
Real-Time Strategy Games Bot Based on a Non-
Simultaneous Human-Like Movement Characteristic 

 

Damijan Novak 
Laboratory for Real- Time Systems 

University of Maribor 
Slovenia 

Domen Verber 
Laboratory for Real- Time Systems 

University of Maribor 
Slovenia 

 
 

Abstract   This paper discusses how to improve the behaviour of 
artificial intelligence (AI) algorithms during real-time strategy 
games so as to behave more like human players. If we want to 
achieve this goal we must take into consideration several aspects 
of human psychology – human characteristics. Here we focused 
on the limited reaction times of the players in contrast to the 
enormous speed of modern computers. We propose an approach 
that mimics the limitations of the human reaction times. In order 
to work properly, the AI must know the average reaction times of 
the players. Some techniques and proposed algorithm outline are 
presented on how to achieve this.  

Keywords-RTS; AI bot; game behavior; human factors  

I. INTRODUCTION 
Games have developed into rich environments that now 

offer great sound effects, object interaction with the use of 
physics simulation, stunning graphics, and last but not least 
they populate the environment with computer-guided beings 
and creatures (Non-Playable Characters – NPC's/bot's), which  
make the virtual world feel more alive. There is only one 
drawback to the whole story. During decades of game 
development, the graphical part of a game’s engine has evolved 
far more than the artificial intelligence (AI) module, which is in 
charge of NPC's behaviour. 

We can observe this lack of AI sophistication in many 
game genres. It can be seen especially in real-time strategy 
games (RTS) where bots fail to defeat even medium-skilled 
human players, let alone experienced players, and if they 
manage to beat a human it is in a very non-human way. We can 
observe this kind of behaviour in a RTS game where a bot 
simultaneously uses tens or hundreds of units against a player 
at the same time and eventually overruns him/her so that he/she 
loses (brute force attacks), uses game information which is 
otherwise hidden to the player or by applying cheats (breaking 
of game rules). The end-result is that game AI becomes more 
challenging whilst at the same time less human- like. Reason 
for such results is that a focus of academic research in the AI 
field is not to offer fun experience to the player, but to try to 
play the game in the best way possible, which can become 
frustrating experience for the player if it is too hard to win the 
game. And frustration is the opposite of having fun, which is 
the main reason we choose to play the game in the first place. 

So our research focused on developing ways of creating 
human-like behaviour for RTS game AI bots (since bots that 

play as humans are more fun [1]), whilst maintaining the 
strength of AI algorithms that other fields (genetic, neural, data 
mining etc. approaches) provide. The aim of this paper was to 
research into one specific part of human- like characteristics. 
Trying to set the ground on how fast a human plays a RTS 
game, and to then propose movement algorithms that take into 
account these limitations. The reason for this research was in 
the fact that computers can perform actions on a millisecond 
scale and outperform humans in the sheer amount of 
simultaneous actions. We wanted to limit the number of actions 
and bring the AI bot operation more to a human level thus 
operates within the second scale. 

The structure of this paper is as follows. In the next section 
we provide a brief description of real-time strategy games. 
Section 3 identifies the common characteristics of human-like 
behaviour. Section 4 presents the challenges of creating 
human-like non-simultaneous unit movements, together with 
discussing the limiting factors for algorithms. Section 5 
proposes some methods for measuring the reaction times that 
can then be used as limiting factors. The conclusion is given in 
section 6. 

II. ARTIFICIAL INTELLIGENCE IN REAL-TIME STRATEGY 
GAMES  

When a new AI game is being implemented, the developer 
always bears in mind that a player wants to have fun during the 
game. This can only be achieved if the game is balanced. Such 
a thing is hard to achieve because different types of players use 
different tactics when going up against AI.  

A. Real-time strategy games 
The term ‘strategy’ comes from the Greek word στρατηγια 

(strategia) which means general-ship. Generals are at the top of 
the hierarchy when issuing commands and making decisions 
that will have an impact on the end-result of the vision being 
pursued by a general (or someone to whom the general is 
loyal). Strategy games follow the same principle. One of the 
most famous strategy games is the game of chess, where two 
players follow their own strategies through a series of turns in 
the hope of defeating their opponent. Each player has time to 
perform actions during their turns. When a player has finished   
his/her turn (or the turn must end because the turn time is 
limited), the outcome of the turn is evaluated. The principle is 
the same for two (or more) players in other strategy games, 

        DOI: 10.5176/2251-3043_3.2.255 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

43 © 2013 GSTF



where each player plays the game according to his/her strategy 
while respecting the rules of the game. 

Real-time strategy games (RTS) are a sub-genre of strategy 
games. The word real-time is added because the times for the 
turns are so small that it creates the illusion that both players 
are pursuing actions at the same (real) time. Human players, of 
course, cannot keep up with the fast-pace of the game, where 
turns switch within millisecond's so we do not perform an 
action (or series of actions) every single turn. This does not 
represent the problem when average-skilled human players are 
competing with each other, since they all share the equal 
ground by missing a lot of turns. This paper is focused about 
the problems that arise when an average human player is 
competing against a computer, and will be discussed later in 
the article. 

War takes place within a virtual (fictitious) environment 
(also called a battle-map), where players lay out there strategies 
through the use of various units’ movements. A player usually   
has only a part of the map visible on his/her screen. In one part 
of the player’s screen there is usually a ‘mini-map’, which 
shows the positions of all the friendly units (those of the player 
and his allies) and part of the visible enemy units. Only part of 
enemy units are visible because RTS games have fog-of-war 
(FOW) implemented which by lack of information adds the 
unknown factor to the game (increasing the difficulty of 
strategy planning). FOW is the part of a map that a player has 
not yet explored or does not have any friendly units nearby.  

B. Game artificial intelligence 
If we want to define game artificial intelligence, we must 

first define the term ‘artificial intelligence’. The Oxford 
dictionary for the word artificial states the next definition 
»Made or produced by human beings rather than occurring 
naturally« and for word intelligence »The ability to acquire and 
apply knowledge and skills«. So by combining both definitions 
together we can conclude that artificial intelligence is 
something that was made or produced by human beings rather 
than occurring naturally and it has the ability to acquire and 
apply knowledge and skills. The term as we can see cannot be 
exactly defined, but it can give us a hint of what we want to 
achieve. Definition of game artificial intelligence on the other 
hand is slightly different from that of the (academic) artificial 
intelligence and it follows other goals. The first part of the 
combined definition stays the same, but the second part is 
looser. As game AI does not always need to acquire and apply 
knowledge and skills to look human, it can fake, copy, or just 
create an illusion or simulate human-like behaviour; as long as 
the behaviour looks convincing to the human. 

III. RELATED WORK - IDENTIFIED CHARACTERISTICS OF 
HUMAN-LIKE BEHAVIOUR 

There has been extensive research done by different authors 
who were trying to pinpoint what makes the human style of 
playing RTS games different to the computer bots play style. In 
article [2] the aim did not focus on creating a bot that behaved 
like a human, but rather to find the characteristics of human-
like behaviour. Their findings on human characteristics were as 
follows: simultaneous movements, overall strategy, attack 

tactics, placement of buildings, level of activity, ability to 
adapt, build order, player strength, map knowledge, 
intelligence and creativity, and monotony.  

Article [3] had similar goals where authors from the NASA 
Ames research centre conducted an informal survey of 
experienced players of the game Starcraft and summarised 
significant differences between human and computer play into 
three categories: fine motor control, visual field-of-view, and 
visual attention. Within the category of fine motor control they   
identified one critical difference between a human player and a 
typical computer player - the speed with which commands can 
be issued. Whilst this speed can be essentially unlimited for the 
computer, human speed depends on dexterity when controlling 
the interface. Within the second category, field of view, the 
inability of a human player to view the full map in detail 
produces vulnerability within a range of deceptive tactics. In 
the third category, visual attention, their findings were that the 
limit of people’s ability to pay attention to all available visual 
stimuli has a variety of effects. Two of more important ones 
were that a player often fails to detect units that are visible but 
non-salient (a unit may be camouflaged by similar background, 
partially obstructed by another object etc.), and the second 
effect was to delay situation assessment (understanding the 
nature of the attack). 

The third article [4] presented PAR AI believability criteria, 
where PAR stands for Plan, Act, and React. Within a planning 
category AI should demonstrate some degree of 
strategic/tactical planning, be able to coordinate actions with a 
player/other AI, and not repeatedly attempt a previous, failed, 
plan or action. When an AI acts it should act with human-like 
reaction times and abilities, meaning, when a decision has been 
taken, the AI needs to appear to have natural reaction times, 
and be able to act with a reasonable degree of skill. The react 
category states that AI should react to players' presence and 
actions appropriately, react to changes within their local 
environment and react to the presence of foes and allies. 

All three articles pointed out that one key characteristic of 
achieving human-like behaviour is the speed at which the bot 
issues commands. In the first article, the speed was identified 
in two categories: simultaneous movement and level of 
activity. The second article called it the speed fine motor 
control and in the third it was contained within the acting part 
of the PAR AI believability criteria. 

IV. PLANNING OF HUMAN-LIKE NON-SIMULTANEOUS UNIT'S 
MOVEMENTS 

A. Core problem 
In the third chapter, we identified that one of the factors 

that plays a significant role when showing how the game is 
played by a human player or by a computer bot, is the speed 
with which the commands are issued for the movement of 
units. The problem lies in the different response times between 
a human and a computer if they are both confronted with the 
same task. So the main goal of this article was to find solutions 
to this problem. 

In the typical RTS game scenario, the map is filled with 
different units, which are used to pursue the vision that a 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

44 © 2013 GSTF



general has and act according to the strategy. So if an enemy 
launches an attack, the counter attack or some other counter-
measure must be issued by a general. The strategy level will 
decide the best tactic and units will be ordered to act according 
to it. Most times this means the movement of unit or group of 
units into the right position, and when at the right spot issuing 
appropriate action (an action can be a shot fired, performance 
of healing on a friendly unit, etc.). Let’s present the core of the 
problem with an example. 

The enemy attacks a friendly building using a group of 
tanks. The general decides that the building is of great strategic 
importance and must be defended. So a command is issued to 
reallocate friendly units in an attempt to save the building. Our 
concern is how this action will be viewed by the observer of 
the game. If the general in charge is an average human player, 
he/she will start clicking on units across the map and giving 
them orders to move and defend the building. Therefore, he or 
she will have to travel across the map to find all the units, click 
on each of them and then issuing them the right orders when 
they are positioned in the correct places. If units are sparse, 
he/she will have to repeat this multiple times to gather all the 
necessary units. To the outside observer the action will look 
like this. Enemy started attacking the building. After a short 
while, the player moves first unit(s), moments later the second 
unit(s) received orders and started moving and so on, until all 
the unit(s) had been moved. So between the first and last 
unit(s) movement, a considerable amount of time could have 
passed. The movement, as we can see, is non-simultaneous – 
Fig. 1.  

 
Fig. 1: Non-simultaneous movement of units 

The top half of the picture shows the starting positions 
whilst the bottom half shows the results from the non-
simultaneous movements of units after a few short moments. 

If an AI bot were in charge of defending the building, the 
same action would look very different. When the bot wants to 
relocate the units, all of those units that must respond will start 
moving at once. The reason for this lies in fact that an AI bot 
does not have to search for units across the map (it has the units 
saved as objects in memory along with their exact location) and 
the issuing of movement commands for all the units usually 
takes no more than a few milliseconds (the movement interval 
for a bot is in time span of few milliseconds). Therefore, the 
movement would look simultaneous to the human eye. Our 
task was to ensure that the AI bot unit movements would be 
non-simultaneous as well, so that it would appear more human-
like – Fig. 2. 

 
Fig. 2: Simultaneous movement of units 

B. Key non-simultaneous movement factors 
Two key time-delay factors must be considered and 

implemented into AI bot algorithms if we want to achieve non-
simultaneous movements. The first one is the time-delay 
between the two movement orders to the units (let’s refer it as 
movement delay - MD), and the second factor is the time- 
delay of travelling across the map to find the right unit or place 
to move to (travelling delay – TD). For the second factor, we 
must also take into consideration the size of the movement 
visible frame (MVF). With usage of MVF we are limiting the 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

45 © 2013 GSTF



 
procedure setTimeDelays (units) 
   // get minimal number of MVF's that cover all units 
   arrayOfMVF  = getMVFs (units)   
   for each  MVF in arrayOfMVF do  
      // optional – if we have all units in one MVF or not 
      if not ( size (arrayOfMVF)  ==  1) then   
        // simulating time of traveling to next frame 
        delay(random(0, max_TD )) 
     end if 
     // get all units positioned in current MVF 
     arrayOfUnits = getUnits (MVF)   
     for each Unit in arrayOfUnits do 
          // if unit performs action outside current MVF 
         if outsideFrame (Unit, action, MVF) == true then   
 // simulating time when going outside of this MVF 
 delay(random(0, max_TD))  
         end if 
         // simulating time of unit movement delay 
         delay(random(0,  max_MD))  
 
         // place for unit actions  
         // (pathfinding, attack or defend moves ...) 
 
         //if unit performs actions outside current MVF 
         if outsideFrame (Unit, action, MVF) == true then  
 // simulating time of getting back to right MVF 
 delay(random(0, max_TD))  
        end if 
     end for 
   end for 
end procedure 

 
   

vita of the battlefield. Just like the human player has a 
limitation when viewing just a part of the battle map and not 
the whole map. Therefore, if he/she wants to see other part of 
the map, he/she has to change the view by travelling there. 

In chapter 5 we propose methods by which the time-
intervals for MD and TD could be set experimentally ((0, max. 
MD], (0, max. TD]). Maximal MD and maximal TD are the 
longest reaction times for a human player to perform an action, 
and if we want to the set the intervals correctly, we need to 
measure the reaction times of the players. We can set different 
intervals for different skill sets of players (beginner, moderate, 
expert, professional etc.).   

C. Proposed algorithm outline  
 There are many different approaches, techniques, and 

technologies involved in programming an AI bot and our 
purpose was not to limit the programmer in any way that a bot 
would fail to deliver functionalities envisaged by him/her when 
the bot was being implemented. We just wanted to limit the 
speed of issuing movement commands. So we propose the next 
algorithm outline (procedure for setting time delays while 
executing moving orders to units): 

If we want to move N units from point A to point B the 
total cumulative of delays based on the outline algorithm will 
be (please note that the equation for total sum of delays is set 
for worst case scenario – meaning, executing body of all if 
statements): 

).)*2((
n

1 1
∑ ∑
=

++=
i

u i

TDMDTDCD  

Value n represents minimal number of MVF’s that cover all 
units; value ui represents number of units in an i-th MVF.  

V. MEASURING THE REACTION TIMES OF THE PLAYERS 
We can examine the reaction times of players during a   

game with different methods: using controlled experiments, by 
analysing the players' logs of real RTS games, or by observing 
the players on-line whilst they are playing the game. 

A. Controlled experiments 
One way is to build a mock-up environment with all 

traditional RTS game elements. With this, we can perform 
different experiments under pre-set conditions. The players are 
exposed to situations in real games and asked to perform some 
tasks. After being given some visual or aural cues, they must 
select an object, move a unit, scroll the screen, etc. We also 
prepare questioners that are given to the players before and 
after the experiment. One of the goals of the questioner is to 
determine the skill level of a player. During the experiments, 
we measure the player's reaction times. We can run the same 
experiment repeatedly with different groups of players and/or 
under different starting conditions. After experiments, we can 
perform thorough statistical analysis of the recorded data to 
obtain the average reaction times for some tasks by different 
player groups.  

We have already implemented a prototype of such a mock-
up program. Firstly, we considered using implementation with 
a simple graphic library. Instead of hi-definition textures, we 
decided to use simple geometric shapes. A screen-shot of the 
program is shown in Fig. 3. 

 

 
Fig. 3: Prototype of an experimental game environment 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

46 © 2013 GSTF



The mock-up model is independent of specific games. This 
brings same benefits and some drawbacks. On the positive 
side, the results are more general and can be used by the AI 
universally. On the other hand, the real games may sometimes 
behave differently than the mock-up. For example, with a 
different combination of colours or different shapes, some 
objects may be much more difficult to detect during the game. 
Therefore, the reaction time of the player would be prolonged. 
Similarly, during tough game situations, players usually make 
mistakes and perform poorly.  

Secondly, we upgraded the mock-up model with more 
realistic textures from the real RTS game engine Spring. This 
way we can simulate different game scenarios while avoiding 
the complexity of programming for real game engine which is 
time consuming and still maintaining the most of the RTS 
aspects and feels. Realistic mock-up model is shown in Fig. 4. 

 
Fig. 4: Realistic mock-up model 

In the future, we also want to give more attention to other 
human playing characteristics. To achieve this we will equip 
the test computers with video cameras and brain computer 
interfaces (BCI). The cameras would monitor the players’ eyes 
movements, facial expressions, etc. The video feed would be 
combined with the current screen captures. We believe that this   
would provide more profound knowledge about players' 
behaviour while playing games. Something similar was done in 
[5] for body posture where they measured body lean-angles 
whilst players were playing a game of chess. BCI was also 
already successfully implemented in some aspects of gameplay 
as shown in the article [6]. 

B. Analysis of games' log data files 
The second source of data about players' behaviour during 

games is the game logs. Some games and game engines allow 
for recording the players' moves during the play. For example 
we can take a game of Starcraft which is a science fiction RTS 
game developed by Blizzard Entertainment. This game 
provides a recording function regarding replays for further 
review and analysis. Because this game has a huge community, 
with players ranging from beginners to professional players 
(some of them even making a living by competing at 
tournaments for money prizes), we have a huge base of replays 
at our disposal. These replays are therefore an invaluable 
source for many researches. [7] [8]. 

By analysing the logs, we can perform some measurements. 
However, we cannot get out as much information as with   
controlled experiments. The logs do not usually record all the 
parameters of the game and they usually do not store any 
attributes of the players. From logs we can get data about times 
when a specific unit or building is first produced. No 
information about the combats and the outcomes of them are 
tracked, so only a strategy concerning unit constructions can be 
inferred.  The large amount of data allows for employing 
different data-mining methodologies, machine learning, etc. 
Therefore, log files in general cannot give us enough 
information about the reaction times, but they can be used to 
measure other characteristics of the players. In the future, we 
intend to implement complete log systems for our AI engine in 
order to obtain proper parameters from the game play. 

C. Observing players in real-time during playing  
We can also observe the players in real-time during the 

game. Usually this would be cheating if the AI were to know 
all the movements of the opponent. However, during the play, 
the AI does observe particular movements of the units visible 
to it and some actions of the player. It observes the time when 
the opponent’s units starts to move, when changing direction, 
when they fire, etc. With this, the AI may measure the reaction 
times and adjust its playing capabilities accordingly. 

This method can be easily upgraded for controlled 
experiments. By using the techniques described above, we can 
observe the behaviour of the player during a real game either 
when playing with AI bot or with another human player. Of 
course, this requires some modifications within the existing 
game engine. 

In the part A of this chapter we mentioned that we want to 
upgrade the test computer with video cameras and BCI. This 
could allow the game engine (through the use of right 
interface) to be able to observe the skill and mood of the player 
and adapt to them to improve the user experience. That’s why 
we started paying attention to the field called affect computing 
[9]. By trying to recognise the affect state of the player while 
playing a game, we can use that knowledge so that a bot 
changes behaviour in more adjusted human-like manner. e. g, if 
we can recognise that player is showing an affect state of 
getting frustrated (maybe because he/she lost majority of 
his/hers units in defending his/her own base instead into more 
satisfying or rewarding battles), the bot could change overall 
strategy management by maybe using more defensive tactics or 
by using units in a more reckless manner (so that more of its 
units would get destroyed). This way the player could get more 
satisfaction if he/she gets the feeling that the luck is shifting 
into his/hers direction. Changes would not be too dramatic, but 
they could be enough to make game more interesting for the 
player. This is just one example where affect state of the player 
would result in using the correct amount of changes to the bot 
behaviour and so making it more human like. 

VI. CONCLUSION 
This paper discussed how to improve the behaviour of AI 

during RTS games in order to behave more like human players. 
Using high processing power, the AI can perform several unit 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

47 © 2013 GSTF



movements or other actions simultaneously. This is unnatural 
for the human players, who are only capable of processing a 
limited amount of information during a single time-interval. 
The proposed methodology and algorithms would narrow the 
gap between these two behavioural aspects.  

We also suggested some methods on how to measure 
human reaction times, which would serve as a reference for the 
AI. For this, we built two experimental environments using a 
mock-game element. During the autumn we will start 
performing these experiments with the help of students from 
our Faculty. 

Besides the human reaction times, other aspects of human 
behaviour are important for more likable AI bots in games. As 
on-going research, we will pursue the study of these aspects in 
the future and also gave more attention to the field of affect 
computing which could offer serious impacts on the overall 
positive experience for the player while playing RTS games.   

REFERENCES 
 
[1] B. Soni, “Bots trained to play like a human are more fun”, in Proc. IEEE 

Int. Joint Conf. Neural Netw., Hong Kong, June 2008, pp. 363–369. 

[2] J. Hagelbäck, S. J. Johansson, »A Study on Human like Characteristics in 
Real Time Strategy«, Computational Intelligence and Games (CIG), 
2010. 

[3] M. Freed, T. Bear, H. Goldman, G. Hyatt, P. Reber, J. Tauber, »Towards 
more human-like computer opponents«, AAAI Technical Report SS-00-
02, 2000. 

[4] D. Livingstone, »Turing's test and believable AI in games«, Computers in 
Entertainment (CIE) - Theoretical and Practical Computer Applications 
in Entertainment, Volume 4 Issue 1, January 2006. 

[5] J. Sanghvi, G. Castellano, L. Leite, A. Pereira, P.W. McOwan, A. Paiva, 
»Automatic analysis of affective postures and body motion to detect 
engagement with a game companion«, HRI 2011 - Proceedings of the 
6th ACM/IEEE International Conference on Human-Robot Interaction, 
2011, pp. 305-311. 

[6] J. J., King Li, T. A. Monsod, P. J. Hao, G. L. Matias, J. R. Cheng, N. 
Guloy,  “Towards the Development of an Affect- Sensitive 
Game”. Philippine Computing Journal Dedicated Issue on Affect and 
Empathic Computing, 6(2), 2011, pp. 42-47. 

[7] B. G. Weber, M. Mateas, “A data mining approach to strategy prediction”, 
In Proceedings of the IEEE Symposium on Computational Intelligence 
and Games, 2009, pp. 140-147. 

[8] J. Hsieh, C. Sun, “Building a player strategy model by analyzing replays 
of real-time strategy games”, In proceedings of the International Joint 
Conference on Neural Networks. Hong Kong, China:IEEE, 2008, pp. 
3106–3111. 

[9] R. W. Picard, “Affective computing”, MIT Press, Cambridge, 1997. 

Damijan Novak graduated 
in 2011 in computer science at 
the Faculty of the Electrical 
Engineering and Computer 
Science at the University of 
Maribor. He is currently a 
teaching assistant and post-
graduate student at the faculty 
where he received his 
academic degree. His current 
research subjects are data 
mining algorithms and 

artificial intelligence in computer games. 

 Domen Verber is an assistant 
professor at the Faculty of the 
Electrical Engineering and 
Computer Science at the University 
of Maribor. His main research 
subjects are Ubiquitous computing, 
High performance computing and 
Computer games. He has published 
numerous papers in international 
journals, books, and conference 
proceedings. 

 
 

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

48 © 2013 GSTF




