
GSTF JOURNAL ON COMPUTING 1

Just-In-Time Compilation of NumPy Vector
Operations

Johannes Lund, Mads R. B. Kristensen, Simon A. F. Lund, and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

jolu@diku.dk and {madsbk/safl/vinter}@nbi.dk

Abstract—In this paper, we introduce JIT compilation for the
high-productivity framework Python/NumPy in order to boost the
performance significantly. The JIT compilation of Python/NumPy
is completely transparent to the user – the runtime system will
automatically JIT compile and execute the NumPy instructions
encountered in a Python application. In other words, we introduce
a framework that provides the high-productivity from Python
while maintaining the high-performance of a low-level, compiled
language.

We transforms NumPy vector instruction into an Abstract
Syntax Tree representation that creates the basis for further
optimizations. From the AST we auto-generate C code which
we compile into computational kernels and execute. These incor-
porate temporary array removal and loop-fusion which are main
benefactors in the achieved speedups. In order to amortize the
overhead of creation, we also implement a cache for the compiled
kernels.

We evaluate the JIT compilation by executing several scientific
computing benchmarks on an AMD. Compared to NumPy, we
achieve speedups of a factor 4.72 for a N-Body application and
7.51 for a Jacobi Stencil application executing on a single CPU
core.

Keywords—JIT, automatic, dynamic, runtime

I. INTRODUCTION

Many scientific algorithms can be expressed by using vector
operation and linear algebra. These are easily expressed in
specialized high-level languages such as the NumPy library
for Python. However, their performance is often significantly
lower than when implemented and computed in a low-level
language. Using the high-level languages for prototyping and
re-implementing the found solution in a low level language
when required to run on actual-size data.

Expressing the data and calculations efficiently in a low-
level language such as C is far from being a trivial task. It
requires an in-depth understanding to implement this efficiently
on heterogeneous hardware architectures.

We wish to bridge the gap between the two extremes, by al-
lowing scientists to express their problems in a favorable high-
level language and at the same time achieve the performance of
a complex low-level language implementation. Thus, the goal
of this paper is to improve the performance of Python/NumPy
applications to a degree that makes it similar to low-level
languages such as C or C++. We do not expect it to out-
perform hand-optimized C code. As long as it demonstrates
similar performance while retaining the high-productivity of
the Python language, we are satisfied.

In order to improve the performance of Python/NumPy,
we introduce a Just-In-Time (JIT) compiler backend for the
NumPy library. In order to hook into the NumPy library we
make us of the Bohrium runtime system [1], which translate
NumPy vector operations into an intermediate vector bytecode
suitable for JIT compilation. Because Python is an interpreted
language, we use lazy evaluation of vector instructions in order
to have multiple instructions available to analyze, optimize,
and JIT compile.

The following methods constitute the key contributions for
the performance improvement of Python/NumPy applications
using out JIT compiler backend:

• Removal of temporary arrays
• Loop fusion
• Compiled kernel caching

II. RELATED WORK

The key motivation for our JIT back-end is to automati-
cally transform high-level Python/NumPy applications to com-
plied executable kernels, with the goal of obtaining high-
performance, high-productivity and high-portability, HP 3.

Our work is closely related to the work described in [2]
where a compilation framework, unPython, complies Python
code into C. The framework uses Python decorators as hints to
do selective optimizations. Particularly, the user must annotate
variables with C data types. Because of the Bohrium runtime
system, our JIT backend does not require any modifications to
the Python code.

Systems such as pyOpenCL/pyCUDA [3] provides tools for
interfacing with the OpenCL and CUDA framework directly
from Python. They lower the bar for harvesting the power of
modern systems by letting the user write CPU or GPU kernels
as text strings in Python. Still, the user need knowledge of the
underlying hardware and must modify existing Python code in
order to utilize them.

III. ANALYSIS

In this section we present an analysis of the requirements
and solutions for using JIT compilation of NumPy vector
instruction. There are many different elements required in
framework for JIT compilation, which all must be designed
and implemented.

DOI: 10.5176/2251-3043_3.3.270

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

40 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 2

A. Creating composite expressions

At runtime we have a list of vector instructions available
which contain information about the relation between the
instruction. We can use this relational information to build
composite expressions and create computational kernels based
on these.

In this subsection we investigate methods to extract and
analyze the information from the instruction list.

1) Naive approach: The naive approach involves folding the
instruction into larger expression. Examining the instruction
list inorder by comparing the output of a instruction with
the input of the next it can be determined if the first is a
subexpression of the later. As many expression are organized
as a chain of instructions this naive method would work well
on many of the expressions.

Creating composite expressions and computational kernels
directly from the list would be straight forward. In the case
where the output is not uesd a new composite expression
is build. For each of the following expression which uses
the previous output in its input the expression grows by
substituting the new input with the expression. With this
approach the code for the kernel could be created directly in
the first passthrough of the instructionlist.

With the order of execution the same as for the instruction
the data-dependencies between the instruction are not relevant.

This approach only handles relations in chains and would
not combine expression where both the left and right inputs
where a result of prior instruction. The only information used
would be the one found between two instructions. We have
information about the relation between all instruction in the
list and we should use this.

2) Abstract Representation: The abstract approach targets
the shortcomings of the naive approach and is the method
used. This is initially done by splitting the creation of kernels
from the data extraction and analysis. The instructions list is
translated into a abstract representation where the information
between all instructions are represented.

The expressions are created as Abstract Syntax Trees (AST)
from on the mathematical expressions from the instruction list.
The transformation from a batch of instruction results in a set
of AST’s which are later converted into computational kernels.

It is a more complex solution compared to the above and
requires the use of compiler techniques such as Static Single
Assignments (SSA) and creation of dependency graphs. We
use the AST as our working representation of the instructions
for the following reasons:

1) Not sensitive to the order of instructions but the seman-
tic meaning. Semantically equal expression result in the
same AST’s or can easily be transformed to it.

2) The tree data structure is well known and easy to work
with, analyze and optimize.

3) In the creation of an AST temporary arrays are syntac-
ticly removed.

4) The general structure can be used to represent more
complicated AST’s, which ensure that later extensions
to the form is possible.

B. Execution Orchestration
With the change of representation from a list of instruction

into a set expression it is needed to determine how these are to
be executed. In the list the order was given but with the AST’s
the choice is not as simple. We present different orchestration
methods for the AST and the resulting kernels and argues for
the methods used in our solution.

The orchestration of the AST’s for execution can take the
form of a list or a graph
• The list execution follows the sequential execution of

the kernel of the AST’s. The AST’s are all rooted to
array assignment, which originally is represented as a
instruction. The AST’s are arranged and executed in
this order. This approach is well suited for single core
execution as all operations must be performed in s
sequential order. It can be seen a flattened graph, as the
graph information is available within the AST’s.

• Orchestration based on the dependencies between the
AST, represented as a graph. The dependencies between
AST results in sequential paths. The graph will represent
the relation between the AST. From this it can be
determined if AST’s are independent each other and thus
if they can be executed in parallel.

The List model is chosen for it simplicity and that the
framework target is the a single CPU core.

The relation between the AST’s have purposes in different
optimization method which are relevant for both single- and
multi-core scenarios. Within the AST’s the relational informa-
tion is used to discover dependency violations and to secure
correctness among the AST’s. The correct inital dependencies
is vital om checking data-dependencies spanning multiple the
AST’s.

C. Representation of Kernel Function.
To execute the AST’s we must represent them in the form

of a programing language which we can execute. This could
in principle be any language, but there is a clear demand for
a highly efficient language, which narrows down the field of
candidate. The considered options where the following:
• C/C++
• Assembler

The C languages was chosen as it is supported everywhere and
can be very efficient. The choice of language is connected to
the choice in compiler as well. For the C language there is a
number of compilers available. The kernels are pretty simple
and require no extended functionality for which C++ would
be of value.

Using Assembler to create the kernels would move the
implementation closer to the metal then with C and potentially
perform better. The kernels are rather simple as they consists
of a traversal of a multidimensional array and an equation.
For the simple uses the assembler version would be fairly
straightforward to implement.

Being close the metal also has its drawbacks. In order to take
advantage of the different architectures their special instruc-
tions must be used, which requires multiple implementation to
work efficiently in a heterogeneous hardware environment.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

41 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 3

The machine code produced by modern compilers is very
efficient. The newest advantages in CPU design is integrated in
these optimization which can include the use of vendor specific
optimization, SSE instruction, function in-lining or even loop-
unrolling. These and many other optimization are available
in modern compilers such as GCC [4] and C-LANG/LLVM
[5]. Achieving these benefits with machine code implemented
kernels would is not practical solution.

An alternative to native code is using Intermediate Language
(IL) as used internally in LLVM. The AST’s and traversal
would be expressed in IL language and compiled with LLVM.
With this comes the possibilities to apply specific optimization
to the code in the compilation phase.

A second alternative could be OpenCL code which would
be targeted the CPU. The language is based on C99 with a few
extensions and can be compiled to both CPU’s and GPU’s. The
OpenCL framework target Multi- and Many-Core architectures
where concurrency and parallelism is in focus.

C is chosen for the kernel representation it is best suited
for the task and it will be reasonable fast to investigate future
optimizations to the kernels.

D. Kernel Compilation
The choice of compiler is strongly coupled with the choice

of language. With C chosen there are still different approaches
to take on compilation.
• Command-line compilation and dynamic linking: Write

the kernel program to a file which is then used compiled
with a compiler from the command-line,

• In memory compilation: Compile from a library function
where the kernel function code is read as strings and the
results is a function-pointer.

The command-line method is simple approach as most linux
systems has access to a C compiler such as GCC. It is required
to write the function code to a file as this is the input. By
compiling the code into a shared object file it can be linked into
the running program. This is done with the ldopen() function.

The method of using a in memory compiler eliminated the
need to perform disk I/O operations and system calls. It is
all handled in memory and within the program execution. The
Tiny C Compiler [6] (TCC), is such a library which offers
the ability to compile a string of C code into a machine code
and return a function-pointers to the functions compiled. TCC
is very small and very simple library which is easy to use.
Unfortunately the quality of the resulting machine code is far
from that GCC.

The library for C-lang with is part of LLVM. Here the C
code would be read and compiled into the LLVM IL language
and from this into machine code using the LLVM backend to
do the compilation. The LLVM and C-lang libraries are both
very large and complex API’s to work with.

TCC was initially used but replaced with the GCC as it
became clear that the performance was an issue. It here became
clear that the quality of code is more important then the
compile time. The initial investigation into LLVM revealed a
large and complex framework, of which only the compilation
part was of interest. As GCC and LLVM generally produces

code of equal quality [7] the expected outcome of using LLVM
over GCC is to reduce the compilation time and make the
implementation prettier.

The GCC method is chosen as the kernel compiler due to
its simple approach, availability and execution performance.

E. Cache
Caching in the JIT framework is related to the computational

kernels. Many of the same instructions are reoccurring, as
a result of loops in the host programs, the same AST’s are
created and thus the same kernels. The use of caches is based
on assumption that each kernel is multiple times, which is the
case in most scientific NumPy applications.

The reason to use a cache for the JIT compiled kernels is
to reduce the time required in creation and compilation of the
kernels for every AST. There will be a overhead of creating
the kernels but the overall effect can be reduced significantly
by using a cache for the kernels.

The number of unique kernels depends on the number of
uniqe AST’s created. We dont expect a large number of kernels
as many of the scientific applications uses the same computa-
tions multiple times. Running the Shallow Water benchmark,
which produces the most kernels of the benchmarks used, only
11 kernels are created in total.

We have decided to use a non-persited cache for the ker-
nels where the kernels are created and used as the program
executes. The on-the-fly strategy fits the needs of the JIT
framework very well. Creating the kernels is fast compared
to the execution time and only a few must be created. The
small time difference between loading the kernels or creating
them is insignificant compared to the runtime.

The benifit from the cache is the large number of identical
kernels fetched from memory apposed to being created.

IV. DESIGN AND IMPLEMENTATION

The goal of the system is to transform the list of instructions
unary og binary instructions into computational kernels and
execute these instead a series of individual instructions.

We described the various parts in the analysis section and
here define four phases in which we organized the various
parts. The phases, which are illustrated in Figure 1, are:

1) AST creation: Information gathering, analysis and cre-
ation of composite expressions.

2) Optimize and Orchestrate: Determining the flow of the
execution and perform optimizations on its abstract
form.

3) Kernel creation: Code generation and compilation.
4) Execution and caching.

In the first phase the instruction list is transformed into a set
of AST’s which are organized in a Nametable. The initial
AST’s are analyzed for basearray dependencies as these not
reflected in the Nametable after the initial creation. After the
dependency corrections have been performed the collection of
AST’s is a valid representation of the instruction list.

In phase two the forest of AST’s are orchestrated into an ex-
ecution list. This phase would be place for AST-based analysis

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

42 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 4

1 2 3

Kernel Cache
Kernel

Kernel

Code Generation

Compile

42

Create AST's

Optimize and Orchestrate

Cache lookup

Execute

Code

Fig. 1. JIT Framework design overview.

Assignment : Array = Expr

Exp : Array
: Constant
: UnaryOperation
: BinaryOperation

UnaryOperation : Opcode Exp
BinaryOperation : Opcode Exp Exp
UserFunc : Exp . . . Exp

Fig. 2. AST definition for NumPy instructions

and optimization such as grouping of multiple AST’s into one,
dead-code elimination or other optimizations. Preparations for
more advanced code generation methods would be part of this
phase as well.

In Phase three we transform the AST into a kernel function
which are compiled and linked into the running program. This
involves code generation and compilations.

Phase four handles the execution of the kernels either
directly handed down from phase three or extracted from the
cache.

A. Abstract Syntax Tree for the vector expressions.

AST are generally used in compilers and interpreters to
represent the abstract syntax of the program. This repre-
sentation follows the Concrete Syntax Tree (CST) which is
representation of the program text.

We focus the AST for the JIT framework on representing
the mathematical expressions found in the instruction lists and
uses a list to represent the order of the execution.

We defined the AST used to represent the mathematical
expressions as depicted in the figure 2. We formally defined
the AST to include the following two types of components, the
Statement and Expressions. The Statements assigns the value
of an Expression to an array. The Expression can take many
forms as it is the case with mathematical expressions.

The simplest form is the array or constant. These are
used with unary and binary operator as well as userdefined
functions. These operations defines the recursive nature of the
data structure as they themselves are Expressions and takes
expressions as input. The Opcode is a basic mathematical
operators, such as add, multiply or sinus.

With this definition we are able to express the mathematical
expressions of the bytecode.

An Assignment is an instruction and thus a program consists
of series of assignments which assigns the value of a simple
array, constant or unary or binary expressions to an array. In
the case of the constant assignment it would be broadcasted
to all elements of the array.

We view the bytecode instruction as an assignment with a
left and right side. The right side is the Expr and the array the
left. When an expression consists of more then a single unary
or binary operations we label it as a composite expression, as it
composed of multiple expressions. To manage the assignment
of expressions to arrays a set of data structures are used.

1) Data structures to manage the AST: We present the
three data structures we use to create and manage the AST-
representation of an list of instructions:
• BaseUsageTable
• SSAMap
• Nametable
The BaseUsageTable is used to register when a base array

are written to. With this information we can determine depen-
dency violation with in the AST’s and ensure correct execution.

In Numpy the use of slices of data is represented af view of
the original data. This view is called an array and will always
be present. Multiple arrays can reference the same underlying
data, called a base-array. Operations on the different arrays
can thus alter the same base-array. We register which arrays
use the same base-arrays to ensure that data is written to the
base-array before it is used in a new expression.

The BaseUsageTable is implemented as a Map of lists,
{array: [nt index,...],..}, where there for each basearray is a
list of references to the Nametable of where the array is used.

We use the Static Single Assignment map (SSAMap) in
the creation phase of the Nametable and AST’s. We build the
Nametable in SSA form where each assignments as its unique
name to eases later analysis.

The SSAMap registers all arrays in an version list, {array:
[nt index,..],..}, which works as translation table from name
to array version.

The Nametable is used to store the AST representation
and associated meta-information, such as traversal states and
dependencies. With the SSA map all arrays are assigned a
new name, an integer. These names are assigned in order of
appearances while the Nametable is being build.

The Nametable can be seen as a mapping between Name,
Array and AST and holds the following information:
• A Reference to AST
• The array the AST is assigned to, a Target Array

(TArray)
• A reference to the instruction in the instruction batch
• A List of Depend-ON and Dependent-TO references

(DON and DTO)
• When the TArray is discarded and freed.
• If the name points to a userdefined function, additional

information is kept.
All the information from the instruction list kept in the
Nametable (see Figure 3).

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

43 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 5

BaseUsageTable

BaseArray
WritenAt

B 0
Ab 1

+ A B _ 4

0
1
2
3
4
5

Nametable

TArray
AST

Name

B
A

B

+

B 4

A = np.ones((3,3))
B = np.ones((2,3))
A[0:2] = B + 4

numpy

instrucction

SSAMap

TArray
Versions

B 0
A 1

Fig. 3. Nametable relation to instruction

+

A
A = 10
C = A-5
A = 2
O = A + C

-

A 5

O
A0 = 10
C0 = A0-5
A1 = 2
O0 = A1 + C0

+

A0

-A1

5

O0
Normal form SSA form

Fig. 4. Static Single Assignment

We do not register constants in the nametable as these
cannot be assigned an array and have no importance without
a relation to an array. Constants are inserted directly into the
autogenerated code and is only used here.

The Nametable is implemented as a vector where the name
corresponds to the index. We register all array assignment in
the Nametable in the same order they appear in the instruction
batch. This means that we preserve the execution order of
the created AST in the Nametable structure. When performing
the later dependency analysis the order can determined by a
comparison on names.

a) Static Single Assignment: SSA is used as a step to
encode relationships between variables in code in the naming.
It is done by only allowing assignment to a variable once. In
the literature [8] if a variable is assigned more then once, a
new variable is created with a subscripted number. If this the
second time, it is subscripted with a 1, second a 2 and so forth.
The relationship to previously used variables are thus encoded
into the naming since the name change of a variable is done
to the remaining variables in the list of operations. There is
no such thing as an overwrite of a variable.

Let us consider the example listed in Figure 4, which can be
viewed as a list of instructions. This involves a reassignment
of A in the same equation which we need to represent in the
AST.

We could do this by only keeping references to the arrays
by name, but we would be required to find the correct value
of A through a liveliness analysis. We use SSA form for the
Nametable to remove this necessity.

In this form all assignment are made to new variables which
makes determining the origin of a value much easier as this is
now encoded into the name. In traditional languages SSA form
handled control flow by introducing phi-functions to represent
a changes performed in a branch. As there is no such control
flow elements in the bytecode, the SSA form for AST’s are
very simple.

0
1
2
3
4
5

+ A B _ 4
* E A C _

Instruction batch
NT

Free A
Discard A
Sync E

B

+ A B _ 4

+

1

2

3
4

5

B 4

4
B
A

* E A C _

67

8

11

10
9

C

C

11

12

+

B 5

*

C

13

E

+

B 5

14

F=3,D=3

15
16

Fig. 5. AST creation illustrated of Ō = (B̄+5)∗C̄. Underscore () indicates
a empty value. The arrow numbering show the of the creation process from
1 to 16. The illustration does not cover the all the elements of the creation
process. SSAMap, BaseUsageTable and Dependency Graph updates among
others, are not included.

We introduce integers as new names where all assignments
are assigned a new incremented number. We thus loose the
direct relation between names in the naming scheme. In the
SSA Map we keep the information on version and their
mapping to the new names. This is also used to determine
which version of an array should used when referenced.

2) Creating the AST’s: As most AST’s the AST’s in the
JIT framework are build bottom up. Starting with the lowest
expression and using these as sub trees in the following
expressions.

In short, this is done by iterating through the instruction list
in the order of execution, creating AST’s from the instructions
and building larger and larger AST while registering the
relations in the Nametable and BaseUsageTable.

This subsection describes the design and implementation of
the algorithms used in this process of creating the AST’s and
filling the Nametable with them.

The instructions are transformed from start to end and
analyzed in this order. This results in a bottom-up approach to
AST creation, where arrays used in an AST is either new or
referencing a existing AST.

While building the Nametable and the AST’s we only look
back, appending to the existing structure and preserving the
order through the naming scheme.

The creation steps of the AST’s are best described through
an example. Depicted in figure 5 we show the creation of a very
simple program which performs the following equation: Ō =
(B̄+5)∗C̄. The program is described by the add and multiply
instruction along with a Free, Discard and Sync instruction.

(1) We start from the top of the instruction list looking at
the first instruction. (2-3) Extract the left operand B̄. As this
is and array we check if have a reference to it. (4) We store
B̄ in the Nametable as 0. (5) We extract the second operand.
As this is a constant we do nothing else. (6) We then extract
the operator and creates the AST. (7) We store AST in the

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

44 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 6

nametable as a assignment to Ā, as 1.
(8) We are now done with the first instruction and move on

to the next in the batch. (9) We lookup the first operand Ā in
the Nametable, which is one we previously created and (10)
extract the corresponding AST. (11) We lookup and create C̄
as it is a new array and (12) stores it in the Nametable. (13)
we extact the multiply operator and create the composite AST
by combining the AST’s of Ā and C̄.

(15) we extract free operation for Ā, which we register in
the Nametable. (16) We do the same for the Discard operation.
The Sync is ignored as we execute everything in batch.

As the example shows many elements are in play to trans-
form the instruction batch to a naive forest of AST’s. It is
not the end of the creation phase as their are still base array
dependencies to handle as well as sub expression elimination to
perform. This ties into the orchestration phase as dependencies
may results in spilling AST’s into multiples.

3) Expression Orchestration: The orchestration of AST re-
quires knowledge of dependencies between the AST’s. In the
rather simple process of building the AST’s we do not check
for dependencies. As part if the orchestration phase the AST’s
are dependency validated and violatoins are resolved.

The resulting set of AST are a result of the following
reasons:

1) Different expressions used in the program.
2) Varying sizes of arrays used in the computations as a

result slicing.
3) Use of arrays across instruction batches result in a

unknown case of multiple use.
4) Base array dependency violation.
5) AST subexpressions.
The program is a list of batches of instructions. A batch is

thus a sublist og instructions. These batches is a result of the
interpreter which at the end of a batch required the evaluation
of the expressoin. This could be the result of a print statement
or other points in the Python code where evaluation is required.
With the Free and Discard intructions we know when the
interpreter no longer has a reference. In the case where the
free/discard operation for a array is not in the batch we treat
the array as having multiple dependencies in the following
batch.

The result of the Nametable creation is a set of distinct
AST’s with a internal relationship. The orchestration is highly
influences by the single core target as the AST are arranged in a
list structure. This is done by the order of the Nametable which
in effect is a sort of the AST by name. The AST root with the
smallest name is executed as the first, continuing upwards to
the AST with the highest name.

We know that the dependencies are acyclic, meaning that
dependencies between AST’s are only lower names ones.
There is no dependency violation as these have been resolved
by splitting AST’s into smaller ones. The set of AST’s can be
viewed as a graph of expression dependent on each other.

Analysis of this set prior to code generation could hold
possibilities to group AST’s into even larger kernels, further
exploiting the loop fusion benefits. Converting the dependency
information from a single AST, into a single unit would be
done by using the root nodes dependent-to and the AST’s

and the depend-on dependencies from all leaf-nodes, as the
dependencies of the AST.

Analysis of this dependency graph could be used to paral-
lelize independent AST on different CPU cores or to group
different sets of dependent AST’s into single larger kernels.
This is touches more in the future work section.

B. Code Generation

This section describes the transformation from AST’s to
autogenerated C code and computational kernels. To achieve
performance close to that of optimized C code the generated
code must be of equal quality. We will in this section cover
the information extraction and code generation.

We will take a look at the possibilities for further with
runtime generation of kernels.

1) Kernel Function: A kernel function is a C function
with a defined signature that perform a series of operations
corresponding to one or more instructions and is created from
a AST. When compiled it is defined as a computational kernel
or just kernel.

A kernel function consist of three logical elements:

• The Input
• Traversal method
• The computation

The input consists of all the distinct arrays and constants
used by in the AST.

The reason we pas array distinct is to reduce the number
of arrays used in the computation. The computation requires
computing the element-position in the matrix’s to retrive the
correct values. By removing the dublicate arrays and using the
same element-position computations multiple time we reduce
the number of calculations required.

For constants this is not an issue, and as they are used only
once. We pass these to the kernel as a array.

We know in which context the kernel functions are to be
used and thus we have no need for size parameters for the
input arrays. We use arrays as we must handle different size
inputs depending on the kernel and they must all have the same
function signature.

Kernel functions are named by the hash of the AST they
are based on. This create unique names based on the signature
of the AST and used both in naming and later caching. The
hash is based on a AST Signature, retrieved by performing a
depth-first search, left to right, where the opcode of the node
and leafs along with the Type is used to create the signature.
Extending the signiture with information on

The traversal method is how the arrays are travered as part of
the computataion. The traversal used in the kernels is pointer
incrementation where only additions are used to determin the
position of data to work in the matrices.

The computation part is the calculation perfomed on the
arrays. In the creation phase this is called the computestring
and is the computation of a series of values which produces a
result.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

45 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 7

2) Input extraction and equation creation: The AST’s are
traversed in a depth-first search left to right. This is the case
for all AST traversals in the JIT framework.

The recursive traversal method used in the creational phase
of the kernel, extracts the distinct arrays, all constant and
builds the compute string. The compute string is created by
combining one or two inputs with a operator. This is based
on the opcode of the AST nodes which combined with the
stringnames for the inputs are merged into the final composite
expression. The left-hand side of the created equation is re-
trieved from the target array of AST, defined in the Nametable.

The computational order from the instruction is kept in the
AST structure and no further actions are needed to ensure the
order in the kernel creation phase. To ensure the order in the
created equation parenthesis are added around each unary or
binary expression.

C. Execution and Kernel Cache
Caching is an important part of ensuring a reasonable

runtime for the JIT as we will show in section V-A1.
We perform caching to reduce the number of kernel we

create, in effect caching the JIT Optimizations for later use.
The compiled kernel is just a function pointer which must be

called with a specific number of arguments. We store the array
and constant array’s used as input with the compiled kernel
function in a execution kernel data structure. This structure
can hold both compiled kernels, instructions or userdefined
function instruction and is thus a wrapper around a element to
execute.

The caching model starts with a orchestrated set of AST’s.
• A hash of the AST is created and checked against the

cache.
• The AST are compiled into a computational kernel.
• The kernels inputs is filled based on a traversal of the

AST.
• The kernel is executed.
• The kernel is cached with the hash of the AST as key.

The kernels are directly compiled and executed in the order
they have been orchestrated in. This means that when the same
kernels are used multiple times only a single kernel is created.

The hash of the AST are done based on a left to right,
depth-first-search, which produces a vector of the structure.
This can be viewed as a flattening of the operators, types and
expression-types which forms the input for a cryptographic
hashing algorithm.

V. EVALUATION

In this section, we present performance evaluation of our
JIT implementation running on a AMD machine (See table I).
The framework testing is as follows:
• Each benchmark is the average of three run for each

configuration.
• The benchmark scripts are written in Python
• We use the system GCC compiler for both compilation

of the C/C++ implementations and the Computational
Kernels. All compilations use the -O2 as optimization
flag.

CPU AMD Opteron(TM) Processor 6274
Feq 2.20 GHz
Layout 2 CPU’s. 16 Cores per CPU
RAM 128 GB
Software Linux version 3.2.0-25-generic Python 2.7.3, GCC

version 4.6.3

TABLE I. BENCHMARK CONFIGUIRATION

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Iterations

S
p

e
e

d
u

p
p

 to

n
u

m
p

y

Numpy

JIT with cache

JIT no cache

Fig. 6. Effect of kernel cache when running the Jacobi benchmark. The
matrix input and output size is fixed at 4k by 4k elements.

• In the benchmarks we measure the computation time
only. The time to initialize the arrays are not included.

A. Jacobi

The Jacobi benchmark is a implementation which solves the
heat equation iteratively using the Jacobi Method. We use this
benchmark to show the effect of kernel caching, relation to
problem size and comparison with C/C++ implementations.

1) Caching : We evaluate the effect of kernel caching by
comparing the execution with and without caching enabled.
By disabling the cache all AST’s result in the creation and
compilation of a kernel.

The runtime graph depicted in figure 6, clearly shows the
overhead of creation and compilation of the kernels and the
how this overhead is armotized over time.

2) Problem Size: Figure 7 show the runtime of the first
iteration in the Jacobi benchmark. The graphs show that there
is a strong correlation between the benefit of the JIT methods
and the size of data. As the data grows the runtime follow in a
similar quadratic way and illustrates the significant difference
in growth between the JIT and the Numpy execution.

With problems larger then 2k-by-2k elements, JIT is faster
then Numpy even in the first iteration. This will for the most
part be the case for the Jacobi or programs with similar
computational complexity as this includes the creation of all
the computation kernels. The first iterations will be the most
expensive, as caching removed the overhead of kernel creation
in the later iterations.

3) C/C++ Comparison: We wish to bridge the gap between
low-level languages and and thus we compare the Numpy im-
plementation with a range of different C/C++ implementations
as the methods used in have great impact on the performance.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

46 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 8

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

2000 by 2000

Iterations

S
p

e
e

d
u

p
 to

 N
u

m
p

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

Data Size

R
u

n
tim

e
 in

 S
e

co
n

d
s

Numpy

JIT

Fig. 7. Effect of the problem size running the first iteration of the Jacobi
benchmark. The matrix input and output size grows from 1k by 1k to 1-kby
10k.

Depicted in Figure 8 is the speedup graph of the Jacobi
implementations. The C/C++ versions are:
• Naive: A naive implementation where indexing into the

matrices are done multiplying a column count with the
row length to get the index for an element.

• Tuned: Only pointers are used to index the matrices. For
each row iteration only pointer incrementation is need.
To change columns a second add is done.

• VTuned: Optimization of the Tuned, thus VeryTuned,
where columns are handled slightly more efficient.

• Boost: Use of the Boost 2D array data structure.
These four implementation can be seen as four different
approaches or stages of a C implementation based on a Matlab
or Numpy prototype. The Naive approach or using libraries
as Boost would be a common first step and for many the
only step. Using pointers incrementation instead of coordinate
calculations requires a thorough understanding of C and could
be seen as a next step. The Tuned implementation divides the
normal programmer from the specialist and the step further to
VTuned pushes the expertise needed even further.

We observe a surprising ordering where the C version are
not gathered in the top. The JIT implementation is significantly
faster then the Naive approach aswell as the implementation
using the Boost library. The Pointer based implementation are
grouped in top with very high execution speeds.

In figure 8 the higher speeds of the pointer based solution
is clearly visible. The fluctuations of Tuned and VTuned is a
result of normal noise, as the difference between them are in
the +/-0.2 second range.

B. Black Scholes

The Black Scholes method is used to determine the price
of European options. The algorithm is run over a time series
which is the represent the iterations done.

The input data is a single dimensional vector and the
operations performed are highly dependent on scalars. The
C version is implemented in a double for loop summing the
intermediate results together.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Iterations

S
p

e
e

d
u

p
 to

 N
u

m
p

y

Numpy

JIT

C++ Naive

C++ Tuned

C++VTuned

C++ Boost

Fig. 8. Comparison of C/C++ vs NumPy implementations of the Jacobi
benchmark. The matrix input and output size is fixed at 4k by 4k elements.

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8

Iterations

S
p

e
d

u
p

 to
 N

u
m

p
y

Numpy

JIT
C++

Fig. 9. Comparison of C/C++ vs NumPy implementations of the Black
Scholes benchmark using a 200k elements data set.

The execution consists of 200K elements and uses from 10
to 100 iterations. Figure 9 shows the speedup compared to
NumPy. Comparing the result of the NumPy implementation
that uses JIT with the C implementation, we observe that the
C execution is much faster at few iterations. However, at 100
iterations the C implementaion is only slightly faster.

C. K-Nearest Neighbor

The K-Nearest Neighbor is an algorithm which find the
closest K closest neighbors to a given point. This means
that the distance between all points must be calculated to
determine which are the closes. This is learning algorithm is
often used to determine classification of elements in a dataset,
which can consists of multi-dimensional data elements. The
implementation is made in Numpy without any loops, resulting
4 kernels of which 2 is userdefined functions and the remaining
is computational kernels. The test is run on a varying number
of elements K ranging from 10 to 100. Each elements can be
seen as a point in a 50000 dimensional space.

Figure 10 shows the same trend of increasing speedup over
iterations. At 140 iterations we see a speedup greater than 7.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

47 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 9

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

K

S
p

e
e

d
u

p
 to

 N
u

m
p

y

Numpy

JIT

Fig. 10. Comparison of two NumPy executions – one using the regular
NumPy implementation and one using our JIT backend – that runs the KNN
benchmark. The data set consist of 50k elements.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iterations

S
p

e
e

d
u

p
 to

 N
u

m
p

y

Numpy

JIT

Fig. 11. Comparison of two NumPy executions – one using the regular
NumPy implementation and one using our JIT backend – that runs the N-
Body benchmark. The data set consist of 100 bodies.

D. N-Body
The N-Body test is a simulation of elements and how the

gravitational forces effects the movement of them. We used a
naive method where the effect of all elements are applied to
all elements. The simulation is run with 1000 elements for 100
iterations, where each iteration is a timestep in the algorithm.
As the algorithm contains no natural batching a manual flush
have been inserted in the Numpy to break the instruction list
into batches.

In figure 11 we show the results of running the N-Body
benchmark. We see the same trends again, where the JIT
methods performance increase over time as the initial overhead
is amortized along with a small difference between the JIT
methods.

E. Summery
Our benchmark results show a solid speedup across all test.

This a result of both loop-fusion and temporary array removal,
as well as the implemented kernel cache. This combination
shows significant improvement.

We clearly see that the number of iterations have a signif-
icant impact on the speedup. Performance decreases are seen
in the first iteration of all test and shows that a large part of
the base speedup is a result of the cache. With this we see
the overhead of the initial kernel creations amortized over the
iterations.

We see a correlation between the problem size and complex-
ity, which both effect the potential speedup. As the problem
size, complexity or both, rises the speedup to compared
to normal Numpy follows. This is reasonable as the effect
temporary arrays removal and loop-fusion has a per-element
effect, where the complexity of the program is reflected in
number of arrays fused together in the kernels. A large and
complex problem will get the largest benefit from the JIT
Framework.

We are very close or better the naive C implementation,
but as showed in the Jacobi examples there is still room for
improvements. We do not expect to reach the computation
times of optimized C code due the overhead of Numpy and the
JIT framework. Comparing with the naive and/or Boost based
C implementation shows that we clearly are within range of
these.

VI. FUTURE WORK

In this section we take a look into the future of the JIT
framework. This includes interesting areas for further investi-
gation as well as possible optimizations. This section follows
the phases of the Framework as there are paths to investigate
in most of the JIT stages.

A. AST
The AST’s are now focused on the mathematical equation

and represent these very well but there are other elements
related to the vector operations which could be represented
in the same structure. In many other bytecode formats control
operations are part of the representation. Operations for Re-
duction and Broadcasting could be added, allowing for AST’s
to include different shapes and provide more information about
their use.

Introduce optimizations based on the AST’s prior to kernel
creation. This could be dead code elimination or redefinitions
of the equations which could lead to reduced computational
complexity.

B. Code Generation
In the code generation phase there is a range of areas to

investigate further. The implementation presented has focused
on building the framework and investigating many areas of the
JIT kernel creation. It clear that optimizations to the kernel
code and the method kernels are created is a significant part
of nearing the runtime of optimized C.

The following optimization can be applied to the kernel to
achieve a increased performance on the single core architec-
ture:
• Loop unrolling: Perform multiple operation in the most

inner loop to reduce the number of index calculations
needed in the traversal.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

48 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 10

• Use machine specific information: Utilize available in-
formation such as cache size or architecture in the
creation of the code. This could be to use special
libraries for certain operation, to take better advantage
of the cache or use special compiler flags or specific
compilers.

The first optimization are straightforward to implement in
the existing framework by extending code generation. Taking
advantage of architecture specifics will requires substantially
more work, as the optimization will be build on more advanced
technologies. This could be Multicore, NUMA, cache-tileing
or SSE instructions.

Creating larger kernels based on multiple AST. Combin-
ing multiple AST’s into a single kernel will have multiple
advantages. By grouping AST’s which output is used in
multiple other AST’s together aditional tempoary arrays can
be removed. Using traversal calculations on multiple unrelated
AST’s in parallel will reduce reduce the time spend on index
calculations taking further advantage of loop-fusion.

This would also be the case for reduction as these could
become part of the execution loop. In case of a reduction
it could be directly applied to the result of the computation
eliminating the need to store the result in a temp array, only
to perform a reduce afterwards.

The use of LLVM and C-Lang to compile the kernel function
should be investigated. This would enable the kernel creation to
be done in memory by using the available library. Apposed to
creating C code and compiling this, it could be more beneficial
to create the intermediate language of LLVM and use their
compiler to generator executable code. This could bring down
the overhead from the compilation making the approach of JIT
compilation more attractive for programs which is translated
into many distinct kernels.

VII. CONCLUSION

We have implemented a JIT framework for Python/NumPy
that allow NumPy instructions to be expressed in an abstract
form using Abstract Syntax Tree’s. This has allowed for a
set of optimizations to the computations of Numpy vector
operations and enables further optimizations.

Our approach of transforming the NumPy instructions into
AST’s is well suited to compose bytecode instructions into
composite expressions. We show that this composition results
in loop-fusion and temporary array removal when transformed
into computational kernels.

The process of creating ASTs is a non-trivial task because
arrays may share the same underlying data structure and de-
pendencies. By performing dependency analysis and breaking
initial AST’s into smaller trees, we transform the instruction
batch into a forest of connected tree, which express the syntax
of the batch much cleaner than a single instruction list.

We show that the use of a kernel cache provides a significant
increase in performance in real world tests. This effect is
largest for small problem sizes, where the overhead of kernel
creation is expensive, but at larger problem sizes this become
insignificant as shown in fig 8.

The combined effect of temporal array removal, loop-fusion
and caching show significant speedups. Our benchmark of

Jacobi and N-Body present speedups compared to Numpy of
7.51 and 4.72 respectively. Comparing to C version we observe
that we are close to or achieve better performance then naive
implementations with or without the Boost library, but we are
still orders of magnitude slower than optimized C.

We achieve these result with a combined set of unoptimized
and in many cases naive implementations. The JIT framework
allow many more interesting optimizations that have yet to
be applied. In the future work section, we outlined a set of
optimization that bridge the performance even closer to an
optimized C implementation.

This research has been partially supported by the Danish
Strategic Research Council, Program Committee for Strategic
Growth Technologies, for the research center ’HIPERFIT:
Functional High Performance Computing for Financial Infor-
mation Technology’ (hiperfit.dk) under contract number 10-
092299.

REFERENCES

[1] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and B. Vinter,
“Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster,” in
Python for High Performance and Scientific Computing (PyHPC 2013),
2013.

[2] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[3] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time
code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 – 174, 2012.

[4] “Gnu c copiler.”
[5] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[6] F. Bellard, “Tcc: Tiny c compiler,” URL: http://fabrice. bellard. free.
fr/tcc, 2003.

[7] http://openbenchmarking.org/result/1204215 SU-LLVMCLANG23,
“Llvm clang 3.1 gcc 4.7 intel core i7 benchmarks,” 2012.

[8] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Efficiently
computing static single assignment form and the control dependence
graph,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 13, no. 4, pp. 451–490, 1991.

Johannes Lund Master in Computer Science from
The Department of Computer Science, University
of Copenhagen (DIKU). The main focus of the
Master’s has been in Distributed Systems and High-
Performance Computing. The Master theses inves-
tigated methods to improve performance for matrix
operation in Bohrium on a single CPU core.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

49 © 2013 GSTF

GSTF JOURNAL ON COMPUTING 11

Mads R. B. Kristensen PostDoc at the Niels Bohr
Institute, University of Copenhagen. His primary
research areas are High Performance Computing and
PGAS languages/libraries. He has developed algo-
rithms and frameworks targeting supercomputers,
including Cray XE6 and Blue Gene/P.

Simon A. F. Lund PhD student at the Niels Bohr
Institute, at the University of Copenhagen. The title
for his PhD project is “A High-Performance Backend
for Computational Finance on Next-Generation Pro-
cessing Units” which evolves around mapping high-
level language constructs to hardware, with a focus
on efficient utilization of SIMD-units, and Multi-
Core architectures.

Brian Vinter Professor at the Niels Bohr Institute,
University of Copenhagen. His primary research
areas are Grid Computing, Supercomputing, and
Many-core architectures. He has done research in the
field of High Performance Computing since 1994.
Current research includes methods for seamlessly
utilization of parallelism in scientific application.

GSTF Journal on Computing (JoC) Vol.3 No.3, December 2013

50 © 2013 GSTF

