

E.D. Nishan W. Senevirathna

University of Colombo School of Computing Sri
Lanka

nishan.senevirathna@gmail.com

K.L. Jayaratne

University of Colombo School of Computing
Sri Lanka

klj@ucsc.cmb.ac.lk

Abstract—Proposing a novel approach for monitoring
songs for the radio broadcasting channels is very
important for the interest of singers, writers and
musicians in the musical industry. Singers, writers and
musicians have a claim to intellectual property rights
for their songs broadcast over all the radio channels.
According to this intellectual property rights act
singers, writers and musicians should be paid for their
songs broadcast over all the radio channels. Therefore we
propose a real time audio monitoring approach to solve
this problem which includes our own audio recognition
algorithm. It is easy to recognize a song, when you provide
the original high quality blueprint of the song as input. But
we can’t expect such kind of audio input from radio
channels since lots of transformations are possible before
reaching the end user or listener. For example, adding
environmental effects such as noise, adding commercials
on the song as watermarks, playing more than one song
as a chain without adding any silence between them,
playing a part of the song, playing same song in various
speeds and so on. These transformations cause change in
the uniqueness of particular song and make the problem
even more difficult. The algorithm we proposing is resistant
to noise and distortion as well as it is capable of recognizing
short segment of song when broadcasting over the radio
channels. At the end of the processing our system generates
a descriptive report including title of the song, singer of the
song, writer of the song, composer of the song, number of
times it was played and when it was played for all songs for
a particular period for all radio broadcasting channels. We
evaluate our system against various types of real time
scenarios and achieved overall higher level of accuracy
(96%) at the end.

Keywords-Audio fingerprint; features extraction; playlist
generation; wavelets; broadcast monitoring

I. INTRODUCTION

Since the beginning of the human life sounds, voices
and noises are attached to their lives. A song is some sort
of arrangement of sounds in time. Usually humans like
to collect songs as repositories which they call albums.
The need of songs classification and identification has risen
as a result of the speedy growth of these repositories.
Audio recognition isn’t very easy task. Therefore this
is still an open research area. The song recognition problem
becomes a more difficult problem when we step in to the
radio broadcast monitoring. We can’t expect the high quality
original blueprint from broadcasted radio streams since lot
of transformations and alterations are possible.

Radio broadcast monitoring is still a manual process and it

requires lots of man power as well as it is still a very costly
operation [1]. Nowadays, there are so many radio
channels as well as huge number of songs are
broadcasting on each channel in a day. Therefore the
process of manual song monitoring cannot be carried out
further with high quality. The importance of the novel
monitoring process is that it should guarantee the copyright
enforcement of radio broadcast songs. This is the problem
we will take into account throughout this research.

Identifying an object by examining the meta-data associ-
ated with it, is very straightforward if that object is a text
file. But we can’t recognize multimedia objects easily
without using proper content-based identification
techniques. Content of a song is its acoustic qualities of
audio such as wave pattern, beat frequencies distribution
and so on. Before applying content-based identification
(CBID) techniques for radio broadcast monitoring, we have
to consider the following challenges.

• The radio channel may modify the original song
by adding commercial or some other unwanted
things.

• A part of a song may be missed or chain of songs
may be played continuously.

• Audio signal can suffer from several
transformations (such as noisy) before reaching
the listener.

Our solution considers all of these challenges and we
propose a highly robust novel approach in order to solve
this problem.

Audio fingerprinting is a well known approach,
which uses to identify a particular audio clip [1][2].
Audio fingerprinting is a CBID technique.

Two approaches of audio fingerprinting differ from one
another from the feature extraction. We propose highly
suitable feature extraction technique for this audio broadcast
monitoring problem.

Finally we prepare a summary report as the output which
contains all necessary details such as available metadata
such as author of the song, musician and singer, time of
the broadcast, information about the channel and so on.

Rest of this paper is organized as follows. Section II
provides a review of the related background. We discuss
the design of the system in the section III. We prove
the achievability of our proposed solution under the
implementation in section IV. Then we will evaluate the
proposed system using obtained results in the section V.

A Highly Robust Audio Monitoring System
for Radio Broadcasting

 DOI: 10.5176/2251-3043_3.2.250

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

1 © 2013 GSTF

Finally we mention our concluding remarks and
suggestions for future works in section VI and VII
respectively.

II. RELATED WORK

According to the literature, there are number of applica-
tions for audio fingerprinting [1] like identify a song using
mo- bile phones, filtering technology for file sharing,
automatic music library organization, automatic play-list
generation and broadcast monitoring and so on.

A playlist may define as a finite sequence of songs which
is played as a complete set [3]. Playlist can be seen as
two point of view. Firstly songs listener prepare playlists
before songs are actually played. Secondly songs
broadcasted over the radio channel is interest to prepare
playlists after songs are actually played. In this research
we consider the second one. Next, let’s consider well-know
audio identification methodologies in this research area.

A. Radio Data System (RDS)

Radio Data System (RDS) is a communication protocol
which uses to transmit information such as song’s metadata.
RDS enable receivers can view embedded RDS messages.
The European Broadcasting Union (EBU) member countries
introduced this technology and mainly used to transfer road
traffic information to FM car radio [4][5]. We can use same
concept for broadcast monitoring.

Required meta-data are encoded to FM carrier wave
during the modulation stage. Then receiver can decode
the message and access these meta-data. We can use this
approach to generate broadcasted play-list but RDS is not
enabled in most of countries. Further, RDS system has some
drawbacks [6].

The radio data signals must be suitable to transfer RDS
messages. It means they must not make any interference to
the reception of sound. To access RDS data reliably, recipi-
ent should have better signal. Usually particular message is
embedded to one or more places on a song, therefore part
of a song may not be sufficient to identify the song[6].
However we can use RDS technology to generate playlists.

B. Audio Watermarking

Audio watermarking technique is almost similar to RDS
system, it works embedding particular message without
altering the perception of the sound. We can use this to detect
copyright infringement and variety of other applications
such as broadcast monitoring, owner identification, proof of
ownership and so on [7]. Broadcast monitoring is one of the
major applications of audio watermarking. Any interested
third party can use audio watermark to identify particular
song or any other audio clip. Audio watermark is put into
particular song prior to broadcast. Usually watermark cannot
be removed or changed by a third party.

However, watermarking approach consists of several
drawbacks which restrict the usage [8]. Really inaudible

watermark development is very challenging task especially
when we are dealing with compressed audio formats like
MP3. As well as, there is no choice for already released
material. According to the section A and B we can say that
RDS and audio watermarking approaches consider specific
features (such as a message) or additional information which
is embedded to an audio clip. Because of that, we can’t use
these methods for any audio song.

C. Content Based Audio Identification
Content based identification techniques are based on

the acoustic qualities of audio. Different feature extraction
mechanism needs different system implementations.

Audio fingerprinting is a well known but emerging content
based audio identification technology. Our solution is also
based on the audio fingerprinting technology. First acoustic
relevant characteristics are extracted from a given audio con-
tent and then they are stored in the database in compressed
manner. Figure 1 shows the flow of the Audio fingerprinting
approach. Audio fingerprint is a compact representation or

Figure 1. Flow of the audio fingerprinting approach. This consists with
major two stages, populating the database and content identification.
In the populating the database stage, we extract fingerprint from
original high quality completed songs. Then they are stored in the
database with the related metadata. After this stage we can identify the
songs (content identification stage) which are in the database. We extract
fingerprints again from the unknown segment of song. Then those are
directed to matching process and recognize the highest confidence one
[9].

signature of full quality large audio object. It is exactly
similar to the crypto graphical hash value of a large message.
Instead of compare large audio object we can compare small
fingerprint in order to find the most similar audio object [1].
According to the [1] there are several advantages of using
audio fingerprint instead of large audio file itself.

• Audio fingerprint takes very law memory to
store therefore it reduces storage requirement

• Since audio fingerprint is too small, it makes
efficient comparison

• Perceptual similarities should not consider when
two fingerprints are matching as perceptual
irrelevancies have already been removed

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

2 © 2013 GSTF

According to the [1][4], we have to consider sets of proper-
ties when we are introducing new audio fingerprinting ap-
proach. These are accuracy, reliability, robustness, security,
versatility, scalability, complexity and so on.

According to the most of the researches any audio finger-
printing approach consists of several major steps, and Figure
2 shows the flow of these steps.

Figure 2. Major steps of the audio fingerprinting. One approach differs
from the others from implementations of each step. Therefore accuracy and
reliability depend on the implementation. Preprocessing stage highly depend
on the application it may be completely ignore in some cases. In the framing
stage, divide input signal into several overlapping frames. Then apply some
sort of transformations such as short time Fourier transformation.
Then extract some unique features after this step we can transform the
output in order to satisfy our final objective [10].

D. Concept of AudioDNA
This is another content based audio identification method-

ology. This is highly scalable system for the automatic
identification of audio [8].

Any audio stream can be seen as sequences of acoustic
events. AudioDNA approach replaces every acoustic event
by a letter in order to obtain audio gene. Such sequences
use to identify a song or compare two or more audio
songs together. AudioDNA is a sequence of audio genes
which are extracted from a piece of music. Most of the
things are much closed to audio fingerprinting schema but
searching or matching algorithm is different from each oth-
ers. AudioDNA matching algorithm consists with two main
processing steps, exact matching and approximate matching
like audio fingerprinting. Both of them use FASTA searching
algorithm which is most effective practical searching method
of biological gene sequences.

III. SYSTEM DESIGN

In this section we will discuss the design of our approach
with solutions for already realized problems. We divide this
section into set of sub parts in order to discuss major steps
clearly.

First of all we have to realize clearly the problems, we are
going to solve. These problems (challenges) are the design
considerations. We tackle each and every challenge step by
step. Followings are the design considerations in our design.

• Songs may be destroyed by noise or any other
external effects

• Commercials or talks may be added while
playing a song

• Part of a song may be broadcasted
• Distinguish songs from other items such as

advertisement
• Scalability issue, i.e. our design should be able

to handle millions of songs
In order to tackle above considerations we design our
approach as the Figure 3 which shows the flow of the design.

Figure 3. The overall flow of the design. There are four major parts, each
one can be divided further.

A. Preprocessing

We transform the raw radio stream into some sort of
audio object/s which can be manipulated easily. We use the
audio sound card line-in hardware interface to import the
audio stream into the working environment. Radio channel
should be tuned properly, however noisy can be added to the
stream. But it is not a problem since these are not hold for a
longer period. Short time noisy will suppress gracefully by
the proposed system. To buffer audio stream we use
following strategy. We take 5 minutes long audio stream and
then it is processed. While it is processing we collect
simultaneously next 5 minutes and so on. To do this we
use two threads, it will help us to hold performance at
optimal level and hold buffering process steadily.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

3 © 2013 GSTF

We separate songs from the mixer of other audio objects.
This helps us to increase the system efficiency. To separate
songs from the others, we suggest very simple method, even
it is failed proposed overall system will work normally. We
have observed that the most of audio objects consist with set
of frequent silence except song object. By analyzing the
pattern of these silence and the time duration between two
adjacent silences we can distinguish songs from the others
with high accuracy. We can’t define a silence globally since
it is depended on the strength of the stream. Therefore we
consider the mean square root signal of the original signal
then define a silence as a local value to the current audio
frame.

To address the above mentioned design considerations,
we frame the extracted song into 40 seconds long segments.
Then each segment is processed. Following above strategy
we can reduce the effect of unrelated things such as noisy
and commercial. Here we assume that at least one frame has
good quality. It is valid assumption since if we can’t find
at least one 40 seconds long good quality frame out of
about four minutes long song, then it should not be a song
at all.

B. Feature Extraction
As the first step, we perform Short Time Fourier Trans-

formation (STFT) in order to convert time domain signal
into frequency domain. The reason is that we can easily
manipulate, extract frequency related features from a
frequency domain representation than time domain.

We extract peaks and other related parameters. As we all
know noisy and distortions are obvious in the radio
broadcasting. Therefore we should find candidate features
that could survive in the noisy or distortion environment.
According to this [11] we realized that spectrogram peaks
can be survived in presence of noise, but if the audio clip
is faced to a distortion then peaks may not be survived.
But it is not a big problem since framing process will help
us again to suppress this problem.

Therefore considerable amount of frames are remain
unchanged, these frames can be used to identify the song
and distorted frames are automatically omitted. When
inserting a songs into the database, we can take original
ones since it is controlled process. But in the matching
process, unknown song (or part) can come from anywhere in
the original song.

Therefore matching process should function properly
independent of the position. Consider the Figure 4, it
shows two adjacent peaks. t1, t2, f1, f2, ∆t and ∆f are
unique values at the most of time [11]. Using these values
we create a hash value. If some amounts of hash values are
matched correctly then we can conclude that the considered
two objects are same.

Figure 4. Two adjacent peaks and other related parameters. We use these
parameters to create a unique hash value.

C. Searching

The input to this stage is a set of hash values. Our goal
is to find out the most similar database track for these
values. But the challenge is that these two set of hash values
may not be matched 100%. Because of this nature, we
use the term approximate matching. Assume that unknown
song is converted into N number of hashes. In this stage,
matched song ID is obtained for each and every hash from
set N. After that obtained result is analyzed to identify the
unknown song. We use scoring based approach to extract
most matched song.

Assume that we have inserted 15,000 songs to the
database. Each song is divided in to 7 frames as well as
50 hashes are extracted from each frame. According to
this database, total number of hashes is 15,000×7×50 =
5,250,000. Even if brute force search is possible to find a
matching hash against 5,250,000 hashes, it is not practically
achievable. Since this takes considerable amount of time
as well as resources. Therefore we should introduce new
approach instead of brute force search. There are 5,250,000
hashes in our data base, number of unique hashes equal to
220 = 1,048,576 if hash value consists with 20 bits. It is
approximately one fifth of the database. The other thing is
number of unique hash values independent from the number
of songs. According to above observation we suggest a
database structure like Figure 5.

D. Post processing

We extract metadata related to the song and then
generate a complete report which contains metadata like
song title, singer, musician and some other important
information such as when it was played and duration of the
song and so on. We extract a small segment of actually
matched song when it was playing. We can use that clip
to verify the matching process, whether it is correct or not.
But it is a manual process.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

4 © 2013 GSTF

Figure 6. The system flow diagram. There are three entities song (mp3) repository, radio source and any third party. First two entities supply the inputs
to the system and third entity interest to get the output. Adio fingerprint store and matched songs are data stores, others are system processes.

Figure 5. Proposed database Structure. This is the look-up table
design for speed matching. One or more songs can attach with a same hash
value. When we are matching a hash value, we can get sets of songs
related to it. Continuing this process for all hashes, we can score sets of
songs and finally can get the most valued song.

IV. IMPLEMENTATION

In this section we will discuss the implementation details
in respect to the proposed approach in design section. Flow
of the implementation is almost similar to the flow of the
design. Consider the Figure 6, it shows the flow of our
system. In this section we will discuss only major process
since most of process were discussed during the design
section.

There are two major parts, the first part is the song
registration and the second part is the matching part.
Consider top left corner of the Figure 6. Songs (mp3)
repository, register songs, generate fingerprint and audio
fingerprint store are belonged to the first part and rest of
objects belong to the second part.

A. System Entities
There are three entities of the flow diagram, refer the

Figure 6. We will discuss each and every entity.

1) Song (mp3) Repository: before going to the matching
or monitoring process we have to register songs. This is the
main input entity to the system which consists with huge
number of songs in mp3 format. Mp3 format is the mostly
available song format, therefore we use this format as the
input song format.

2) Radio Source: this is also a input entity to the system.
We can use any radio channel’s output as input audio
stream to the system. As we already discuss, we use
sound card line-in interface to connect a radio output to the
system. Instead of it, we can use external or USB radio card
adapter (or TV card adapter which is consisted with radio).
The second option is more user friendly and can be used
easily. If this radio source can give high quality output then
we can expect highly accurate results from the system.
However we can’t prevent the external effects such as noise,
but fortunately these kinds of effects can be handled by
the proposed system.

3) Third Party: this is a report which can be use as the
system output. Any third party who is interest about this
report, such as singer, writer of the song, musician and so
on can use this report for their reference.

B. System Data Stores
There are two data stores. Major data store is the finger-

print store. We prepare sets of fingerprints at the end of song
registration process and store them for future usage. Figure
7 shows the architecture of this data store. After obtaining
correct match, we will store these information in a data store
which is the second data store in the system and has been
denoted as ”Matched songs” in the Figure 6.

C. System Process
1) Register Songs: Under this process, we insert (register)

songs to the database. We can match only registered songs
from the system. Therefore we can use pure, high quality
and completed versions of songs.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

5 © 2013 GSTF

Figure 7. Database model

During this process, we collect related metadata, which
will be shown in the final report. Each song is assigned a
unique id which will be used by other process.

2) Generate Fingerprint: This is the most important
process of our system. We developed our approach based on
the idea we proposed in design phase [11]. As we mentioned
in design phase, peaks are the most stable feature in any kind
of audio object. To extract peaks related features, we follow
set of steps.

First we perform STFT on each frame. Figure 8 shows all
the parameters we used for this. Then we calculated
frequencies on each window and created a complex matrix
which contains set of frequencies against the time. In other
word this matrix contains 256 (overlapping samples) rows of
frequencies and K columns where,

K = lengthof signaloverlappinglength

length(window)−overlappinglength

Before move to the next step, normal frequency values
are converted into log scale ones to mitigate the large scale
variations. Then, we take the local peaks frequencies and
create a vector which contains all local peaks. To extract
global peaks we used following method. If an element is
greater than both top and bottom element then it will be
taken as a global peak. In Figure 9, it shows a particular
column (for convenience it is represented in
horizontally).

Then we combine extracted peaks frequency and local
time differences in some manner in order to create unique
hash value. Thereafter we store these peaks in a database
table.

3) Monitor Radio Channel: This process is very impor-
tant since overall system accuracy is depended on this. Once
we started to monitor or buffer particular radio channel, then
it should be continue until the radio is switch off. However at
the meantime, short time buffered audio clip has to be

Figure 8. Parameters for STFT. We used 512 length windows with
256 overlapping samples. Then frequencies are calculated on each frame.

Figure 9. Local peaks extraction. If an element is greater than both left
and right element then it is taken as a local peak. Elected local peaks are
shown as a circle.

processed. Otherwise at the end of some period of time, (for
an example at the end of the day) we have to deal with
very large audio stream (i.e. 24 hours lengthy audio clip).
Because of this issue, we take five minutes long audio clip
and then it is processed before considering the next buffered
audio clip. But this approach will introduce another problem.
If we follow this approach then we can’t obtain continues
audio stream since to process a five minutes long audio clip
it will take some period of time, for an example one minute.
According to this, it will lead to miss one minute long
audio clip before we buffer next 5 minutes long audio clip.

As a solution to this problem, we used two simultaneous
threads, one thread is responsible for buffering five minutes
long audio stream and other one is responsible for
processing buffered clip simultaneously, refer the Figure
10.

Figure 10. Buffering and Processing Using Two Threads

4) Extract Songs: The input to this process is a 40

minutes long audio clip which may be a part of a song,

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

6 © 2013 GSTF

a part of a drama, a part of a conversation, a part of
a talk or a commercial and so on. If we direct each and
every frame for further processing, then it will consume
system resources unnecessarily. Our main interest is to
identify the song. Therefore, in this module, we always try
to filter out only the frames of the songs from the other
audio objects and direct only those frames for further
processing. We used no. of silences based approach to
extract songs.

We used very simple technique to do this since we
need not expect 100% accuracy from this module. There
is another barrier which is song detection process. If a
non-song object is filtered out then it will not be matched
with any song in the database. Therefore we expect from
this module to increase the system efficiency. As we
discussed in the design phase, we consider the number of
silences which are laid on 40 seconds long frame to
distinguish the songs. What is meant by silence?

Silence: audio signal should be spread below to some
level (it may not be a fixed value) as well as it should be
hold some duration of time.

What we have done here is that calculated the average
sample value for 40 second long clip. And we consider
positions which are laid below to this average level (0.25
seconds) as silences, refer the Figure 11. If there are more
silences than predefined threshold then it is omitted as non-
song objects.

Figure 11. Detecting silences. Area of the transparent bar denotes the
averaged signal and we can see there are about two silences in this
clip according to our silence definition.

5) Speed Adjustment: In this section we discuss the

approximate matching and selecting process. At the 99%
of time we can’t expect perfect matching between unknown
clip and original clip which is in the database. We discussed
the reasons for this in the introduction. Consider an
unknown audio clip and the most matching clip for that
unknown clip. We can coincide these two audio clips to
observe the similarities. Figure 12 shows such a situation.
Positions like P1 and P3, two clips coincide properly (no
considerable dissimilarities). But two clips are not coincided
during the position P2. Practically we get these kind of
situation most of the time (actually we get the mixer of
P1, P2 and P3).

What we did here is that consider only matching peaks
and present it as a percentage against the number of overall
peaks. Through vast number of experiments, we obtained
some threshold value. If matching percentage is greater than
or equal to this threshold value. we extract it as a matching
clip to the given unknown clip. There may be more than

Figure 12. Coinciding Unknown Clip and Its Most Matched Clip

one matching clips, if so we extract the highest score one.
Suppose there is no at least one matching clip then what we
can do. This situation is possible due to number of reasons;
we will discuss this problem in the next section. If there is
no at least one matching clip then we move to the
“Speed Adjustment” process.

6) Speed Adjustment: Sometimes songs may broadcast
with a small playback speed variation, either slower speed
or higher speed than the normal speed because of some
faults of playing device. Listener’s auditory system may not
be sensitive enough to hear these speed differences. But this
may cause to decrease the overall system accuracy.

We solve this problem using some speed adjustment
algorithm. We can match unknown clip against the database
songs by changing the speed. After doing some experiments
we found specific speed range that that can practically
happen. We change the playback speed under maximum +-
5% limit. We do this step by step and in each step we try to
find matching song. If a matching song is found then we
stop the process before reaching the maximum limit.

7) Generate Report: This is the final process of our
system. We already have sets of matched song ids.
Therefore generating a report is quite easy. We are not going
to discuss this process in detail. We have provided some sort
of facility to generate reports via internet. But to do this user
should have permission or authentication to access data.

V. EVALUATIONS

In this section we evaluate our implementation and ana-
lyze the obtained results. To evaluate the system properly, we
should insert considerable amount of songs into the database.
Otherwise result may not accurate due to absence of variety
of songs. As the first step, we take collection of songs which
belongs to various genres. Finally we inserted 1200 songs
considering following factors.

• Different genres such as classical, POP, Rock, Jazz
and so on

• Combinations of singers like male, female and
duets

• Songs with different energies
• Different languages like Sinhala, English and Hindi
• Different ages of singers
After adding 1200 songs, our database consist of

2,267,329 fingerprints which is not a small number.
Therefore we will get very fair and unbiased results from our
experiments.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

7 © 2013 GSTF

We divide our evaluation into major three parts which are
performance evaluation, accuracy evaluation and song
extraction accuracy evaluation. We execute all the test
cases on a Desktop computer with this configuration. Os:
Windows7 (64 bit), RAM: 4 GB, Processor: Intel core i3,
Processor Speed: 3.1 GHz.

A. Performance Evaluation
This is a real time system. It means we process

audio clips while they are broadcasting. Therefore
execution time is really important factor in this case. As
we discussed in the implementation, we buffer five minutes
long audio clip before it is conveyed to process. While
first clip is processing, next audio clip is buffered
simultaneously. According to this scenario, we can’t reduce
the buffering time (it takes obviously five minutes). Our aim
was to process each five minutes long audio clip within next
five minutes. If we can achieve this then we can say that our
system performance is at optimal level.

As we already know, we always process 40 seconds long
audio clips. Here we observe processing times of 500 frames.
Then we draw dot-plot using these time values, refer the
Figure 13. According to this figure, mean processing time
is 8.1375 seconds. It is very small value and we can say
that our system approximately takes only one fourth of the
duration of a particular clip for the processing.

Figure 13. The distribution of frames processing time in seconds
and important statistical results.

When we talk about the execution speed, time taken to add

a song to the database is another important value. Therefore
we observed song insertion (or registration) time by adding
500 songs into the data base. Then we prepare a dot-plot
using obtained results, refer the Figure 14. Average song
registration time of these songs is 14.13 seconds. However,
this value is depended on the duration of the song.

B. Accuracy Evaluation
In this section we will evaluate the accuracy of our

system. To do this we did the following tests. Accuracy
evaluation is not a trivial task for this kind of system since
radio channel can broadcast anything with any combination.
We have to consider all of these scenarios since system
reactions may depend on these scenarios.

Figure 14. The Distribution of Songs Registration Time in Seconds and
Related Statistical Results

Therefore we prepare several test cases which are
commonly occurred on a radio channels. Then we
collected considerable amount of examples for each
case. After that we observed what the system respond for
these cases. Let’s consider only major test cases one by one
with statistical representations.

• Test Case 1(General Case):
In this test case we tested the system for normal song

with completed, high quality without any noisy,
commercials, water marks. We took twenty random songs
which are already in the database and twenty other songs
which are not currently in the database. Then execute our
system for this test case.

System provides three kinds of outputs for this case.
System can identify an unknown song as the correct one
or system can totally omit one or more unknown song
(without matching correctly or incorrectly) or system can
introduce completely new one or more song(s) as matched
ones. We have achieved 97.56% success in this general
case as well as 2.44% error rate which was happened due to
incorrect match. System could identified all exist songs
correctly as well as not exist songs, were totally omitted
without matching with any existing songs. But system
introduced a completely new song as a match therefore it is
an error, refer the Figure 15.

• Test Case 2(Optimal Duration of Audio Clip):
In this case we tested to identify ”required minimum

broadcasting duration” of a song to be matched correctly.
Again we selected ten random songs which are currently in
the database and ten other songs which are not currently in
the database. Then we extract 10 seconds from each and
every songs, 15 seconds from each and every songs, 20
seconds, 25 seconds and so on up to 40 seconds.

After this, we tested our system for each and every
scenario. Results are shown in the Figure 16. According to
the Figure 16, it should play more than 35 seconds to
identify a clip correctly. The detection rate is decreased
gradually when playing duration is decreased. Therefore
we select 40 seconds as the optimal duration for the
framing process.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

8 © 2013 GSTF

Figure 15. Results distribution of the general case (Test Case 1)

Figure 16. Song detection percentage against the clip durations(s)

 • Test Case 3 (Sequence of Songs from Same Singer):
In this test case we tested the system behavior when more

than one song is playing as a stream without any silent in
between two songs. Most of the time we feel that songs
which are sang by the same singer are similar. Therefore
there is a high probability to match a song with incorrect
one of the same singer.

This probability may increase when two songs from the
same singer fall in to the same frame. Therefore we select
ten singers and three songs from each singer which are
currently in the database. Then these three songs are
appended one after the other so that we obtained 10 clips.
Also we create similar data set for songs which are not
currently in the database. Ultimately we obtained 60 songs,
and then we direct all these songs to the system. Obtained
results are shown in the Figure 17.

According to the Figure 17, we have achieved 87.10%
success and 12.9% error. As we mentioned earlier, when
two songs fall into a single frame then it may detected as
incorrect song. Fortunately these kinds of cases are very rare
in real broadcasting environment.

Figure 17. Three Songs from a Singer are Joined One after the
other. Result distribution against this case.

We did the same test for different singers instead of same
singer as well. Two songs can be mapped to the same frame.
As above test, we prepared 60 songs and tested the system
for this test case. In this case, we have achieved 90.16%
success and 9.84% error. However this is also a rare case.

• Test Case 4 (Test for Non-song Objects):
We tested the system behavior for non-song object such as

dramas, commercials, talks, discussions and so on. We
recorded actual non- song object from radio channels then
tested the system on this audio clips. We directed 60 frames
to the system. The system did not match any frame with a
song in the database. All frames were skipped, and therefore
we achieved 100% accuracy in this case.

• Test Case 5 (Test for Position Independency):
In this test case we tested two things. The first is to test

the system behavior when a part of a song is presented and
the second test is to test how the system behaves when we
present a part of a song with position independent. Radio
channel can play a part of a song which can be extracted
from anywhere of the song. To test this, we extract 100
seconds long clip from a random position of the song. Again
we extract ten, 100 seconds long clips from songs which are
currently in the database and ten other songs having 100
seconds long clips from songs which are currently not in the
database. Then these 20 cases are directed to the system.
Obtained results are shown in the Figure 18.

• Test Case 6 (Adding Commercials at the Middle of
Song):

When we are listening to a radio channel you can hear
playing some commercials in the middle of a song. During
the song, first they stop the currently playing song and then
play some commercial for a short time and then continue the
same song again. In this test case, we observe the system
behavior against these kinds of scenarios. As the previous
test cases, we select 10 such songs currently in the database
and 10 other songs which are not currently in the database.
Then we tested the system on these cases. Figure 19 shows
the obtained results.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

9 © 2013 GSTF

Figure 18. Behavior of the system against position independent
short time(100 s) clips

Figure 19. When playing commercials at the middle of the song

• Test Case 7 (Songs with Background Watermark):
Usually radio channels add some commercials or talks

as watermarks. In this test case song is not stopped
while commercials are also playing in the background.
There are major two kinds of watermarks. First one is that
volume of the song is reduced up to some level so that
the emphasis on the commercial. The other one is that
song and commercial are played at the normal volume
but we can hear song and commercial separately.
Normally the second one is used for short time
commercials. In this test case, we take 10 samples from
the first scenario and 10 from the second scenario. We
achieved 100% accuracy for this case as well. We can
conclude that the background watermarks are not a
problem at all for our system. Actually our framing
module helps us very much in this case.

 • Test Case 8 (Songs Destroyed by Noisy):

This is the most important and the most probable test case.
When we are listening to a radio, hearing noises is obvious
due to several factors. Noises can be added to the radio
channel due to improper channel frequency tuning,
environmental disturbances, weak radio signal strength and

so on. In this test case we test the noisy level which can
be handled by the system. We generate different levels of
continuous noises and added them to the tested song. First
we generate a noisy with the amplitude level of 0.1, then it is
mixed with 10 songs which are already in the database and
10 other songs which are not already in the database. This
process is repeated by changing the noisy level from 0.10
to 0.50. Ultimately we generate 180 noisy destroyed songs
then we tested the system on this test data. Obtained
accuracy level is shown in the Figure 20.

Figure 20. Accuracy of Noisy Destroyed Songs

We have achieved higher accuracy level even if song is
completely destroyed by the noisy with the amplitude level
of 0.5. However, noisy is not held throughout the song when
we come to real situation. Therefore we can expect higher
accuracy rate than this.

C. Song Extraction Accuracy Evaluation

We already know that this module is used to separate
song object from the others. To evaluate this module we
first extract only pure non-song objects such as
commercials, talks, conversations, dramas, educational
programs like quizzes, news and so on from real
broadcasted audio stream. We prepared 300 frames for this
(i.e. approximately 3.33 hours long audio stream).
Thereafter we directed these frames to the song extraction
module. This module can identify each frame as a non-
song object or as a song object. We do the same to actual
song objects. It is really easy since we can take sets of
various songs and test the module on this data. We test the
system using 800 frames. It is equal to 150 songs. Behavior
of the module is shown in the Figure 21.

Our system can remove 57% non-song object correctly.
Approximately system resources are not wasted if the frame
is a non-song object. Therefore this module can speed up the
system by 57% as well as reduce the unnecessary
utilizations of system resources. This is a considerable
advantage provided to our system by this module.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

10 © 2013 GSTF

Figure 21. Results distribution of song extraction module

D. Summary of the System Accuracy

We tested our system against the various kinds of test
cases. To get an overall idea about the system accuracy,
we can summarize the obtained results. Table I shows the
summary of the obtained results.

Table I

OV E R A L L SU M M A RY OF T H E TE S T CA S E S

Test Case Error

Rate (%)
Success
Rate (%)

General Case 2.439 97.561
Sequence of Songs from the Same Singer 12.903 87.097
Sequence of Songs from Different Singers 9.836 90.164
Continuous Non-song Objects 0 100
Short Position Independent Clips 5 95
Adding Commercials at the Middle of Song 0 100
Songs with Background Watermark 0 100
Noisy Destroyed Songs 5 95
Different Songs with the Same Melody 0 100
Overall Accuracy Level 3.909 96.091

VI. CONCLUSION

Let’s recall the problem which we tried to take in hand
through- out this research. Radio broadcast monitoring is a
still manual process, especially in developing countries. At
the end of this manual process, they generate some sort
of reports including the details of broadcasted song
history. Thereafter the owners of the songs will be paid
accordingly. This is a tedious and difficult task.

We provide a highly robust audio monitoring approach for
radio broadcasting as the solution for the proposed research
problem here. Our proposed approach achieved overall 96%
accuracy in recognition of songs broadcast over radio
channels. Thus, system can successfully handle almost all
real situations which occur in an actual radio broadcasting
environment. We prove that capability in the section V. Our
approach does not require any additional hardware. Thus,
we can conclude that our approach can be used to monitor
radio broadcasting channels with high accuracy, high
efficiency and low cost.

VII. FUTURE WORKS

We can suggest that there is a room for greater
improvement of our system and other systems in general.
For instance, radio station can play a song with different
pitch, tempo, with or without echo and so on. In future, our
research can be extend to identify different versions of same
song from the copyright point of view. Therefore, we can
extend our research in order to classify these versions of the
same song into the same class.

We used relational database to store hashes and other re-
lated data. But we can't maintain RDB when database grows.
So we have to use some novel approach like distributed
database in order to cope with this problem. Further, we
can classify songs based on genre into sets of groups. This
will reduce the search space. So we can join our research
with some genre classification approach to achieve better
results.

ACKNOWLEDGMENT

I offer my sincerest gratitude to my supervisor Dr.
Lakshman Jayaratne, who has supported me throughout my
research. I would like to thank Mr. Dulan Watugala for
motivating and coordinating the project. I would also like to
show my gratitude to Mr. Brian Wijesuriya for supporting
me. Finally thank everybody who contributed to the
successful realization of my project.

REFERENCES

[1] J. Haitsma and T. Kalker, “A highly robust audio finger-
printing system,” in Proc Int Symp Music Info Retrieval
(M. Fingerhut, ed.), vol. 32, pp. 107–115, Ircam - Centre
Pompidou, 2002.

[2] M. Miller, M. Rodriguez, and I. Cox, “Audio fingerprinting:

Nearest neighbor search in high dimensional binary spaces,”
The Journal of VLSI Signal ProcessingSystems for Signal
Image and Video Technology, vol. 41, no. 3, pp. 182–185,
2002.

[3] G. Reynolds, D. Barry, T. Burke, and E. Coyle, “Towards a

personal automatic music playlist generation alogorithm: the
need for contextual information,” in Conference papers, p. 11,
2007.

[4] A. de Almeida Guimarães, “The rds (radio data system) as a
transmission way of information for automotive vehicles,”
2000.

[5] B. Denby, O. Romain, and S. Hariti, “A software radio ap-

proach to commercial fm content indexing,” in 11th Interna-
tional Workshop on Systems, Signals and Image Processing,
IWSSIP, vol. 4, pp. 13–15, 2004.

[6] D. Kopitz and B. Marks, RDS: the radio data system. Artech

House, 1999.

[7] Cox, M. Miller, and J. Bloom, “Watermarking applications and
their properties,” in Information Technology: Coding and
Computing, 2000. Proceedings. International Conference on,
pp. 6–10, IEEE, 2000.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

11 © 2013 GSTF

[8] H. Neuschmied, H. Mayer, and E. Batlle, “Content-based
identification of audio titles on the internet,” in Web De-
livering of Music, 2001. Proceedings. First International
Conference on, pp. 96–100, IEEE, 2001.

[9] P. Cano, E. Batlle, H. Mayer, and H. Neuschmied, “Robust sound

modeling for song detection in broadcast audio,” Proc. AES 112th
Int. Conv, pp. 1–7, 2002.

[10] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of

audio fingerprinting,” The Journal of VLSI Signal Processing, vol.
41, no. 3, pp. 271–284, 2005.

[11] A. Wang, “An industrial strength audio search algorithm,” in
International Conference on Music Information Retrieval
(ISMIR), vol. 2, 2003.

Nishan Senevirathna is currently a fourth
year computer science undergraduate at
University of Colombo School of
Computing, Sri Lanka. His research
interests include Multimedia computing,
Image processing, High performance
computing and Human computer
interaction.

Dr. Lakshman Jayaratne - (Ph.D.
(UWS), B.Sc. (SL), MACS, MCS(SL),
MIEEE) obtained his B.Sc (Hons) in
Computer Science from the University of
Colombo, Sri Lanka in 1992. He obtained
his PhD degree in Information Technology
in 2006 from the University of Western
Sydney, Sydney, Australia. He is working as
a Senior Lecturer at the University of
Colombo School of Computing (UCSC),
University of Colombo. He has wide
experience in actively engaging in IT
consultancies for public and private sector
organizations in Sri Lanka. At present, he
is working as a Research Advisor to
Ministry of Defense, Sri Lanka. Also he
is the present President of Chapter of Sri
Lanka, IEEE. His research interest includes
Multimedia Information Management,
Multimedia Databases, Intelligent Human-
Web Interaction, Web Information
Management and Retrieval, and Web
Search Optimization.

GSTF Journal on Computing (JoC) Vol.3 No.2, July 2013

12 © 2013 GSTF

