
Automated Regression Testing within Video Game
Development

Michail Ostrowski
Related Designs Software GmbH

Mainz, Germany
ostrowski@related-designs.de

Samir Aroudj
TU Darmstadt

Darmstadt, Germany
samir.aroudj@stud.tu-darmstadt.de

Abstract—Automated testing reduces the costs of software
development. We propose a testing model that is specifically
designed for the creation and execution of fully automated
regression tests within video game development without the need
of test isolation. The proposed model combines the usability and
veracity of record and playback techniques and the possible test
coverage of tests written in a game specific scripting language.
The model has an intuitive structure that enables professional
video game testers to create meaningful tests by using only a
rudimentary set of programming skills within a graphical user
interface. The resulting tool establishes a network connection
with one or several concurrently running applications under test
while the required performance can be distributed between
several dedicated computers. The application under test is
modified to process incoming function calls and to generate
output that is used to dynamically control the course of the tests
and to evaluate if the tested application operates within
acceptable parameters.

Keywords-software testing; automated regression testing; video
game development; video game testing

I. INTRODUCTION

The development of video games is a complex process which
is prone to software regression due to frequently changed
software design. The risk of software regression is usually
compensated by a quality assurance team. Since the manual
execution of regression tests is expensive in terms of time and
money, automated testing techniques are capable of enhancing
the testing process. However, a poll of 120 professional game
developers at the Game Developer Conference in 2002
documented that only 18% use automated testing techniques
within their current projects [1]. Due to the lack of suitability
of chosen tools, the implementation of an automated test
process fails frequently [2].

This paper describes script-based and user-interface-based
testing in the background section and discusses the
applicability of those techniques within video game
development. In section 3 we introduce the structure and test
process of our hybrid approach. The discussion summarizes
the most relevant possibilities of the proposed architecture.

II. BACKGROUND
Modern games utilize multiple programming languages. The
core component of the game is often realized with high-
performance languages such as C++ while high-level
components that are prone to frequent modifications are
realized with scripting languages like Lua. Plumlee describes
an approach on automated regression testing which utilizes the
integration of a scripting language [3]. The test scripts are
written in the scripting language of the application under test
(AUT). Test scripts modify the state of the AUT and verify the
result with assertions. Assertions compare the result of a
method call with an expected value. The creation of test
scripts requires knowledge of the used scripting language.
Professional video game testers have domain specific
knowledge that is required to create meaningful tests.
However, since most video game testers do not have an
engineering background, creation of tests based on a scripting
language is limited to programmers. This method is therefore
difficult to integrate in development processes that mainly rely
on video game testers. Furthermore, the proposed test scripts
interact with the AUT through function calls and not with user
input. The validity of the generated test results is therefore
limited.

The record and playback technique [4] is used to test
applications with the help of recorded user interactions. An
application tester records a test by generating a list of events
which detail the position and time of mouse clicks or typed
key sequences. The execution of the created list recreates the
previously recorded sequence of user interactions. A changed
position of a user interface element (UIE) in the AUT renders
the playback of corresponding test scripts invalid since
recorded mouse clicks still use outdated position data. The
maintenance effort of such recordings is high and prone to
playback errors. Functional decomposition divides long
recordings into independent parts. Those parts are utilized in
multiple tests. The separation of data and recording within
data-driven testing enables a recording to be used with
different input values. Both techniques reduce the
maintenance effort of the record playback technique
significantly [5]. There are two approaches to automatically
evaluate the test result and further decrease the maintenance
effort.

 DOI: 10.5176/2251-3043_3.2.257

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

60 © 2013 GSTF

Image based methods generate screenshots that represent the
current state of the AUT. Those screenshots are compared to
picture templates that represent UIEs. The position of a UIE is
dynamically determined by moving the corresponding
template over every possible position of the generated
screenshot. The template position which offers a perfect match
corresponds to the position of the UIE. This method is robust
against changes in position of UIEs, but needs maintenance if
the appearance of the UIE changes. The application state is
evaluated by comparing a generated screenshot with a
predefined picture template that represents the expected
application state. The test fails if the generated screenshot
does not match the template. Since video games tend to use
animations and transparency effects, the resulting screenshot
varies in appearance and a perfect match, even for a single
UIE, is therefore very unlikely. The probability of a match
decreases with the magnitude of the variation of a generated
screenshot that represents a certain application state. For this
reason, it is very unlikely to recognize the application state of
a video game that composes a scene with multiple instances of
rotated, animated and projected geometry correctly.
Modifications of the application programming interface (API)
which is used for rendering the scene, enable the tester to
mark interactive objects with distinctive and invariant markers
in order to enhance image based processes. This technique is
widely known in video game based competitions where so
called "Aimbots" mark enemies with a distinctive color in
order to automatically recognize them by means of image
based methods. The recognized enemy position is used to
automatically move the mouse cursor over the enemy.
However, this technique is not further reviewed for automated
regression testing by this paper.

The 2nd approach to enhance the simple record and playback
technique is based on the usage of standard technology. Tools
like Ranorex1 detail the structure of applications written in
Java, .NET or Flash during runtime. User interactions are
associated with the application component they are involved
with. Those tools are capable of dynamically determining the
positions of a UIE by detailing the structure of the user
interface. This technique is therefore robust against changes in
appearance and position of UIEs. The application status is
determined by the status of the application components like
the current string of a text label or the selection status of a
radio button. Since video games do not exclusively utilize
standard technology, the test coverage is limited. Record and
playback techniques are easy to use and only demand very
fundamental programming skills. Thus the domain specific
knowledge of professional video game testers can be easily
utilized for creating meaningful automated tests [6].

1More information about Ranorex is available at http://www.ranorex.com/
[Last Visited: 9/20/2012].

III. RESULTS

A. Definitions
The proposed test model defines several structures. An event
is a structure that contains a string, a multiplier and client
identification number (CIN). A condition is a structure that
holds a string, a mode, a threshold, a counter and a CIN. A
condition registers an event by comparing its stored string and
CIN with the string and CIN of the event. If both strings as
well as both CINs match, the counter of the condition is
increased by the value of the multiplier that is stored within
the event. A condition has two modes which determine if the
threshold is a maximum or a minimum value. A condition is
fulfilled if the counter is according to the mode less than or
equal to the threshold or greater than or equal to the threshold.
A command is a structure that contains a string, a delay value,
and a CIN. The string of a command describes a method call
that is known by the recipient and processed on arrival. The
delay value describes the estimated execution time of the
method call. A command is executed if the command is
dispatched and the time stamp defined by the sum of the delay
value and the dispatching time has passed. A control unit is a
structure that holds a list of commands, a list of conditions and
three Boolean values that specify if the control unit is optional,
if it is repetitive and if it has a high priority. A control unit
registers an event by passing it to every condition it holds. A
control unit is ready when its conditions are fulfilled and none
of its commands are executed. A control unit is processed if
its conditions are fulfilled and every command it holds is
executed. An application definition contains a file path to the
AUT and a list of parameters. A test case is a structure that
contains a list of control units, a list of application definitions,
a queue of commands, a time limit and a time stamp. A test
case registers an event by passing it to every control unit it
holds. A test case passes if its control units are optional or
processed. The rank of a control unit is determined by its
position in the list of control units. The rank of control unit A
is higher than the rank of control unit B if control unit A has a
lower list index. A test suite contains a list of test cases. A test
suite passes if every test it holds passes. Figure 1 shows the
hierarchical structure of a test suite.

Figure 1. Hierarchical structure of a test suite

B. Test Process
The execution of a test case starts with the creation of a test
server. The test server accepts incoming TCP/IP connections
from AUTs. This test model proposes the extension of the

Te
st
 S
ui
te Test Case A

Test Case B

Application
Definition A

Control Unit A

Condition A

Command A

Control Unit BTest Case C

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

61 © 2013 GSTF

AUT by a test mode. An application that is run in test mode
establishes an outgoing TCP/IP connection to the local test
server and creates messages that document the status of the
application. The proposed test process iterates sequentially
over every test case of a given test suite. The test server
generates a CIN for every accepted AUT. The CIN is equal to
the number of previously accepted connections within the
current test case. The server wraps all received messages into
events and stores them in its event queue. Events that contain
a special keyword (such as "CONTROL::") are not associated
with the CIN of the client but are rather set to a CIN of -1. The
test process stores a queue of commands that is called
execution queue and an execution time stamp. A command
becomes executable if it is the first element of the execution
queue and the execution time stamp has passed.

The execution of a test case includes the repeated registration
of events and the determination of executable commands.
Control units become ready by registering events. If the
execution queue is empty, the control unit that is ready and
that has the highest rank is selected by the test case. The
commands of a selected control unit are added to the end of
the execution queue and the time stamp of the test case is set
to the current time. When removing an executable command
from the execution queue, the time stamp is set to the sum of
the current time stamp and the delay value of the removed
command. If the delay value is zero, the next command in the
queue becomes executable immediately. A query that returns a
list of executable commands removes every command that is
or becomes executable from the execution queue. Commands
of control units that were assigned priority are added to the
front of the queue, regardless of the content of the queue. The
test process stores those commands within a command queue
and passes them to the server. The server sends them to a
client that has a CIN that matches the CIN of the command.
The execution of a test case ends when the test case passes or
the time limit defined in the test case is exceeded. The test
server and any applications started within the test case are then
stopped.

The test process filters commands from the command queue
and events from the event queue with a CIN of -1 to execute
them within a local function call. There are four commands
that are typically executed by the test process. The test process
executes a run command (such as "CONTROL::RUN-0") by
starting an application with the given index which specifies an
application definition stored in the test case. A click
command (such as "CONTROL::CLICK-100-200-1") is
executed by imitating a mouse click that uses the given
parameters as x and y position on the computer screen. The
last parameter specifies the mouse button to be pressed. A key
command (such as "CONTROL::KEY-myUserName")
specifies a sequence of key strokes that is imitated by the test
process. A reset command is executed by iterating over every
control unit of the current test case. The conditions and
commands of control units that are marked as repetitive are set
to initial values.

Most video games utilize a scripting language or at least a
game specific console. The functionality of those systems is
easily accessible by redirecting incoming commands within
the AUT (such as "CONSOLE-MyConsoleCommand" or
"SCRIPT-MyScriptCommand"). A broad functionality with
low implementation costs is hence available. We recommend
to use and extend existing systems in order to reduce code
scattering. A system to load and save the state of the AUT
keeps test cases short, even for complex aspects.

C. User Interface Maps
A user interface map (UIM) stores UIEs of an AUT that can
be accessed by unique reference names [6]. The proposed test
model sends request commands containing a keyword (such
as "CLICK-ID_BUTTON01") to the AUT. Those commands
are processed by retrieving the UIE with the corresponding
key from the UIM. An event is created that contains a
keyword that marks the event for command processing (such
as "CONTROL::CLICK-100-200-1"). A click command that
is generated by a UIM is robust against changes in position or
visual representation of UIEs. The interaction with UIEs that
are represented by visible geometry within the scene graph
requires the projection of the center point from 3D scene
graph coordinates into 2D display coordinates.

The interaction of a tester with the AUT is easily recordable
with the implementation of a recording mode. In recording
mode, the AUT generates a list of unique names which
correspond to the UIE that were used. This list is directly
convertible to a list of commands that can be inserted into a
control unit.

D. Repository
A repository is a map of control units, commands and
conditions each of which is accessed by a unique reference
name. A test case is stored as a list of references to the
repository. They are resolved when loading a test suite to the
test process. Changed components of the AUT require the
maintenance of corresponding conditions, commands and
control units. Since those structures are stored as references,
multiple tests are updated by simply modifying single
elements in the repository. A test case can utilize different
repositories in order to use a single test script with multiple
value sets. The content of the UIM is suitable for generating a
basic set of request commands since it contains all keywords
that are required for the interaction with the interface elements
of the AUT. We therefore propose to extend the AUT by an
index function that sends the keywords of the UIM to the test
server where they are converted to request commands and
stored in the repository. A list of possible events within the
AUT is usable to extend that index function in order to
generate a basic set of conditions. Thus an index function
enables the AUT to easily update the repository when new
events and interface elements are defined during development.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

62 © 2013 GSTF

E. Test Design
A simple test case consists out of three control units and an
application definition. The first control unit has no conditions
and is therefore ready and selectable by the test process. The
control unit holds a run command which starts the AUT in
accordance to the application definition of the test case. The
second control unit has conditions that are fulfilled by events
the application generates on startup and commands that
interact with the application by imitated user interactions or
direct function calls which are processed by the application.
These interactions initiate processes within the AUT that
generate events. The test fails if the events do not fulfill the
conditions of the third control unit within the time limit.
Figure 2 shows the hierarchical structure of a simple test case,
while the equivalent process is shown as an activity diagram
represented in the Unified Modeling Language in Figure 3.

Figure 2. Hierarchical structure of a simple test case - Conditions are marked
with a question mark and commands are marked with an exclamation mark.

Figure 3. Process visualization of a simple test case

Optional control units do not need to be processed in order for
the corresponding test case to pass. Therefore a test script is
able to adjust the course of a test to the current
parameterization of the AUT. Since the repeated recreation of
exact test preconditions is difficult for complex systems,
deviations in the behavior of the AUT occur. Those deviations
are not necessarily errors but a result of pop-ups, random
events or connection issues with a remote server. Randomly
occurring deviations such as pop-ups render some user
interface interaction invalid. Control units with a high priority
interrupt the command execution of the current test case by
inserting their commands at the beginning of the execution
queue. Randomly occurring deviations are therefore
suppressible by high priority control units that remove pop-

ups or reconnect to remote servers at any point in the test.
Repetitive control units define a set of commands that can be
executed multiple times. This means that the executed actions
have to recreate an application state that makes the set of
commands applicable again. The status of a repetitive control
unit is set to initial values by a reset command that is triggered
after the last command of the control unit is executed. Thus
the conditions of the repetitive control unit can be fulfilled
again.

F. Handling Multiple Applications
The multiplayer aspect of video games describes the
simultaneous interaction of several game instances using a
shared subset of application variables. This shared subset of
variables is called a session. The proposed test model is able
to handle multiple AUTs within a test case by defining sets of
control units that contain conditions and commands with
different CINs. The number of concurrently running AUTs on
a single machine is limited by the required performance of
each AUT and the available hardware. The proposed test
model facilitates coverage of the multiplayer aspect of video
games. A test case that creates a session by user interface
interactions with all involved AUT needs to ensure the validity
of simulated user input by a preceding focus and push of the
corresponding application window to the front of the display.
Applications with high performance requirements (AHPR)
limit the number of concurrent application executions on a
single computer to one. In order to test the multiplayer aspect
of an AHPR, the test process is distributed between dedicated
computers that are connected within a network. A test agent is
an application that runs on a dedicated computer and wraps
the communication between the test server and the AUT. The
test agent creates a remote application server and establishes
an outgoing connection to the test server. A test agent receives
commands from the test server and forwards them to the AUT.
Events from the AUT are forwarded to the test server. The test
agent detects run, click or key commands and executes them.
When executing a run command, the application under test
connects to the remote application server. The proposed test
model is therefore able to control several AHPRs. The number
of concurrently running AUT within a test case is only limited
by the number of available machines and application specific
boundaries.

IV. DISCUSSION
The proposed test model was realized during the development
of Anno 2070 – Deep Ocean2. The test process was organized
by an in-house quality assurance team which completely relied
on manual testing. Regression testing was realized by a
weekly test plan which was used as a blue print for the created
test suite. The realized test tool was installed on a dedicated

2Anno 2070 – Deep Ocean is a video game that was developed by Related
Designs Software GmbH and Ubisoft Blue Byte. It was published on
10/04/2012 by Ubisoft Entertainment. Additional information about the game
are available at http://anno-game.ubi.com/anno-2070/en-GB/home/[Last
visited: 10/19/2012].

Te
st
 C
as
e

Application
Definition

Initialization Start AUT (!)

Interaction

AUT started (?)

Interact with
AUT (!)

Validation Verify Result (?)

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

63 © 2013 GSTF

test machine. A new version of the AUT was frequently built
on a remote machine. Every build process triggered the
execution of the created test suite. The test results were mailed
to corresponding employees afterwards. The transition from
manual to automated regression testing was backed by a
professional game tester. The test model is now utilized in the
production of Might and Magic Heroes Online that is
currently under development by Related Designs Software
GmbH and Ubisoft Blue Byte. The proposed test model allows
professional video game testers without previous
programming experience to easily create and execute powerful
and maintainable automated tests within a graphical user
interface. The corresponding test suite contains several simple
test cases that verify the functionality of multiple menus with
buttons and text fields by executing a list of recorded clicks.

Furthermore, there are test cases that detect memory leaks
within the AUT by defining a set of repeatable actions within
a repetitive control unit. The test process executes the
repetitive control unit several times within one test case. The
memory consumption of the AUT is logged each iteration.
Such a control unit defines a set of actions that could prove the
existence of a memory leak like a repeated change of position
within the game world since this forces the application to
constantly provide new assets like textures and geometry.
Furthermore, the required execution time of each test case is
stored within the test documentation. This enables the quality
assurance team to easily evaluate the loading times of new
software iterations.

Might and Magic Heroes Online utilizes an artificial
intelligence (AI) that plays against a human contestant within
turn-based battles. There are several tests that replace the
human player with another instance of the AI and therefore
realize fully automated battles. Since those tests involve a high
number of visual effects and complex AI algorithms new
errors are frequently found.

Some UIEs in Might and Magic Heroes Online are
represented by geometry within a scene graph. Those UIEs
can be visually obstructed by other players. The game
provides a selection menu to interact with the obstructed UIE.
A optional high priority control unit handles possible
obstructions using that selection menu. The test process
reliably operates without the requirement of complete test
isolation. This means that there is no special environment
needed to execute automated testing which decreases the
required implementation effort and increases the relevance of
the test results. The usage of a repository keeps the required
maintenance effort of a test suite low. UIMs realize the
playback of scripted user interactions that are robust against
changes of the user interface layout and the visual
representations of UIEs. The proposed model is able to handle
multiple applications under test within one test case and is
therefore suitable for verifying client-server based video game
concepts.

REFERENCES
[1] Noel Llopis and Brian Sharp. "Convexhull." Online:

http://www.convexhull.com/sweng/GDC2002.html, 3/31/2002 [Last
visited: 7/18/2012]

[2] Konrad Schlude, "Risk investment Test Automation" Testing Experience,
no. 17, p. 47, December 2008.

[3] Phlip C. Plumlee. "Integration Test Servers for Videogames." Online:
http://flea.sourceforge.net/gameTestServer.pdf, 3/16/2005 [Last visited:
9/20/2012]

[4] Koen Wellens, "The Record & Playback Fairy Tale" Testing Experience,
no. 17, pp. 22-23, December 2008.

[5] Keith Zambelich. "Totally Data-Driven Automated Testing." Online:
http://www.oio.de/public/softwaretest/Totally-Data-Driven-Automated-
Testing.pdf, 6/20/2002 [Last visited: 9/20/2012]

[6] Mark Michaelis, "Boon and Bane of GUI Test Automation" Testing
Experience, no. 17, p. 25-28, December 2008.

Michail Ostrowski has received his
master's degree in computer science from
Otto von Guericke University Magdeburg
in 2012. He is currently working as a
game developer for Related Designs
Software GmbH in Mainz, Germany.

Samir Aroudj studies Visual Computing
at the technical university of Darmstadt.
He completed the bachelor degree course
Digital Media and Games in Trier. His
bachelor thesis was written in
conjunction with the game developer
studio Related Designs for which he
currently works part-time.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

64 © 2013 GSTF

