
 

  
Abstract[- The assumptions used to develop operational analysis 
computer performance measures, such as number of jobs at a 
device or response times, are stated in terms of the data itself, 
rather than the underlying system which produces the data. In 
spite of claims of validity and as an aid in introducing queueing 
theory in teaching, little has been written about operational 
analysis in the past ten years. Accuracy of operational analysis 
performance measures depend on data behavior assumptions 
which can be validated with data based error measures. 
Increased soundness of the operational analysis approach may be 
obtained by determining the limits of assumption errors as the 
time period of observation increases. Part I of this paper is a 
review of operational analysis and addresses some of the previous 
concerns with its approach. Part II develops further 
understanding of operational analysis assumption errors by 
examining their limits. Limits are found for the assumption 
errors of job flow balance, homogeneous arrivals and 
homogenous services. While the job flow balance assumption 
error measure is shown to approach zero over time, the 
homogeneity assumption error measures, in general, do not. 
 

Index Terms— assumptions, error measures, limiting values, 
operational analysis  
 

A. OPERATIONAL ANALYSIS REVISITED 

I. INTRODUCTION OF OPERATIONAL ANALYSIS  
Operation analysis (OA) was introduced as an aid in computer 
system performance analysis [1-4]. OA has been shown to 
produce relations which are closely related to those in 
traditional queueing theory and is a complementary approach 
that has been used in many networks of servers performance 
analyzes and in computer programs [5-11]. In OA system, 
outputs are observed and basic performance measures are 
obtained under two rules: 

• All assumptions made in the analysis of real system 
performance should be subject to direct verification,  

• All variables appearing in the performance equations of a 
real system should be calculable by direct measurement. 

These rules mean that no assumptions are made that can’t 
be tested for their validity over a given time period of 
observation. 

In traditional stochastic models for a network of queues, the 
system is assumed to move through its states in a Markov 
process. Successive service times are independent, successive 
transitions between servers are independent, service 
distributions are exponential, and the system reaches a steady  
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state. Tests since the 1960s have shown a good fit between 
these models and the throughput and response times of real 
systems.  

Queueing network models can be unattractive because of 
the high computation overhead needed to calculate 
performance quantities. Computation has been simplified 
starting with the equivalence property: “Assume that a service 
facility with s servers and an infinite queue has a Poisson input 
with parameter λ and the same exponential service-time 
distribution with parameter µ for each server (the M/M/S 
model), where sµ>λ. Then the steady-state output of this 
service facility is also a Poisson process with parameter λ” 
[12]. Jackson Networks can use product form solutions, P{(N1, 
N2,…, Nm)=(n1, n2, …, nm)}=Pn1· Pn2· …· Pnm. These have been 
extended by the BCMP theorem [13]. The product form is 
simpler to calculate then solving the balance equation, but 
evaluations are still difficult for all but the smallest systems. 
Further developments have improved system performance 
evaluation and capacity planning. 

“While performance analysts repeatedly found users 
interested in their queueing models, they constantly faced 
skepticism because no one trusted the models’ assumptions” 
[12]. The paradox is that real world computing systems 
consistently violated all the model assumptions, but the 
models agreed closely with observed throughput and response 
times. This had an impact on Jeffery Buzen’s company, BGS 
Systems, which built computer industry performance 
prediction and capacity planning tools. He found that business 
executives were reluctant to buy products whose modeling 
assumptions are violated, even when the products were 
supported by empirical results. As a consequence, Jeffery 
Buzen thought of another approach. He developed 
“Operational Analysis” in 1976 [1, 14], which relies on 
fundamental laws about utilization, throughput, and response 
time which are always true because of the way they were 
defined for collected data. “Analysts substitute measured, 
operational values of parameters for the model’s stochastic 
parameters” [12]. Buzen and Denning built a queueing theory 
that starts from the operational laws and avoids making any 
Markovian or equilibrium assumptions. 

For a system of queues, n= (n1,…,nK) are vectors of the 
number of jobs at each server. In stochastic modeling they 
assign an equilibrium probability p(n) to each state. In OA, 
p(n) is interpreted as the proportion of time that the system 
spends in state n. OA re-formulates the balance equations 
among the equilibrium p(n) into balances of state transitions, 
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where entries equal exits, which are observable and can be 
measured [12]. 

Three assumptions, job-flow balance (entries equal exits), 
one-step behavior (each state change is caused by exactly one 
job completion), and homogeneity (the rate of transitions 
between two states is identical to the rate of job-flow between 
the servers causing the transitions), allowed the conclusion 
that the state occupancies obey the same product form 
structure as had been found by Jackson, Gordon, and Newell 
with Markovian assumptions. The operational characteristics 
of the three assumptions allow us to calculate errors in these 
assumptions over finite observation periods [15]. 

II. REACTION TO OPERATIONAL ANALYSIS 
There was a decided mixed reaction to OA, attracting both 

praise and criticism. Summarized in 1979 by Ken Sevcik [12, 
16] 

Praise- 
 “OA makes Stochastic Modeling (SM) obsolete.”  
 “Stochastic Modeling is a security blanket used to 

smother intuition by those who lack it.” 
Criticism-  

 “OA offers nothing but tautologies.”  
 “OA is a smokescreen for trivially deriving the obvious 

from the known.” 
The main criticism was of the homogeneity assumption. 

However, Sevcik was able to give several examples of 
deterministic systems that are flow-balanced, one-step, and 
homogeneous, but obviously not Markovian [16]. These 
examples satisfied product form solutions. According to 
Denning that was a turning point in the acceptance of OA.  

OA invokes a different level of abstraction from SM: the two 
systems have the same symbols but interpret them differently. 
SM refers to probabilistic ensembles of system behaviors; OA 
refers to one behavior at a time. OA is more obviously relevant 
to real systems than SM. OA generate confidence in applying 
models by offering assumptions that are understandable and 
testable. OA and SM are complementary approaches. OA offers 
much that is new; SM isn’t obsolete ([16] quoted in [12]). 

A section of Peter Denning’s Wikipedia page states: 
In the middle 1970s he [Denning] collaborated with Jeffery 

Buzen on operational analysis, extending Buzen's basic 
operational laws to deal with all queueing networks. The 
operational framework explained why computer performance 
models work so well, even though violating the traditional 
stochastic Markovian assumptions. It has become the preferred 
method for teaching performance prediction in computing 
courses. 
In 1981 Denning was present at a debate between Jeffery 

Buzen and his critics. Denning wrote an allegorical piece 
about the debate and concluded that neither side could gather 
any argument that would change minds and that the two sides 
may never come to an accord. Denning stated that “the OA 
and SM believers did have one major point of agreement: 
most everyone found it much easier to teach queueing 
networks to beginning students when starting with the 
operational interpretation” [12]. This is the experience of 
Denning, Sevcik, and Buzen when teaching queueing theory. 

Operational analysis gives understanding when teaching about 
queueing networks. It is the approach taken in a popular book 
by Lazowski, Zahojan, Graham, and Sevcik, Quantitative 
System Performance [17]. 

Including the 2006 paper by Denning, there have been only 
a few papers since 1983 with OA developments. The 1986 
25th IEEE Conference on Decision and Control included 
“Operational analysis of multiclass queueing networks,” 
which extends the previous work on single class networks to 
multiclass networks [18]. With “Measuring Errors in 
Operational Analysis Assumptions” [15] in IEEE 
Transactions on Software Engineering, assumption error terms 
are defined and correction terms developed so that 
performance measures can be adjusted to give exact values for 
a set of data no matter how much the assumptions used in 
deriving the performance measure relations are violated. The 
use of these correction terms is illustrated in “Using 
Operational Analysis in Simulation: A Queueing Network 
Example,” in the Journal of the Operational Research Society 
[19]. In 1992, Yves Dallery and Cao published “Operational 
analysis of stochastic closed queueing networks” in 
Performance Evaluation which extended OA in order to 
analyze the asymptotic behavior of stochastic closed queueing 
networks. Also shown in that paper, is “that the aggregate 
network satisfies the operational assumptions yielding the 
product-form solution” [10]. In addition to queueing networks, 
suggested applications for the OA approach include 
telecommunications [20], E-commerce [19, 20], flexible 
manufacturing systems [23], and Petri nets [24-26]. 

  One question arises: If Operational Analysis is an aid 
to teaching queueing theory, has been shown to be a valid 
approach to evaluating networks, and has seen application in 
several areas of study, then why has there been little 
acceptance, additional applications, and almost no 
development in over ten years? One reason may be the 
uncertainty over how large the errors in OA assumptions may 
be. That is, once performance measures are defined using OA 
principles, how reliable are the results given that the 
assumptions under which the measures are derived are 
approximations. For any particular period of time the errors 
can be measured, but different periods of observed time data 
will probably lead to different errors quantities.  

 This study examines the OA assumption error measures 
previously defined [15] over extended time horizons in order 
to see if assumption errors decrease or stabilize, making the 
OA performance measure relationships more applicable. 

 
B. UNDERSTANDING ASSUMPTION ERROR LIMITS 

III. EXPLANATION OF OPERATIONAL ANALYSIS ERROR 
MEASURES  

The types of systems considered in this paper are networks 
of devices.  These devices are normally combinations of a 
single, FIFO queue with infinite capacity and a single server.  
The number of jobs (customers, items, etc.) both in queue and 
in service at a device defines the state of the device.  There is 
only one class of job.  Performance measures (PMs) for these 
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devices may be determined by keeping track of the 
accumulated operational values of the number of arrivals at 
each device, the number of completions, and the time spent at 
each state.  These quantities are denoted Ai(n), Ci(n), and Ti(n) 
respectively, where i indicates the device and n the state of the 
device.  These quantities summed over all visited states, 
n=mi,...,Ni, are denoted Ai, Ci, and Ti respectively [19].  mi is 
the minimum visited state and Ni is the maximum visited state.   

 PMs may be determined directly or, often, indirectly.  For 
example, the average number of jobs at device i for a period 
[0,T] is directly calculated by 

 

T
(n)nT=Q i

N

=1n
i

i

∑   (1) 

or indirectly by 
 

))N(p1)+N(+(1
)N(p-U-1

U=n=Q iii
iii

iAS
ii  (2) 

where: Ni is the maximum number of jobs seen at the device 
at any time,  

Ui is utilization, (1-Ti(0))/T, and 
pi(Ni) is the proportion of time spent at the maximum 

state, Ti(Ni)/T. 
 Equation (2) is an Operational Analysis (OA) 

relationship derived under certain assumptions.  These 
assumptions are indicated by the superscript AS in the 
equation and are: 

One step behavior- only one job may arrive or leave at a 
time,  

Job flow balance- the number of arrivals and number of 
completions in period [0,T] for each state are the same, 

Arrival homogeneity- Ai(n) are equal for n=mi,...,Ni-1, and 
Service homogeneity- Si(n), the average time between 

completions, are equal for n=mi+1,...,Ni. 
If any of these assumptions are violated, and they usually 

will be over the finite time period of observation, then (2) 
gives an approximate value for Qi . Because of the method of 
calculating PMs, the devices in the network may be thought of 
as "black boxes." That is, they are not necessarily single 
queue, single server combinations, but any device or 
combination of devices such that the data associated with 
these devices behaves according to the assumptions given. 
Notice that these OA assumptions say nothing about 
underlying system characteristics. They are characteristics of 
data only. The system which produces the data may be 
stochastic, but, except as noted below, no assumptions are 
made about the characteristics of the underlying system. 

 The one step behavior assumption can be known to hold 
by the structure of a model, particularly for simulation models. 
The degree to which the other three assumptions hold can be 
determined by error measures. These measures are used to 
find correction terms which, when applied to quantities 
derived with relations developed under the OA assumptions, 
will give exact PMs for the period of interest [15]. 

 One problem with the correction terms is that to 
determine them exactly requires an amount of information 
which is equal to the amount needed to determine the PMs 
directly. However, the correction terms may still be useful. If a 
number of PMs are to be found, it may be more efficient to 
calculate the error measures for the limited number of 
assumptions needed (usually two or three) than to calculate 
each PM directly. This is because the OA relationships are 
often simple equations which involve knowledge of just a few 
terms and are, therefore, attractive to use. In some situations, it 
may not be possible to directly measure a performance 
characteristic without affecting the system behavior. Examples 
of OA relationships are given in Table I (based on [27]). 
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Table I. Operational Analysis Quantities and Relationships 

Quantities Relationships 

/TT(n) = p(n) = state n time proportion  

T(n)/A(n) = Y(n) = state n arrival rate  

A/T = Y 0 = overall arrival rate p(n)Y(n) = Y
1-N

=0n
0 ∑

 

/AA(n) = (n)pA = state n arrival proportion [ ]Y(n)p(n) = (n)pA  

T(N))-(TA/ = Y = restricted arrival rate p(N))-(1/Y = Y 0  

C(n)/T(n) = S(n) = state n average inter-completion interval 1)-Y(n
1)-p(n/p(n) = S(n)

 
(assuming job flow balance) 

p(0)-1 = U =utilization  

nT(n)
T
1 = Q

N

=1n
∑ = average queue length 

[ ]1)p(N)+(N-1
p(N)-U-1

U = Q
 

(assuming arrival and service 
homogeneity) 

T(N))-(T/nT(n) = Q
1-N

=1n
A ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑ = average queue length seen by an 

arriving job 
P(N)-1
Np(N)-Q = QA

 
 

C(n)/T(0))-(T = S
N

1=n
∑ =average inter-completion time  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑∑ C(n)/nT(n) = R
N

1=n

N

1=n

=average response time 1)+Q S(= R A  
(assuming service homogeneity) 

C(n)/T = X
N

=1n
∑ =average completion time S

U = 
R
Q = X

 
 

 
Correction terms may be estimated by various methods. 

PMs calculated by OA equations are point estimates 
determined for a specific period of time. During another time 
period PM values may be quite different, as would be the 
assumption error measures and subsequent correction terms. 
Even though correction terms may give an exact value for a 
PM, they apply only to data of a particular period of time and 
are, therefore, estimates of the mean correction term value 
needed for data which are generated by underlying system 
behavior characteristics. 

 Since the correction terms are functions of error 
measures, a logical question is: what are the expected values 
of the error measures if the observation period is extended 
indefinitely? The answer to this question will give us an idea 
of the importance of the assumptions on which the OA 
relations are based. 

 For the derivations which follow it is necessary to 
distinguish between two types of networks of devices: open 
and closed. The open network is one to which jobs arrive from 
outside the system modeled by the network, traverse through 
the network and eventually leave. In this type of system, there 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

87 © 2013 GSTF



 

are not a fixed number of jobs in the network. In a closed 
network, there are a fixed number of jobs that circulate 
through the system, never increasing or decreasing the number 
of jobs that the network is handling. 

 In order to perform some of the algebraic manipulations 
which follow, it is necessary to make some assumptions about 
the behavior of the devices for which the OA assumption error 
measures are calculated. These assumptions fall into two 
categories: those that are used by OA to derive the error 
measures and those that are used to study these error measures 
over time. We will study behavior at a single representative 
device in the network; so, for simplicity, the device subscript i 
used above may be dropped. 

OA Assumptions: 
• The states of a device are n=0, 1, 2... N where n = the 
number of jobs at the device at time t, n(t)=n, and N is the 
maximum number of jobs ever seen at the device. 
• The total number of arrivals, A, and the total number of 
completions, C, are both > 0. 
• One-step behavior holds. 

Time Assumptions: 
• The limits exist for all functions used. 
• The process is ergodic. 

 If the network is closed, N is known and fixed.  If the 
network is open, N is not fixed and may increase over time. 

 All of the error measures can be computed as functions of 
time, T.  Thus, for example, the flow balance assumption error 
measure of device i for a particular state (defined in the next 
section) can be denoted as 

T).(n,e iF ,  
 For simplicity, and to avoid extra notation, the T will not be 

used in the error measures that follow, but it is understood that 
all error measures are functions of time. 

 The error measures associated with the three 
assumptions: job flow balance, arrival homogeneity, and 
service homogeneity, will be examined in order below. In each 
case, two error measures are defined, one which is state 
dependent and one which can be thought of as an overall 
measure [15]. The overall measure of a particular assumption 
is one which includes every state error measure of the device. 
The error measures each have the characteristic that when the 
assumption holds, its value is 0, and when the assumption 
does not hold, its value is a measure of the degree to which the 
assumption is violated. The only exceptions to this are the 
overall measures for arrival and service homogeneity which, 
in certain cases, will be 0 even when the individual state 
values for error are not.  In that case, these measures can be 
thought of as weak error measures. They are used because 
they have useful properties [19]. 

Expectations of error measures and other quantities will be 
taken for specific time periods of observation. These 
expectations are meaningful in the operational analysis context 
considered here since the system which produces the data is 
stable in distribution 
 

IV. FLOW BALANCE ASSUMPTION 
 
We can define state dependent error associated with the flow 
balance assumption as 

(n))p-(n)p1)(+(n = (n)e CAF  
where: pA(n) = A(n)/A  
  = The proportion of arrivers that find n jobs at 

the device, 
 pC(n) = C(n+1)/C 
  = the proportion of completers that leave n 

jobs at the device, 
 A = A(0)+A(1)+...+A(N-1), 
 C = C(1)+C(2)+...+C(N). 
The overall flow balance error is 

.)(
1

0
∑

−

=

=
N

n
FF nee  

Proposition 1: For each device in an open or closed network 
.0)]([lim =

∞→
neE FT

 

 Proof: See Appendix. 
 The proof of Proposition 1 implies that  

)(lim)(lim npnp CTAT ∞→∞→
=    1,,1,0 −= Nn L  

by the definition of job flow balance. Given Proposition 1 it is 
easy to show 
Proposition 2: For a device in an open or closed network 

.0][lim =
∞→

FT
eE  

 Proof: See Appendix. 
 Using similar procedures we can show that the 
corresponding variances also go to 0. 
Proposition 3: For a device in an open or closed network 

. 0 =(n)] V[eFT ∞→
lim  

 Proof: See Appendix. 
 
Proposition 4: For a device in an open or closed network 

. 0 =] V[eFT ∞→
lim  

 Proof: See Appendix. 
 Propositions 1 through 4 mean that for time series of 
sufficient length, any error in the values of measures of perfor-
mance calculated using relationships that rely on the 
assumption of job flow balance are going to be small. This 
result is not surprising and confirms our intuition that for a 
system in steady state there cannot be a consistent number of 
arrivals over completions or completions over arrivals. 
 Most OA relations rely on one or both of the homogeneity 
assumptions along with the job flow balance assumption. We 
need to know if the behavior of these assumption error 
measures also approaches 0. 

V. ARRIVAL HOMOGENEITY 
If arrivals are homogeneous, then the number of arrivals for a 
period of observations will be the same at each state of the 
device, i.e., 

A(m)=A(m+1)=…=A(N-1) , 
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Where m is the minimum state observed during the period of 
observation. 
For each state we can define an error measure to be  
 

. 1 - 
T(n)

T(n)-T(n)p = (n)e AA ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (3) 

The weak overall error measure is 
 

∑
−

=

∗

−
=

1

1 )(
)()(

N

n
AA NTT

nnTnee  

. 

(4) 

The * is to distinguish this weak error measure from a stronger 
one which is equal to 0 only when the assumption holds for 
each state n. It has been shown that the stronger assumption is 
unnecessary [15]. 
 Taking the limit as T ∞ of the expected value of (3), using 
the definition pA(n)=A(n)/A, then, by the bounded 
convergence theorem [28], taking the expectations outside the 
limits, and manipulating yields 

. 1 - 
A

T(N)
T(n)
A(n)  E-

A
T

T(n)
A(n)  E =

(n)] E[e

TTTT

AT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∞→∞→∞→∞→

∞→

limlimlimlim

lim

 

Now, since the process is ergodic 

 ,(w.p.1)  (n) = 
T(n)
A(n)

T
λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞→

lim
 

which is the arrival rate of state n. Also, 

λ0T

1 = 
A
T

⎟
⎠

⎞
⎜
⎝

⎛
∞→

lim
 

where λ0 is the unrestricted overall arrival rate. Then, 
 

. (w.p.1)  1 - 
A

T(N)  (n)E - (n) =(n)] E[e
T0

AT
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∞→∞→

limlim λ
λ

λ  (5) 

  Let 

.  = 
A

T(N) E
N

T λ
1lim ⎟

⎠
⎞

⎜
⎝
⎛

∞→
 

Now we can state 
Proposition 5: For a device in a closed network 
 

. (w.p.1)  1 - -(n) =(n)] E[e
N

AT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→∞ λλ

λ 11lim
0

  

 In an open network the results simplify. Since the time 
between occurrences of a new N becomes greater as T→∞, 
then the times when T(N) takes on new values are less 
frequent. In general, since A is increasing at a steady rate to ∞ 
as T→∞ then 

. 0 = 
A

T(N)
T ∞→
lim

 
This result is proved in the Lemma which follows. 
Reintroducing time, t, in notation for clarity in the proof, 
t(n(T)) will be the time spent in state n during a period of 
observation T. Also, N(T)=max{n(t): 0≤t≤T}, i.e. N(T) is the 
maximum state during the time period up to T. A(T) is the 
number of arrivals to the device during the time period T and λ 
is the average arrival rate. 

Lemma: Given a device in a stable system 

0
)(
))((lim =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞→ TA

TNt
T

. 
 Proof: Since A(T)/T λ it is sufficient to show that 

0))((lim =⎟
⎠
⎞

⎜
⎝
⎛

∞→ T
TNt

T
 . 

Let p(j) be the proportion of the observation time period spent 
in state j. Then, 

,1)(
0

=∑
∞

=j
jp  

which means that 

.0)(lim∑
∞

=
∞→

=
iji

jp  

This implies that i∃>∀ 0ε such that 
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T
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T
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 . 
Let ∞=
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)(lim TN

T
, since this is the open system case. This 

means that )(iti ∃∀ such that )(itT > implies iTN >)( . 
Fix i, let )(itT > , then iTN >)( . ))(( TNt is the time 
spent when the maximum number at the device occurred. 

Now, ∑
∞

=

≤
ij

jTTNt )())(( . Dividing by T, and taking limits 

yields 

i
T

jT
T

TNt
ijTT

∀= ∑
∞

=
∞→∞→

)(lim))((lim
 , 

In particular, this is true for the relation above. Then 
 

ε≤
∞→ T

TNt
T

))((lim  .      

Using this result in Equation (5) we have 
Proposition 6: For a device in an open network 
 

. (w.p.1)  1 - (n) =(n)] E[e
0

AT λ
λ

→∞
lim   

 Substituting (3) for )(neA into (4) gives 
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Taking the limit of the expected value 
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Let Q =] nE[ AAT ∞→

lim  be the mean number of jobs at a device 

seen by an arriver and 
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be the mean state of the device excluding the maximum state 
N. Then we have 
Proposition 7: For a device in a closed network 

. L - Q =] E[e NAAT

∗

∞→
lim   

 Examining (7) for an open network we see that T(N)/T→0 
as T→∞.  Also, 

. Np(N) - np(n)  E = np(n)  E = 
T

T(n)n  E
N

1=n

1-N

1=n

1-N

1=n ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑∑∑  

Then 
[ ] Q = NNpnE

T
)(lim −

∞→  
where Q is the mean number of jobs at the device. Therefore, 
Proposition 8: For a device in an open network 

 [ ] . Q - Q = eE AAT

∗

∞→
lim   

 The two quantities, QA and LN, are not necessarily the same. 
Take, for example, the sequence in Figure 1.  In this example, 

2
1 = 

2k
1k(1) = QA ⎟

⎠
⎞

⎜
⎝
⎛

 

3
2 = 

1)k-(4
(1)(2k) = LN

 
where k is an arbitrary number of cycles. In this case, 

. 
6
1 - = 

3
2 - 

2
1 =] E[eAT

∗

∞→
lim

 
 

                    
                  

n 

2 
                  

                

1 
  

                 
   

  1 2 3 4 5 6 7 8 …  

Time   

Figure 1. Number, n, at a device over time. 

 By some algebraic manipulation we can find that the 
average for any behavior sequence excluding the maximum 
state, Nn , is related to average queue length, n , by 

nT(n)
T(N)-T
1 = n

1-N

=1n
N ∑  

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
∑ T

NT(N) -n
T(N)-T
T = NT(N)-NT(N)+nT(n)

T
1

T(N)-T
T =

1-N

1=n

 

 
. 

p(N)-1
Np(N) - n =  (8) 

 Equation (6) can be used to give a relationship between the 
outside observer's average queue length and arriver's average 

queue length when arrivals are homogeneous. From (6) and 
homogeneous arrivals, 

. nT(n)
T(N)-T
1 - n = 0 = e

1-N

=1n
AA ∑∗

 
Solving for An  yields 

nT(n)
T(N)-T
1 = n

1-N

=1n
A ∑

 
which is the same as 

( )Np(N) - n
p(N)-1
1 = nA

 . 
Therefore, 
 ( ) Np(N) + p(N)-1n =n A  

. 
(9) 

 Notice that if p(N) is very small, then from (8) n nN ≈  and 

from (9) An  n ≈ . Also, note that solving (8) for n and 

equating with (9) yields AN n = n  if the weak homogeneous 

arrival condition, 0=∗
Ae , holds. 

VI. SERVICE HOMOGENEITY  
 
The homogeneous service error measure [15] is 
 

. 1 - 
T(0)-T

T(n)
1)-(np

1 = (n)e
C

S ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (10) 

Taking
∞→T

lim of the expected value of each side, substituting the 

definition 

C
C(n) = 1)-(npC

 
into the right hand side and manipulating yields 

. 1 - 
T(0)/T-1
1

T
C

C(n)
T(n)  E =(n)] E[e

TTTST ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∞→∞→∞→∞→

limlimlimlim  

C(n)/T(n) is a service rate, therefore the first limit term on the 
right is the mean time between completions while in state n, 
S(n). The second limit term is equal to 1/So, where So is the 
unrestricted overall mean time between completions. The last 
limit term is the reciprocal of the proportion of busy time for 
the device, i.e., the reciprocal of the utilization. Substituting 
these descriptions yields 

. 1 - 
US

S(n)  E = 

1 - E =

(n)] E[e

oT

T

ST

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

∞→

∞→

∞→

lim

tion)s)(utilizacompletionbetween      time(overall
n)  statein      whilescompletionbetween    (timelim

lim

 

Let 

⎥
⎦

⎤
⎢
⎣

⎡
∞→ US

S(n)  E = U)G(n,
o

T
lim

 
so that we have 
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Proposition 9: In an open or closed network 
 . 1 - U)G(n, =(n)] E[eST ∞→

lim   
 The weak homogeneous service error measure definition 
[15] is 

. 
N

n
SCS nennp = e ∑

=

∗ −
1

)()1(
 

Substituting the definition of eS(n) given in (10) and 
manipulating gives 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑∗ 1)-(np - 
T(0)-T

T(n)n =e C

N

1=n
S  (11) 

or 

. 1)-(np - 
p(0)-1

p(n)n =e C

N

=1n
S

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑∗

 
Taking

∞→T
lim of the expected values of (11) we can derive 

. N

n
C

N

1=n
TST

nnpE - nT(n)
T(0)-T
1E =] E[e

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑∑

=
∞→

∗

∞→
1

)1(limlim

 
The first term on the right is the mean state during the device 
busy periods. Call it L0. The second term is the mean queue 
length seen by a completing job, QC. Now we can state 
Proposition 10: In an open or closed network 
 
 [ ] CST

QLeE −=∗

∞→
0lim   

. 
 

 Again, the two means, L0 and QC, are not necessarily the 
same. Using Fig. 1 

3
4 = 

1)k-(4
(2)(1k)+(1)(2k) = L0

 

2
3 = 

2k
1k(2)+

2k
1k(1) = QC ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

 
where k is the number of cycles.  Then, 

[ ] . 
6
1- = 

2
3 - 

3
4 = e  E ST

∗

∞→
lim

 

VII. CONCLUSION  
Table II summarizes the error limit results for the three 
assumptions studied. Notice that the results for open and 
closed systems are the same except for the assumption of 
arrival homogeneity. Even these values will be close if the 
time spent at the maximum state is small compared to the total 
time of the observation period. We can conclude that the 
differences in device performance between open and closed 
systems are minor when observed for a sufficient length of 
time.  
 Of the three main Operational Analysis data assumptions 
used, only job flow balance is of little concern. The 
homogeneity assumptions for arrivals and services must be 
checked for their influence on performance results. 
Confidence in the use of performance measure relationships 
such as those in Table I for the types of systems considered in 
this paper can be enhanced by knowledge of the significance 
of the assumptions upon which those relationships are based.  
 Increased knowledge of operational analysis assumption 
errors can lead to more confident use of performance measures 
of systems of interest without respect to stochastic 
assumptions about those systems. As Sevcik and Klawe stated 
shortly after OA was introduced “Because operational analysis 
is based on assumptions that can be tested but that are very 
unlikely to be satisfied exactly in any finite time period, it is 
very important to develop a means of dealing with ‘fuzzy 
homogeneity’ or situations in which the various independence 
assumptions are satisfied within some tolerance [16]. 
 Further investigation could be made into what types of 
systems or other circumstances influence the magnitude of 
long term errors for the homogeneity assumptions. Knowledge 
of error measures enable correction terms to be formed so that 
performance measure estimates could be improved. Bounded 
values of OA performance measure correction terms can also 
be investigated.  
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Table II. Limiting Values of Expectations for Various Operational Analysis Assumption Error Measures 
for Both Open and Closed Networks.  

Assumption 
Error Measure 

lim
∞→t

 
Network 

Closed Open 

Flow Balance 

[ ](n)e E F  

 
0 0 

[ ]Fe E  

 
0 0 

[ ](n)e V F  

 
0 0 

[ ]Fe V  

 
0 0 

Arrival 
Homogeneity 

[ ](n)e E A  

 

1 - (A)p-1(n) N
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
λ  

 

1 - (n)
0λ

λ
 

 

[ ] eE A
∗  

 

L - Q NA  

 

Q - Q A  

 

Service 
Homogeneity 

[ ](n)e E S  

 

1 - U)G(n,  

 

1 - U)G(n,  

 

[ ]∗
Se E  

 

Q - L C0  

 

Q - L C0  
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APPENDIX 
The following are proofs of Propositions 1 through 4. 
Proposition 1: For each device in an open or closed network 

0. =(n)] E[eFT ∞→
lim

 
 Proof: By definition 

.  (n))p - (n)p1)(+(n = (n)e CAF  
 
Substituting the definitions of pA(n) and pC(n) and taking 

limits of expectations gives 
 

[ ]

.  
C

1)+C(n E - 
A

A(n) E1)+(n = 

C
1)+C(n - 

A
A(n)1)+(n E = (n)e E
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TFT

⎭
⎬
⎫

⎩
⎨
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⎢⎣
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⎥
⎦

⎤
⎢
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⎡
⎟
⎠
⎞

⎜
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 (A) 

Let d(n) + 1)+C(n = A(n)  [29] 
where 

⎪
⎩

⎪
⎨

⎧
≤
≤

.  
otherwise 0, 

C)>(A  n(T)<nn(0)for  1,+ 
C)<(A  n(0)<nn(T)for 1  ,- 

 = d(n)

 
 
Then, d(n)-A(n) = 1)+C(n  and substituting into (A) gives 
 

[ ]

.  

d(n)/A-1

d(n)/A-A(n)/A E-
A
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The second limit on the right hand side of (B) equals 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∞→ A

A(n)
T
lim since both d(n)/A  and d(n)/A

1-N

0=n
∑  go to 0 in the 

limit. As ∞→t , ∞→A , but . 1  |d(n)| ≤  Therefore,

( ) . 0 = d(n)
T ∞→
lim  Also, 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠
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⎜
⎜
⎝

⎛
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T
lim is bounded by  

 ( ). N/A
T ∞→
lim  (C) 

As is shown in the Lemma which follows, ( ) 0 = N/A
T ∞→
lim  

and  
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Substituting (B) into (C) gives 
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TTFT ⎭

⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

∞→∞→∞→
limlimlim  

 
 

Lemma: Let the device have jobs arriving with average rate
λ . Then 

0
)(
)(lim =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞→ TA

TN
T

 
Where N(T) is the largest number of jobs at the device at 

any time up to time T and A(T) is the total number of arrivals 
to the device up to time T. 

 Proof: Let
TTA
TTN

TA
TN

/)(
/)(

)(
)(

= . Since λ→
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TA )(

 as time 

increases, it is sufficient to show that 0)(lim =⎟
⎠
⎞

⎜
⎝
⎛
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TN

T
. Let 

L(t) be the number of jobs at the device at time t. Since the 

system under consideration is stable, 0)(
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t
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 as time 

increases [30]. Suppose 0)(lim ≠⎟
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in time when the maximum number of jobs are at the device. 
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Therefore, we have an 0>ε  and a sequence such that
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Therefore, 
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Proposition 2: For a device in an open or closed network 
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Then, using Proposition 1 
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Proposition 3: For a device in an open or closed network 
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 Proof: By the definition of variance, 
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The first term on the right hand side can be changed by 
substituting the definition of )(neF to give 
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Substituting and manipulating C(n+1)=A(n)-d(n) as in 
Proposition 1 gives 

. 

d(n)/A-1
d(n)/A-A(n)/A+

d(n)/A-1
d(n)/A-A(n)/A

A
A(n)2-

A
A(n)

)1+(n = 

d(n)-A
d(n)-A(n)+

d(n)-A
d(n)-A(n)

A
A(n)2-

A
A(n)

nne

2

T

T

2

T

2

2

2

TFT

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
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⎛
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Now, as ∞→t , 0/)( →And and 0d(n)/A →∑ .  Let,

(n)p
A

A(n)
AT
&→

∞→
lim .  Substitution yields 

[ ] .npnpnpnne AAAFT
0)()(2)()1()(lim 22222 =+−+=

∞→
&&&  

 
The second term on the right hand side of (D) can also be 

shown to go to 0 by first substituting the error measure 
definition, then substituting and manipulating C(n+1)=A(n)-
d(n) as before to yield 
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[ ]( )

[ ]

[ ]

( ) [ ][ ] . 0 = (n)e E(n)p-(n)p1)+(n2- =

(n)eE
d(n)-A
d(n)-A(n)-

A
A(n)1)+(n2- =

(n)eE
C

1)+C(n-
A

A(n)1)+(n2- =

(n)e(n)Ee2-

FAAT

FT

FT

FFT

&&
∞→

∞→

∞→

∞→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

lim

lim

lim

lim

 
 
The third term on the right hand side of (D) is also equal to 

0 by Proposition 2. Substituting these results into (D) yields, 
 [ ] . 0 = (n)e V FT →∞

lim   

Proposition 4: For a device in an open or closed network 
 

[ ] . 0 = e V FT ∞→
lim  

Proof: Substituting the definition of Fe and by Proposition 
3 

 
[ ] [ ]∑∑

−

=
→∞

−

=
→∞→∞

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ 1

0

1

0

0)(lim)(limlim
N

n
FT

N

n
FTFt

neVneV = eV
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