no single simplified measure of
software quality that is acceptable to everyone. In order to
assess the software quality in an organization, the aspects of
quality in field environment or in other words, the operating
environment to which the software project system would be
embedded into, must be identified and then be measured. By
defining quality in a measurable way, it would be easier for
other people to understand the notified quality and related
business goals. Hence highly reliable software is determined by
a mature process in a good successful business.

The assessment of the adequate quality level is vital in a
software product. For example; errors that can be found in
word-processing are certainly insupportable in nuclear-power
software. An organization’s viability depends on the quality of
the software developed. It should be recognizable how quality
can influence the usage of the software product after being
delivered and that the time and resources spent for high quality
assurance would benefited greater market share. Measurements
investigate whether the used techniques really improve
software. The answer is reliant on the adopted quality
improvement approach. Some companies follow a process-
based approach and others the product-based one.

Reference [63] considered the perception of quality with
respect to several domains, involving economics, marketing,
operations management and philosophy. He determined that
"quality is a complex and multifaceted concept" that can be
defined relative to five perspectives. The transcendental
perspective regards quality as "something that can be
recognized but not defined". The user perspective regards
quality as "fitness for purpose". The manufacturing perspective
regards quality as "conformance to specification". The product
perspective regards quality as "inherent characteristics of the
product". And the value-based perspective regards quality as
"reliant on the extent a customer is ready to expend for it".

Software specialists are required to generate products that
satisfy users; this satisfaction denotes the struggling
acknowledgment in the transcendental definition of quality.
The user perspective is more tangible, substantiated in product

characteristics that fulfill the user's needs. This quality
perspective assesses the product in a task framework and can
therefore be highly customized. Researchers perceive the users’
interaction with software products. The manufacturing
perspective emphasizes the product quality during production
and after being delivered. This perspective investigates if the
product was built "right the first time" in an attempt to evade
the costs related to rework during development and after being
delivered. Dealing with process standards assure output
consistency and can therefore institutionalize the production of
end products like the manufacturing approach adopted through
ISO 9001 [64] and the Capability Maturity Model [65] that
support conformance to process rather than to specification.
The product perspective of quality adopts that the internal
product properties measurement and control will yield
enhanced external product behavior.

Different groups engaged in software development can
follow different perspectives. Customers normally adopt a user
perspective, researchers adopt product perspective and the
production department adopts manufacturing perspective.
These perspectives supplement each other. If the user's
perspective is identified plainly during requirements
specification, the technical specification handling the
production process can be followed on directly as product
functionality and features. However, problems can be caused
by changes to the requirements. This is where the value-based
perspective of quality comes to be useful that is conveying
quality to the extent the customer is prepared to expend
accordingly evaluate the trade-offs between cost and quality.
Design to cost perception is applied to revise requirements in
regard to costs and benefits. Project managers are responsible
for trade-offs evaluation between quality and cost. All quality
aspects concerning user needs during requirements
specification corresponding to the ISO definition of quality
[66] that is "the whole characteristics of an entity that allow the
capability of fulfilling specified and embedded needs".

Measurement is the key to achieving high quality software.
The software engineer would apply the body of knowledge
elicited to improve the quality of software throughout the
development life cycle. In addition, the body of knowledge
may be used as guidelines for practitioners, licensing of
software professionals and for training in software quality
measurement. Lack of knowledge could result in significant
costs to the supplier in terms of unsatisfied customers, loss of
market share, rework caused by rejected and returned systems
and the costs to customers of faulty systems failed to meet their
mission goals. The interpretation of the desirable properties of
a software product in quantitative terms is an important part of
the engineering activity in the modern world. Because once the
product is released, it is no longer in a controlled test situation
but instead in-practice with different users.

Measuring quality can formulate baselines, estimate quality
and observe enhancement. When users visualize software
quality, they often consider reliability, usability encountering
ease-of-installation, learning-to-use. Reference [36] advises the
direct measurement of these characteristics. For instance;
learning time can be encapsulated as the average passed time
(in hours) for a typical user to attain a specified skilled level.
Users evaluate product quality in terms of their interaction with

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

93 © 2013 GSTF

the final product. Such interaction is represented through their
perceived satisfaction that is obtained by a combination of
product's functions whether present or absent and the product's
non-functional qualities. Developers and customers are similar
in their interest to recognize as early as possible the likely
quality of the final product. Developers should figure these
internal properties into a product to display in the preferred
external quality attributes.

Previous discussed quality models provide more like
characteristics of an art rather than an engineering discipline.
There occur no common acceptable guidelines for quality
assessment. Several quality frameworks have been suggested in
the literature, though no one has been broadly practiced in
software industry or even appeared as a potential standard.
Quality criteria are expressed in terms of abstractions with no
detailed specification. It is difficult to operationalize in
practice. Further, reference [67] ensured that standardization of
concepts and terminology is missing in the software quality
research, conveying the disjointed nature of the research area.
Also, there exist very few references concerning software
quality or quality management literature in addition to
inconsistency with relevant international standards in software
quality such as (ISO/IEC 9126). The Goal-Question-Metric
(GQM) model is considered as one of the most effective
models for measurement and evaluation in the software
engineering field [68], and [69]. It offers a structured approach
to develop metrics in a top-down manner, emerging from the
high level goals then coming down to detailed metrics. The
focus of GQM model is not particularly dedicated to quality;
nevertheless it showed usefulness and effectiveness in different
contexts.

The proposed discussion serves as the basis for estimating

the quality of the final product system based on characteristics

of internal quality properties through the adoption of the GQM
approach. The GQM approach investigates the hypothesized
relationship between quality attributes and software quality
factors and provides understandings into the correlation
between internal and external quality.

Most of the existing models adopted for software
development process use the result of design, implementation
and test phases; whereas the assessment of the software desired
characteristics in the early phase of software development
process would better support risk management and effort
estimation associated with software projects. Since corporate
enterprises are highly investing in information system and
software development; henceforth the potential of IT-business
alignment concept is more stressed. Poor alignment of IT
applications with business objectives affects not only the
potential of adapting IT solutions but the rank of its
organization will consequently be affected as well.

A small amount of research has been done into the
interrelation between software quality and business efficiency.
The investment of businesses in technology, that has been
adequately tested and evaluated, represents high risks. The
investigation of the software alone is insufficient; case studies
and experiments are needed to reinforcing technology
evaluation. The business context of how it is used determines if
investment in higher software quality is worthy. Reference [70]

declared that "sometimes less-than-perfect is good enough".
Business goals and priorities specify the acceptable level of
"less than perfect". For the assessment of software quality in an
organization, the aspects of quality in interest must be at first
defined and then comes the decision of how to measure. The
definition of quality in a measurable way makes it easier for
other people to relate the adopted notion of quality to the
desired business goals.

The appropriate definition of requirements for software
projects in specifications of programmatic requirements in
contractual documentation can avoid most of the problems
arising after development phase during the practical use of the
software. For a non-functional requirement, the software
product does or does not meet the requirement is the mutual
equivalent perception.

Large-scale, operational software products should be
investigated, with the data required (ISO/IEC metrics)
extracted from related documentation collected over a longer
period of time. Larger sample sizes should be used to increase
internal validity. Also, participants possessing greater
experience with software development should be sought since
those involved in the presented experiment had limited
exposure to certain software projects. This means that
participants with more constrained experience profiles should
be required (for example, novice software engineers with
experience ranging from 1 to 12 months and experts with
experience ranging from 10 to 20 years).

VIII. CLOSING SUGGESTIONS

Among the researchers’ knowledge bases, software
quality content knowledge is uniquely their interest area of
research, their adopted methodologies and developed tools to
better estimate the quality of the software product and its
associated effort, attain the primary importance in the
diffusion of software engineering industry. In this paper, the
provided evaluation method is expected to fulfill the user
need to expand the software developers’ acquisition of
development knowledge at the early phase of requirements
analysis and product design that can be applied and practiced.
Although several methods and models do address various
aspects of software quality, they are not usually implemented
in a coordinated way because many are not actively supported
by project managers. Additionally, the Goal Question Metric
top down approach with its rated score prioritizes the needed
quality features for the software development at hand and
correspondingly the effort associated in person-months and
resources devoted.

IX. FURTHER REMARKS

It should be taken into account to continue the evaluation of
software quality attributes through other assessment methods.
In any case, the quality attributes that would be selected and
their associated features provide a starting point in cases where
argumentation is needed for further improvement. Even small
software projects should have the opportunity to be evaluated
in order to be developed further.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

94 © 2013 GSTF

It has been suggested that software quality can be defined
from many points of view, depending on the role the person
plays with the software and on the type of system being
developed ([71]; [72]; [73]; [19]; [74]). In this manner, the
voice of the customer is actively being pursued in order to
produce a software product meeting its desired needs.
Nevertheless, the business analysis and enterprise
administration software types have to differentiate between
user and developer stakeholder roles. Enterprise administration
software ranks usability lower than reliability or integrity while
users would have done the opposite. Similarly, developers for
example highly rank maintainability more than any other
stakeholder. Simultaneously, software quality priorities differ
according to the type of software being considered. Thus,
variation in software quality priorities varies by stakeholder
role with the software type. Further research might be devised
to use other stakeholder roles. If a suitably diverse population
could be found then it would be beneficial to segment further
categories and even distinguish between different roles within
the same category.

REFERENCES

[1] E. Duggan, “Silver pellets for improving software quality,” Information
Resource Management, Vol. 17(2), pp. 60-95, 2004.

[2] S. Haag, M. Raja, & L. Schkade, “Quality function deployment usage in
software development,” Communications of the ACM, Vol. 39(1), pp.
41-49, 1996.

[3] D. Harter, & S. Slaughter, “Quality improvement and infrastructure
activity costs in software development,” Management Science, 49(6),
pp. 784-796, 2003.

[4] D. Prajogo, & A. Sohal, “The integration of TQM and technology/R&D
management in determining quality and innovation performance,”
Omega, 34(3), pp. 296-312, 2006.

[5] S. Kan, V. Basili, & L. Shapiro, “Software quality: An overview from
the perspective of total quality management", IBM Systems Journal,
33(1), pp. 4-19, 1994.

[6] W. Lin, & B. Shao, “The relationship between user participation and
system success,” Information & Management, 37(6), pp. 283-295, 2000.

[7] J. Arthur, Improving software quality: An insider’s guide to TQM, New
York: Wiley, 1993.

[8] A. Gopal, T. Mukhopadhyay, M.S. Krishnan, and D. Goldenson, “The
Role of Communication and Processes in Offshore Software
Development,” Communications of the ACM, Vol. 45, pp. 193-200,
2002.

[9] M. Jeffery, & I. Leliveld, “Best practices in IT portfolio management,”
MIT Sloan Management Review, 45(3), 41–49, 2004.

[10] M. Haigh, “Software quality: non-functional software requirements and
IT-business alignment,” Software Quality Journal, (18) 361–385, 2010,
DOI 10.1007/s11219-010-9098-3.

[11] A. Avizienis, J. C. Laprie, and B. Randell, “Fundamental concepts of
computer system dependability,” IARP/IEEE-RAS workshop on robot
dependability: Technological challenge of dependable robots in human
environments, Seoul, Korea, May 21–22, 2001.

[12] W. M. Gentleman, “Software quality world-wide: What are the practices
in a changing environment,” Proceeding of the sixth international
conference on software quality (6ICSQ), Ottawa, Canada, 1996.

[13] A. F. Shumskas, Software risk mitigation total quality management for
software, New York: G.G.a. J.I.M. Schulmeyer, Van Nostrand Reinhold,
(pp.190–220), 1992.

[14] S. W. Coniam, & Diamond, A.W., “Practical Pain Management - a
guide for practitioners,” Oxford, UK: OUP, (1995).

[15] J. A. McCall, P. K. Richards, and G. F. Walters, “Concepts and
definitions of software quality factors in software quality". NTIS,
(Vol.1), Springfield, VA: NTIS, 1977.

[16] B. Boehm, Characteristics of software quality, New York: North
Holland, 1978.

[17] B. A. Kitchenham, and J. G. Walker, “A quantitative approach to
monitoring software development,” Software Engineering Journal, 4
(1), 2-13, 1989.

[18] M. A. Côté, W. Suryn, and E. Georgiadou, “In search for a widely
applicable and accepted software quality model for software quality
engineering,” Software Quality Journal, 15(4): 401-416, (2007).

[19] R. G. Dromey, “A model for software product quality,” IEEE
Transactions on Software Engineering, Vol. 21, No. 2, pp. 146–162,
1995

[20] B. W. Boehm, Software Engineering Economics, Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

[21] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software
Quality Models: Purposes, Usage Scenarios and Requirements,”
Technische Universitat Munchen, QuaMoCo Project, Germany, 2009.

[22] ISO/IEC, ISO/IEC 9126-1:2001 Software Engineering: Product Quality
- Quality Model, International Organisation for Standardisation/
International Electro-technical Commission, 2001.

[23] D. Coleman, B. Lowther, and P. Oman, “The application of software
maintainability models in industrial software systems,” J. Syst. Softw.,
29(1):3–16, 1995.

[24] M. R. Lyu, editor, Handbook of Software Reliability Engineering, IEEE
Computer Society Press and McGraw-Hill, (1996).

[25] E. Georgiadou, “GEQUAMO—a generic, multilayered, customizable,
software quality model,” Software Quality Journal, 11:313–323, 2003.

[26] S. Khaddaj, and G. Horgan, “A proposed adaptable quality model for
software quality assurance,” Journal of Computer Sciences, 1(4):482–
487, 2005.

[27] Michael Kläs, and Jürgen Münch, “Balancing upfront definition and
customization of quality models,” TUM: 26, (2008).

[28] B. Kitchenham, and S. L. Pfleeger, “Software quality: The elusive
target,” IEEE Software, 13(1):12–21, 1996.

[29] S. Wagner, and F. Deissenboeck, “An integrated approach to quality
modelling,” In Proc. 5th Workshop on Software Quality (5-WoSQ),
IEEE Computer Society Press, (2007).

[30] M. Broy, F. Deissenboeck, and M. Pizka, “Demystifying
maintainability,” In Proc. 4th Workshop on Software Quality (4-WoSQ),
pages 21–26, ACM Press, 2006.

[31] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni, “The SQUID
approach to defining a quality model,” Software Quality Journal, 6:211–
233, 1997.

[32] C. Frye, Focus on the product to improve quality, CMM founder, (June
2008).

[33] N. Fenton, “Software measurement: A necessary scientific basis,” IEEE
Trans. Softw. Eng., 20(3):199–206, 1994.

[34] N.E. Fenton, and M. Neil, “A critique of software defect prediction
models,” IEEE Trans. Softw. Eng., 25(5):675–689, 1999.

[35] J. Musa, and A. Ackerman, “Quantifying software validation: when to
stop testing? ,” IEEE Software, 6(3):19–27, 1989.

[36] T. Gilb, Principals of Software Engineering Management, Addison-
Wesley, Reading, Mass., 1987.

[37] R. G. Dromey, “Cornering the chimera,” IEEE Software, Vol. 13, No. 1,
pp. 33–43, 1996.

[38] R. S. Pressman, Software engineering, a practitioner’s approach, Fourth
Edition, McGraw-Hill Press, 1997.

[39] W. Pedrycz, and G. Succi, “Genetic granular classifiers in modeling
software quality,” Journal of Systems and Software, 76(3):277-285,
2005.

[40] Anders Henriksson, Uwe Aßman, James Hunt, “Improving Software
Quality in Safety-Critical Applications by Model-Driven Verification,”
Electronic Notes in Theoretical Computer Science, Volume 133, Pages
101 – 117, 31 May 2005, available at:
http://dx.doi.org/10.1016/j.entcs.2004.08.060

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

95 © 2013 GSTF

http://dx.doi.org/10.1016/j.entcs.2004.08.060

[41] F. Dongping, and L. Youcheng, “Structure Modeling and System
Building of Self-adaptation Application Software System,” Journal of
Computer Engineering and Application, 37(12), 2001.

[42] F. Dongping, Enterprise MIS System Component Developing
Methodology Study, Beijing: Beihang University, 2001.

[43] T. Ying, Component Reuse Technique Research and Realization in the
Development of Commercial Management Automation System, Beihang
University, 2000.

[44] Li Jia, MIS System Development Method Study and Component Library
Realization, Beijing: Beihang University, 2001.

[45] Z. Bosheng, X. Hong, and Z. Li, “Introduction to Process Engineering
Principle and Process Engineering Environment,” Software Journal,
Vol. 8, pp. 519-534, 1997.

[46] V. R. Basili, and M. W. Weiss, “A methodology for collecting valid
software engineering data,” Journal of IEEE Transactions on Software
Engineering, Vol.10 (No. 6), pp. 36-49, Nov. 1984.

[47] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach,
“Practical Guidelines for Measurement-Based Process Improvement,”
Journal of Software Process Improvement and Practice, Vol. 2(4), pp.
231-238, 1997.

[48] D. N. Card, "What makes for effective measurement,” Journal of IEEE
Software, Vol. 10, pp. 94-95, Nov.1993.

[49] R. Solingen, and E. Berghout, “Integrating Goal- Oriented Measurement
in Industrial Software Engineering: Industrial Experiences with and
Additions to the Goal/Question/Metric Method (GQM),” Proceedings
of the 7th International Software Metrics Symposium, pp. 178-186, 2001.

[50] J. Rosenberg, “Problems and prospects in quantifying software
maintainability,” Journal of Empirical Software Engineering, 2(2): 173-
177, 1997.

[51] N. Fenton and N. Maiden, “Making Decisions: Using BNs and MCDA,”
Computer Science Dept., Queen Mary and Westfield College, London,
2000.

[52] P. C. Pendharkar, P. C. Subramanian, & J. A. Rodger, “A probabilistic
model for predicting software development effort,” IEEE Transactions
on Software Engineering, 31(7), 615–624, (2005).

[53] A. Baker, J. Bieman, N. Fenton, A. Melton, & R. Whitty, “A philosophy
for software measurement,” Journal of Systems and Software, 12(3),
277–281, (1990).

[54] A. Melton, D. Gustafson, J. Bieman, & A. Baker, “A mathematical
perspective for software measures research,” IEE/BCS Software
Engineering Journal, 5(5), 246–254, (1990).

[55] B. Kitchenham, S. L. Pfleeger, & N. Fenton, “Towards a framework for
software validation,” IEEE Transactions on Software Engineering,
21(12), 929–944, (1995).

[56] F. S. Roberts, “Measurement theory,” encyclopedia of mathematics and
its applications, (Vol.7). Massachusetts: Addison-Wesley Publishing
Company, (1979).

[57] H. E. Kyburg, Theory and measurement, Cambridge, UK: Cambridge
University Press, (1984).

[58] D. Coleman, D. Ash, D. Lowther, & P. Oman, “Using metrics to
evaluate software systems maintainability,” IEEE Computer, 27(8), 44–
49, (1994).

[59] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software
quality,” Vols. I-III, Rome Air Development Centre, Italy, AD/A-049-
014/015/055, Nat'l Tech. Information Service, Springfield, November
1977.

[60] T. Gilb, Software metrics, Cambridge, Mass: Winthrop, (1977).

[61] R. West, & K. R. Lehman, “Automated summative usability studies: An
empirical evaluation,” In CHI 2006 Proceedings—Automatic Generation
and Usability (pp. 631–639), Montreal, Quebec, Canada: ACM, 22–27
April 2006.

[62] L. Yu, S. R. Schach, K. Chen, & J. Offutt, “Categorization of common
coupling and its application to the maintainability of the linux kernel,”
IEEE Transactions on Software Engineering, 30(10), 694–706, (2004).

[63] D. Garvin, “What Does Product Quality Really Mean?,” Sloan
Management Review, pp. 25-45, fall 1984.

[64] ISO 9001 - Quality Systems - Model for Quality Assurance in
Design/Development, Production, Installation and Servicing,
International Organisation for Standardisation, Geneva, 1994.

[65] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability
Maturity Model, Version 1.1,” IEEE Software, Vol. 10, No. 4, pp. 18-27,
July 1993.

[66] ISO 8402 - Quality Management and Quality Assurance - Vocabulary,
International Organisation for Standardization, Geneva, 2nd Edition,
1994.

[67] S. R. Maier, Organisational concepts and measures for the evaluation of
data modelling, in: S. Becker (Ed.), Developing Quality Complex
Database Systems: Practices, Techniques and Technologies, Idea Group
Publishing, Hershey, USA, 2001.

[68] V. R. Basili, G. Caldiera, H. D. Rombach, “Goal question metric
paradigm,” in: Journal of Encyclopedia of Software Engineering,
Marciniak (Ed.), John Wiley & Sons, Vol. 1, pp. 528–532, 1994.

[69] V. R. Basili, H. D.Rombach, “Tailoring the software process to project
goals and environments,” in: Proceedings of the 9th International
Conference on Software Engineering, Monterey, CA, USA, 1987.

[70] E. Yourdon, “When Good Enough Software is Best,” IEEE Software, pp.
79-81, May 1995.

[71] L. A. Arthur, Measuring Programmer Productivity and Software
Quality, Wiley Interscience, Chichester, 1985.

[72] W. E. Deming, Out of the crisis, Cambridge, Mass.: Massachusetts
Institute of Technology, World of W. Edwards Deming (Washington,
DC: CEEPress Books, 1988).

[73] Michael S. Deutsch, and Ronald R. Willis, Software quality engineering:
a total technical and management approach, Prentice-Hall, Inc., 1988.

[74] B. Boehm, & H. In, “Identifying quality-requirement conflicts,” IEEE
Software, 13(2), 25–35, (1996).

Nermine M. Khalifa holds a PhD degree in
Engineering & Information Science (2010) from
Middlesex University, London, UK. She is
specialized in E-business, E-commerce application
and Supply Chain Management. She had many
publications in the field of E-commerce, E-Supply
Chain, Enterprise Resource Planning, E-Customer

Relationship Management, Performance measures, System dynamic
& Simulation, RFID and Global Supply Chain and Software
Engineering. These papers have been published in international
conferences, well-known journals and book chapters. She contributed
as a reviewer in international conferences, Journals and book chapters
such as: IADIS Conferences, IBIMA Conferences, ICOSCM &
ICSCMIS conferences, System Dynamics Conferences, International
Journal of Supply Chain, Journal of Supply Chain, IGI publications.

Mona M. Abd Elghany graduated from College of

Management & Technology in Arab Academy for

Science & Technology in Alex, Egypt, with B.Sc. in

Business Administration (marketing and finance)

and earned a M.Sc. in Total Quality Management,

and a Ph.D. in Performance Measures. Current

occupation is an Assistant Professor in Finance & Accounting

department (FAD), CMT, AAST. Abd Elghany’s career path has

encountered operation management researches, small-to-medium

enterprises practices and policies, and she was formerly engaged in

ISO consultancies. She participated in a number of academic papers

in ranked conferences, journals and published books.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

96 © 2013 GSTF

