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Abstract—Proposing  a novel approach for monitoring 
songs for  the  radio   broadcasting  channels   is  very  
important  for the  interest  of singers,  writers  and  
musicians  in  the  musical industry.   Singers,   writers   and  
musicians   have  a  claim   to intellectual property  rights  
for  their  songs broadcast over  all the  radio  channels.   
According   to  this  intellectual   property rights act  
singers,  writers  and  musicians  should  be  paid  for their 
songs broadcast over all the radio channels. Therefore  we 
propose  a  real time  audio  monitoring approach  to solve 
this problem  which includes our  own audio  recognition 
algorithm.  It is easy  to recognize  a song, when  you provide  
the  original high quality blueprint of the song as input. But 
we can’t expect such  kind  of  audio  input  from  radio  
channels  since  lots  of transformations are  possible  before  
reaching the  end  user  or listener.  For  example,  adding  
environmental  effects  such  as noise, adding commercials 
on the song as watermarks, playing more  than  one  song  
as  a  chain  without  adding  any  silence between them, 
playing a part  of the song, playing same song in various  
speeds and so on. These transformations cause change in  
the  uniqueness  of particular song  and  make  the  problem 
even more difficult. The algorithm we proposing  is resistant 
to noise and distortion as well as it is capable of recognizing 
short segment  of song when  broadcasting over  the  radio  
channels. At the end of the processing our system generates  
a descriptive report including  title of the song, singer of the 
song, writer  of the song, composer  of the song, number of 
times it was played and when it was played for all songs for 
a particular period for all radio broadcasting channels. We 
evaluate our system against various types of real time 
scenarios and achieved overall higher level of accuracy 
(96%)  at the end. 
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I.  INTRODUCTION 

 

Since the beginning of the human life sounds, voices 
and noises are attached to their lives. A song is some sort 
of  arrangement  of  sounds  in  time.  Usually  humans  like 
to  collect  songs  as  repositories  which  they  call  albums. 
The need of songs classification and identification has risen 
as  a  result  of  the  speedy  growth  of  these  repositories. 
Audio  recognition  isn’t  very  easy  task.  Therefore  this  
is still an open research area. The song recognition problem 
becomes a more difficult problem when we step in to the 
radio broadcast monitoring. We can’t expect the high quality 
original blueprint from broadcasted radio streams since lot 
of transformations and alterations are possible. 

Radio broadcast monitoring is still a manual process and it 

requires lots of man power as well as it is still a very costly 
operation [1]. Nowadays, there are so many radio 
channels as well as huge number of songs are 
broadcasting on each channel in a day. Therefore the 
process of manual song monitoring cannot be carried out 
further with high quality. The importance of the novel 
monitoring process is that it should guarantee the copyright 
enforcement of radio broadcast songs. This is the problem 
we will take into account throughout this research. 

Identifying an object by examining the meta-data associ- 
ated with it, is very straightforward if that object is a text 
file. But we can’t recognize multimedia objects easily 
without using proper content-based identification 
techniques. Content of a song is its acoustic qualities of 
audio  such as wave pattern, beat frequencies distribution 
and so on. Before applying content-based identification 
(CBID) techniques for radio broadcast monitoring, we have 
to consider the following challenges. 

• The radio channel may modify the original song 
by adding commercial or some other unwanted 
things. 

• A part of a song may be missed or chain of songs 
may be played continuously. 

• Audio signal can suffer from several 
transformations (such as noisy) before reaching 
the listener. 

Our solution considers all of these challenges and we 
propose a highly robust novel approach in order to solve  
this problem.  

Audio fingerprinting is a well known approach, 
which uses to identify a particular audio clip [1][2]. 
Audio fingerprinting is a CBID technique.  

Two approaches of audio fingerprinting differ from one 
another from the feature extraction. We propose highly 
suitable feature extraction technique for this audio broadcast 
monitoring problem. 

Finally we prepare a summary report as the output which 
contains  all  necessary details  such  as  available  metadata 
such as author of the song, musician and singer, time of 
the broadcast, information about the channel and so on.  

Rest  of  this  paper  is  organized as  follows.  Section II 
provides a review of the related background. We discuss  
the  design  of  the  system  in  the  section  III.  We prove 
the achievability of our proposed solution under the 
implementation in section IV. Then we will evaluate the 
proposed system using obtained results in the section V. 

A Highly Robust Audio Monitoring System 
for Radio Broadcasting 
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Finally we mention our concluding remarks and 
suggestions for future works in section VI and VII 
respectively. 
 

II.  RELATED WORK 

According to the literature, there are number of applica- 
tions for audio fingerprinting [1] like identify a song using 
mo- bile phones, filtering technology for file sharing, 
automatic music  library  organization,  automatic play-list 
generation and broadcast monitoring and so on. 

A playlist may define as a finite sequence of songs which  
is  played  as  a  complete  set  [3].  Playlist  can  be seen  as  
two  point  of  view.  Firstly songs  listener prepare playlists 
before songs are actually played. Secondly songs 
broadcasted over the radio channel is interest to prepare 
playlists  after songs are actually played. In this research 
we consider the second one. Next, let’s consider well-know 
audio identification methodologies in this research area. 

 
A. Radio Data System (RDS) 

Radio Data System (RDS) is a communication protocol 
which uses to transmit information such as song’s metadata. 
RDS enable receivers can view embedded RDS messages. 
The European Broadcasting Union (EBU) member countries 
introduced this technology and mainly used to transfer road 
traffic information to FM car radio [4][5]. We can use same 
concept for broadcast monitoring. 

Required  meta-data  are  encoded  to  FM  carrier  wave 
during  the  modulation  stage.  Then  receiver  can  decode 
the message and access these meta-data. We can use this 
approach to generate broadcasted play-list but RDS is not 
enabled in most of countries. Further, RDS system has some 
drawbacks [6]. 

The radio data signals must be suitable to transfer RDS 
messages. It means they must not make any interference to 
the reception of sound. To access RDS data reliably, recipi- 
ent should have better signal. Usually particular message is 
embedded to one or more places on a song, therefore part 
of a song may not be sufficient to identify the song[6]. 
However we can use RDS technology to generate playlists. 

 
B. Audio Watermarking 

Audio watermarking technique is almost similar to RDS 
system, it works embedding particular message without 
altering the perception of the sound. We can use this to detect 
copyright  infringement  and  variety  of  other  applications 
such as broadcast monitoring, owner identification, proof of 
ownership and so on [7]. Broadcast monitoring is one of the 
major applications of audio watermarking. Any interested 
third party can use audio watermark to identify particular 
song or any other audio clip. Audio watermark is put into 
particular song prior to broadcast. Usually watermark cannot 
be removed or changed by a third party. 

However, watermarking approach consists of several 
drawbacks  which restrict the  usage [8].  Really inaudible 

watermark development is very challenging task especially 
when we are dealing with compressed audio formats like 
MP3. As well as, there is no choice for already released 
material. According to the section A and B we can say that 
RDS and audio watermarking approaches consider specific 
features (such as a message) or additional information which 
is embedded to an audio clip. Because of that, we can’t use 
these methods for any audio song. 
 

C. Content Based Audio Identification 
Content  based  identification  techniques  are  based  on 

the acoustic qualities of audio. Different feature extraction 
mechanism needs different system implementations. 

Audio fingerprinting is a well known but emerging content 
based audio identification technology. Our solution is also 
based on the audio fingerprinting technology. First acoustic 
relevant characteristics are extracted from a given audio con- 
tent and then they are stored in the database in compressed 
manner. Figure 1 shows the flow of the Audio fingerprinting 
approach. Audio fingerprint is a compact representation or 
 

 
 
Figure 1.    Flow of the audio fingerprinting approach. This  consists with 
major two stages, populating the database  and content identification. 
In the  populating the  database  stage,  we  extract  fingerprint from  
original high quality  completed songs. Then they are stored in the 
database  with the related metadata. After this stage we can identify  the 
songs (content identification stage) which are in the database. We extract 
fingerprints again from the unknown  segment of song. Then those are 
directed to matching process and recognize the highest confidence one 
[9]. 
 
signature of  full  quality large  audio object. It  is  exactly 
similar to the crypto graphical hash value of a large message. 
Instead of compare large audio object we can compare small 
fingerprint in order to find the most similar audio object [1]. 
According to the [1] there are several advantages of using 
audio fingerprint instead of large audio file itself. 

• Audio fingerprint takes very law memory to 
store therefore it reduces storage requirement 

• Since audio fingerprint is too small, it makes 
efficient comparison 

• Perceptual similarities should not consider when 
two fingerprints are  matching  as  perceptual  
irrelevancies have already been removed 
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According to the [1][4], we have to consider sets of proper- 
ties when we are introducing new audio fingerprinting ap- 
proach. These are accuracy, reliability, robustness, security, 
versatility, scalability, complexity and so on. 

According to the most of the researches any audio finger- 
printing approach consists of several major steps, and Figure 
2 shows the flow of these steps. 

 

 
 

Figure 2.    Major steps of the audio fingerprinting. One  approach differs 
from the others from implementations of each step. Therefore accuracy and 
reliability depend on the implementation. Preprocessing stage highly depend 
on the application it may be completely ignore in some cases. In the framing 
stage, divide input signal into several overlapping frames. Then apply some 
sort of transformations such as  short time Fourier transformation. 
Then extract some unique features after this step we can transform the 
output in order to satisfy our final objective [10]. 

 
 

D. Concept of AudioDNA 
This is another content based audio identification method- 

ology. This is highly scalable system for the automatic 
identification of audio [8]. 

Any audio stream can be seen as sequences of acoustic 
events. AudioDNA approach replaces every acoustic event 
by a letter in order to obtain audio gene. Such sequences 
use  to  identify  a  song  or  compare  two  or  more  audio 
songs together. AudioDNA is a sequence of audio genes 
which  are extracted from a piece of music. Most of the 
things are much closed to audio fingerprinting schema but 
searching or matching algorithm is different from each oth- 
ers. AudioDNA matching algorithm consists with two main 
processing steps, exact matching and approximate matching 
like audio fingerprinting. Both of them use FASTA searching 
algorithm which is most effective practical searching method 
of biological gene sequences. 

 
III.  SYSTEM DESIGN 

In this section we will discuss the design of our approach 
with solutions for already realized problems. We divide this 
section into set of sub parts in order to discuss major steps 
clearly. 

First of all we have to realize clearly the problems, we are 
going to solve. These problems (challenges) are the design 
considerations. We tackle each and every challenge step by 
step. Followings are the design considerations in our design. 

• Songs may be destroyed by noise or any other 
external effects 

• Commercials or talks may be added while 
playing a song 

• Part of a song may be broadcasted 
• Distinguish songs from other items such as 

advertisement 
• Scalability issue, i.e.  our  design  should  be  able  

to handle millions of songs 
In order to tackle above considerations  we  design  our 
approach as the Figure 3 which shows the flow of the design. 
 
 

 
 
Figure 3.   The overall flow of the design. There are four major parts, each 
one can be divided further. 
 
 
A. Preprocessing 

We transform the raw radio stream into some sort of 
audio object/s which can be manipulated easily. We use the 
audio sound card line-in hardware interface to import the 
audio stream into the working environment. Radio channel 
should be tuned properly, however noisy can be added to the 
stream. But it is not a problem since these are not hold for a 
longer period. Short time noisy will suppress gracefully by 
the proposed system. To buffer audio stream we use 
following strategy. We take 5 minutes long audio stream and 
then it is processed. While it is processing we collect 
simultaneously next 5 minutes and so on. To do this we 
use two threads, it will help us to hold performance at 
optimal level and hold buffering process steadily.
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We separate songs from the mixer of other audio objects. 
This helps us to increase the system efficiency. To separate 
songs from the others, we suggest very simple method, even 
it is failed proposed overall system will work normally. We 
have observed that the most of audio objects consist with set 
of frequent silence except song object. By analyzing the 
pattern of these silence and the time duration between two 
adjacent silences we can distinguish songs from the others 
with high accuracy. We can’t define a silence globally since 
it is depended on the strength of the stream. Therefore we 
consider the mean square root signal of the original signal 
then define a silence as a local value to the current audio 
frame. 

To address the above mentioned design considerations, 
we frame the extracted song into 40 seconds long segments. 
Then each segment is processed. Following above strategy 
we can reduce the effect of unrelated things such as noisy 
and commercial. Here we assume that at least one frame has 
good quality. It is valid assumption since if we can’t find 
at least one 40 seconds long good quality frame out of 
about four minutes long song, then it should not be a song 
at all. 

 
 

B. Feature Extraction 
As the first step, we perform Short Time Fourier Trans- 

formation (STFT) in order to convert time domain signal 
into  frequency  domain. The  reason  is  that  we  can easily 
manipulate, extract frequency related features from a 
frequency domain representation than time domain. 

We extract peaks and other related parameters. As we all 
know noisy and distortions are obvious in the radio 
broadcasting. Therefore we should find candidate features 
that could survive in the noisy or distortion environment. 
According to this [11] we realized that spectrogram peaks 
can be survived in presence of noise, but if the audio clip 
is faced to a distortion then peaks may not be survived. 
But it is not a big problem since framing process will help 
us again to suppress this problem.  

Therefore considerable amount of frames are remain 
unchanged, these frames can be used to identify the song 
and distorted frames are automatically omitted. When 
inserting a songs into the database, we can take original 
ones since it is controlled process. But in the matching 
process, unknown song (or part) can come from anywhere in 
the original song.  

Therefore matching process should function properly 
independent of the position. Consider the Figure 4, it 
shows two adjacent peaks. t1, t2, f1, f2, ∆t and ∆f are 
unique values at the most of time [11]. Using these values 
we create a hash value. If some amounts of hash values are 
matched correctly then we can conclude that the considered 
two objects are same. 

 
 
Figure 4.   Two adjacent peaks and other related parameters. We use these 
parameters to create a unique hash value. 
 
 
C. Searching 

The input to this stage is a set of hash values. Our goal 
is  to  find out  the  most  similar  database  track  for  these 
values. But the challenge is that these two set of hash values 
may  not  be  matched  100%.  Because  of  this  nature,  we 
use the term approximate matching. Assume that unknown 
song is converted into N number of hashes. In this stage, 
matched song ID is obtained for each and every hash from 
set N. After that obtained result is analyzed to identify the 
unknown song. We use scoring based approach to extract 
most matched song. 

Assume that we have inserted 15,000 songs to the 
database. Each song is divided in to 7 frames as well as 
50  hashes  are  extracted  from  each  frame.  According  to 
this database, total number of hashes is 15,000×7×50  = 
5,250,000. Even if brute force search is possible to find a 
matching hash against 5,250,000 hashes, it is not practically 
achievable.  Since this takes considerable amount of time 
as well as resources. Therefore we should introduce new 
approach instead of brute force search. There are 5,250,000 
hashes in our data base, number of unique hashes equal to 
220    = 1,048,576 if hash value consists with 20 bits. It is 
approximately one fifth of the database. The other thing is 
number of unique hash values independent from the number 
of songs. According to above observation we suggest a 
database structure like Figure 5. 
 
D. Post processing 

We extract metadata related to the song and then 
generate a complete report which contains metadata like 
song title, singer, musician and some other important 
information such as when it was played and duration of the 
song and so on. We extract a small segment of actually 
matched song when it was playing. We can use that clip 
to verify the matching process, whether it is correct or not. 
But it is a manual process. 
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Figure 6.    The system flow diagram. There are three entities song (mp3) repository, radio source and any third party. First two entities supply the inputs 
to the system and third entity interest to get the output. Adio fingerprint store and matched songs are data stores, others are system processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.    Proposed database Structure. This is the  look-up  table 
design for speed matching. One or more songs can attach with a same hash 
value. When we are  matching a hash value, we can get sets of songs 
related  to it. Continuing this process for all hashes, we can score  sets of 
songs and finally can get the most valued song. 

 
 

IV.  IMPLEMENTATION 

In this section we will discuss the implementation details 
in respect to the proposed approach in design section. Flow 
of the implementation is almost similar to the flow of the 
design. Consider the Figure 6, it shows the flow of our 
system. In this section we will discuss only major process 
since most of process were discussed during the design 
section. 

There  are  two  major  parts,  the  first part is  the  song 
registration and the second part is the matching part. 
Consider top left corner of the Figure 6. Songs (mp3) 
repository, register  songs,  generate  fingerprint and  audio  
fingerprint store are belonged to the first part and rest of 
objects belong to the second part. 

 

A. System Entities 
There are three entities of the flow diagram, refer the 

Figure 6. We will discuss each and every entity. 

1) Song (mp3) Repository: before going to the matching 
or monitoring process we have to register songs. This is the 
main input entity to the system which consists with huge 
number of songs in mp3 format. Mp3 format is the mostly 
available song format, therefore we use this format as the 
input song format. 

2) Radio Source: this is also a input entity to the system. 
We  can  use  any  radio  channel’s  output  as input audio  
stream to the system. As we already discuss, we use 
sound card line-in interface to connect a radio output to the 
system. Instead of it, we can use external or USB radio card 
adapter (or TV card adapter which is consisted with radio). 
The second option is more user friendly and can be used 
easily. If this radio source can give high quality output then 
we can expect highly accurate results from the system. 
However we can’t prevent the external effects such as noise, 
but fortunately these kinds of effects can be handled by 
the proposed system. 

3) Third  Party:  this  is  a  report which  can be use as the 
system output. Any third party who is interest about this  
report, such as singer, writer of the song, musician and so 
on can use this report for their reference. 
 

B. System Data Stores 
There are two data stores. Major data store is the finger- 

print store. We prepare sets of fingerprints at the end of song 
registration process and store them for future usage. Figure 
7 shows the architecture of this data store. After obtaining 
correct match, we will store these information in a data store 
which is the second data store in the system and has been 
denoted as ”Matched songs” in the Figure 6. 
 

C. System Process 
1) Register Songs: Under this process, we insert (register) 

songs to the database. We can match only registered songs 
from the system. Therefore we can use pure, high quality 
and completed versions of songs. 
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Figure 7.    Database model 
 

 
 

During this process, we collect related metadata, which 
will be shown in the final report. Each song is assigned a 
unique id which will be used by other process. 

2) Generate  Fingerprint:   This  is  the  most  important 
process of our system. We developed our approach based on 
the idea we proposed in design phase [11]. As we mentioned 
in design phase, peaks are the most stable feature in any kind 
of audio object. To extract peaks related features, we follow 
set of steps. 

First we perform STFT on each frame. Figure 8 shows all  
the parameters we used for this. Then we calculated 
frequencies on each window and created a complex matrix 
which contains set of frequencies against the time. In other 
word this matrix contains 256 (overlapping samples) rows of 
frequencies and K columns where, 

 
K =    lengthof signaloverlappinglength   

length(window)−overlappinglength 
 

Before move to the next step, normal frequency values 
are converted into log scale ones to mitigate the large scale 
variations. Then, we take the local peaks frequencies and 
create a vector which contains all local peaks. To extract 
global  peaks  we  used  following  method. If an element is 
greater than both top and bottom element then it will be  
taken  as  a  global  peak. In Figure 9, it shows a particular 
column (for convenience it is represented in 
horizontally). 

Then we combine extracted peaks frequency and local 
time differences in some manner in order to create unique 
hash value. Thereafter we store these peaks in a database 
table. 

3) Monitor Radio Channel: This process is very impor- 
tant since overall system accuracy is depended on this. Once 
we started to monitor or buffer particular radio channel, then 
it should be continue until the radio is switch off. However at 
the meantime, short time buffered audio clip has to be 

 

 
 
Figure 8.    Parameters for STFT. We used 512 length  windows with 
256 overlapping samples. Then frequencies are calculated on each frame. 
 

 
 
Figure 9.    Local peaks extraction. If an element is greater  than both left 
and right element then it is taken as a local peak. Elected local peaks are 
shown as a circle. 
 
 
processed. Otherwise at the end of some period of time, (for 
an example at the end of the day) we have to deal with 
very large audio stream (i.e. 24 hours lengthy audio clip). 
Because of this issue, we take five minutes long audio clip 
and then it is processed before considering the next buffered 
audio clip. But this approach will introduce another problem. 
If we follow this approach then we can’t obtain continues 
audio stream since to process a five minutes long audio clip 
it will take some period of time, for an example one minute. 
According to this, it will lead to miss one minute long 
audio clip before we buffer next 5 minutes long audio clip. 

As a solution to this problem, we used two simultaneous 
threads, one thread is responsible for buffering five minutes 
long audio stream and other one is responsible for 
processing buffered clip simultaneously, refer the Figure 
10. 
 

 
 

Figure 10.    Buffering and Processing Using Two Threads 

 
4) Extract  Songs:  The  input  to  this  process  is  a  40 

minutes long audio clip which may be a part of a song, 
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a  part  of  a  drama,  a  part  of  a  conversation,  a part of 
a talk or a commercial and so on. If we direct each and 
every frame for further processing, then it will consume 
system resources unnecessarily. Our main interest is to 
identify  the song. Therefore, in this module, we always try 
to filter out only the frames of the songs from the other 
audio objects and direct only those frames for further 
processing. We used no. of silences based approach to 
extract songs. 

We  used  very  simple  technique  to  do  this  since  we 
need not expect 100% accuracy from this module. There 
is  another  barrier  which  is  song  detection  process.  If  a 
non-song object is filtered out then it will not be matched 
with any song in the database. Therefore we expect from 
this module to increase the system efficiency. As we 
discussed in the design phase, we consider the number of  
silences which are  laid on  40  seconds long frame to 
distinguish the songs. What is meant by silence? 

Silence:  audio signal should be spread below to some 
level (it may not be a fixed value) as well as it should be 
hold some duration of time. 

What we have done here is that calculated the average  
sample value for 40 second long clip. And we consider 
positions which are laid below to this average level (0.25 
seconds) as silences, refer the Figure 11. If there are more 
silences than predefined threshold then it is omitted as non-
song objects. 

 

 
 

Figure  11. Detecting silences. Area of the transparent bar  denotes the 
averaged signal and we can see there are  about two silences in this 
clip according to our silence definition. 

 
5) Speed  Adjustment: In  this  section  we  discuss  the 

approximate matching and selecting process. At the 99% 
of time we can’t expect perfect matching between unknown 
clip and original clip which is in the database. We discussed 
the  reasons for this in the introduction. Consider an 
unknown  audio  clip  and  the  most  matching clip  for  that 
unknown  clip. We can coincide these two  audio clips to 
observe the similarities. Figure 12 shows such a situation. 
Positions like P1 and P3, two clips coincide properly (no 
considerable dissimilarities). But two clips are not coincided 
during  the  position P2. Practically we  get  these kind  of 
situation most of the time (actually we get the mixer of 
P1, P2 and P3). 

What we did here is that consider only matching peaks 
and present it as a percentage against the number of overall 
peaks. Through vast number of experiments, we obtained 
some threshold value. If matching percentage is greater than 
or equal to this threshold value. we extract it as a matching 
clip to the given unknown clip. There may be more than 

 
 

Figure 12.    Coinciding Unknown Clip and Its Most Matched Clip 
 
one matching clips, if so we extract the highest score one. 
Suppose there is no at least one matching clip then what we 
can do. This situation is possible due to number of reasons; 
we will discuss this problem in the next section. If there is 
no at  least  one  matching clip  then  we  move  to  the  
“Speed Adjustment” process. 

6) Speed Adjustment: Sometimes songs may broadcast 
with a small playback speed variation, either slower speed 
or higher speed than the normal speed because of some 
faults of playing device. Listener’s auditory system may not 
be sensitive enough to hear these speed differences. But this 
may cause to decrease the overall system accuracy. 

We  solve  this  problem  using  some  speed  adjustment 
algorithm. We can match unknown clip against the database 
songs by changing the speed. After doing some experiments 
we found specific speed range that that can practically 
happen. We change the playback speed under maximum +-
5% limit. We do this step by step and in each step we try to 
find matching song. If a matching song is found then we 
stop the process before reaching the maximum limit. 

7) Generate  Report:   This  is  the  final process  of  our 
system. We already have sets of matched song ids. 
Therefore generating a report is quite easy. We are not going 
to discuss this process in detail. We have provided some sort 
of facility to generate reports via internet. But to do this user 
should have permission or authentication to access data. 
 
 

V.  EVALUATIONS 

In this section we evaluate our implementation and ana- 
lyze the obtained results. To evaluate the system properly, we 
should insert considerable amount of songs into the database. 
Otherwise result may not accurate due to absence of variety 
of songs. As the first step, we take collection of songs which 
belongs to various genres. Finally we inserted 1200 songs 
considering following factors. 

• Different genres such as classical, POP, Rock, Jazz 
and so on 

• Combinations of singers like male, female and 
duets 

• Songs with different energies 
• Different languages like Sinhala, English and Hindi 
• Different ages of singers 
After adding 1200 songs, our database consist of 

2,267,329 fingerprints which is not a small number. 
Therefore we will get very fair and unbiased results from our 
experiments. 
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We divide our evaluation into major three parts which are 
performance evaluation, accuracy evaluation and song 
extraction  accuracy evaluation.  We  execute  all  the  test 
cases on a Desktop computer with this configuration. Os: 
Windows7 (64 bit), RAM: 4 GB, Processor: Intel core i3, 
Processor Speed: 3.1 GHz. 

 

A. Performance Evaluation 
This  is  a real  time  system.  It  means  we  process  

audio clips while they are broadcasting. Therefore 
execution time is really important factor in this case. As 
we discussed in the implementation, we buffer five minutes 
long audio clip  before it  is  conveyed  to  process. While 
first clip is processing,  next audio clip is buffered 
simultaneously. According to this scenario, we can’t reduce 
the buffering time (it takes obviously five minutes). Our aim 
was to process each five minutes long audio clip within next 
five minutes. If we can achieve this then we can say that our 
system performance is at optimal level. 

As we already know, we always process 40 seconds long 
audio clips. Here we observe processing times of 500 frames. 
Then we draw dot-plot using these time values, refer the 
Figure 13. According to this figure, mean processing time 
is 8.1375 seconds. It is very small value and we can say 
that our system approximately takes only one fourth of the 
duration of a particular clip for the processing. 

 

 
 

Figure  13. The distribution of frames processing time in  seconds 
and important statistical results. 

 
When we talk about the execution speed, time taken to add 

a song to the database is another important value. Therefore 
we observed song insertion (or registration) time by adding 
500 songs into the data base. Then we prepare a dot-plot 
using obtained results, refer the Figure 14. Average song 
registration time of these songs is 14.13 seconds. However, 
this value is depended on the duration of the song. 

 

B. Accuracy Evaluation 
In this section we will evaluate the accuracy of our 

system. To do this we did the following tests. Accuracy 
evaluation is not a trivial task for this kind of system since 
radio channel can broadcast anything with any combination. 
We  have  to  consider all of  these scenarios since system 
reactions may depend on these scenarios. 

 

 
 
Figure 14.    The Distribution of Songs Registration Time in Seconds and 
Related Statistical Results 
 

Therefore we prepare several test cases which are 
commonly occurred   on   a   radio   channels.   Then   we   
collected considerable  amount  of  examples  for  each  
case.  After that we observed what the system respond for 
these cases. Let’s consider only major test cases one by one 
with statistical representations. 
 

• Test Case 1(General  Case):  
In this test case we tested the  system  for  normal song 

with completed,  high  quality without any noisy, 
commercials, water marks. We took twenty random songs 
which are already in the database and twenty other songs 
which are not currently in the database. Then execute our 
system for this test case. 

System  provides  three  kinds  of  outputs for this case. 
System can identify an unknown song as the  correct one  
or  system can  totally omit  one  or  more unknown song 
(without matching correctly or incorrectly) or system can 
introduce completely new one or more song(s) as  matched  
ones.  We  have  achieved  97.56%  success  in this general 
case as well as 2.44% error rate which was happened due to 
incorrect match. System could identified all exist songs 
correctly as well as not exist songs, were totally omitted 
without matching with any existing songs. But system 
introduced a completely new song as a match therefore it is 
an error, refer the Figure 15. 

 
• Test Case 2(Optimal Duration of Audio Clip):   
In this case we tested to identify ”required minimum 

broadcasting duration” of a song to be matched correctly. 
Again we selected ten random songs which are currently in 
the database and ten other songs which are not currently in 
the database. Then we extract 10 seconds from each and 
every songs, 15 seconds from each and every songs, 20 
seconds, 25 seconds and so on up to 40 seconds.  

After this, we tested our system for each and every 
scenario. Results are shown in the Figure 16. According to 
the Figure 16, it should play more than 35 seconds to 
identify a clip correctly. The detection rate is decreased 
gradually when playing duration is decreased. Therefore 
we select 40 seconds as the optimal duration for the 
framing process. 
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Figure 15.    Results distribution of the general case (Test Case 1) 
 
 
 

 
 

Figure 16.    Song detection percentage against the clip durations(s) 
 
 

     •    Test Case 3 (Sequence of Songs from Same Singer): 
In this test case we tested the system behavior when more 

than one song is playing as a stream without any silent in 
between two songs. Most of the time we feel that songs 
which are sang by the same singer are similar. Therefore 
there is a high probability to match a song with incorrect 
one of the same singer.  

This probability may increase when two songs from the 
same singer fall in to the same frame. Therefore we select 
ten singers and three songs from each singer which are 
currently in the database. Then these three songs are 
appended one after the other so that we obtained 10 clips. 
Also we create similar data set for songs which are not 
currently in the database. Ultimately we obtained 60 songs, 
and then we direct all these songs to the system. Obtained 
results are shown in the Figure 17. 

According to the Figure 17, we have achieved 87.10% 
success and 12.9% error. As we mentioned earlier, when 
two songs fall into a single frame then it may detected as 
incorrect song. Fortunately these kinds of cases are very rare 
in real broadcasting environment. 

Figure  17. Three Songs from a Singer are Joined One  after the 
other. Result distribution against this case. 
 
 

We did the same test for different singers instead of same 
singer as well. Two songs can be mapped to the same frame. 
As above test, we prepared 60 songs and tested the system 
for this test case. In this case, we have achieved 90.16% 
success and 9.84% error. However this is also a rare case. 

 
• Test Case 4 (Test for Non-song Objects):   
We tested the system behavior for non-song object such as 

dramas, commercials, talks, discussions and so on. We 
recorded actual non- song object from radio channels then 
tested the system on this audio clips. We directed 60 frames 
to the system. The system did not match any frame with a 
song in the database. All frames were skipped, and  therefore 
we achieved 100% accuracy in this case. 
 

• Test Case 5 (Test for Position Independency):   
In this test case we tested two things. The first is to test 

the system behavior when a part of a song is presented and 
the second test is to test how the system behaves when we 
present a part of a song with position independent. Radio 
channel can play a part of a song which can be extracted 
from anywhere of the song. To test this, we extract 100 
seconds long clip from a random position of the song. Again 
we extract ten, 100 seconds long clips from songs which are 
currently in the database and ten other songs having 100 
seconds long clips from songs which are currently not in the 
database. Then these 20 cases are directed to the system. 
Obtained results are shown in the Figure 18. 
 

• Test Case  6 (Adding Commercials at  the Middle of 
Song):   

When we are listening to a radio channel you can hear 
playing some commercials in the middle of a song. During 
the song, first they stop the currently playing song and then 
play some commercial for a short time and then continue the 
same song again. In this test case, we observe the system 
behavior against these kinds of scenarios. As the previous 
test cases, we select 10 such songs currently in the database 
and 10 other songs which are not currently in the database. 
Then we tested the system on these cases. Figure 19 shows 
the obtained results. 
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Figure  18. Behavior of the system against position  independent 
short time(100 s) clips 

 
 
 

 
 

Figure 19.    When playing commercials at the middle of the song 
 

 
• Test Case 7 (Songs with Background Watermark):  
Usually radio channels add some commercials or talks 

as watermarks. In this test case song is not stopped 
while commercials are also playing in the background. 
There are major two kinds of watermarks. First one is that 
volume of the song is reduced up to some level so that 
the emphasis on the commercial. The other one is that 
song and commercial are played at the normal volume 
but we can hear song and commercial separately. 
Normally the second one is used for short time 
commercials. In this test case, we take 10 samples from 
the first scenario and 10 from the second scenario. We 
achieved 100% accuracy for this case as well. We can 
conclude that the background watermarks are not a 
problem at all for our system. Actually our framing 
module helps us very much in this case. 

 
   • Test Case 8 (Songs Destroyed by Noisy): 

This is the most important and the most probable test case. 
When we are listening to a radio, hearing noises is obvious 
due to several factors. Noises can be added to the radio 
channel due to improper channel frequency tuning, 
environmental disturbances, weak radio signal strength and 

so on. In this test case we test the noisy level which can 
be handled by the system. We generate different levels of 
continuous noises and added them to the tested song. First 
we generate a noisy with the amplitude level of 0.1, then it is 
mixed with 10 songs which are already in the database and 
10 other songs which are not already in the database. This 
process is repeated by changing the noisy level from 0.10 
to 0.50. Ultimately we generate 180 noisy destroyed songs 
then we tested the system on this test data. Obtained 
accuracy level is shown in the Figure 20. 

 
 

 
 

Figure 20.    Accuracy of Noisy Destroyed Songs 
 

We have achieved higher accuracy level even if song is 
completely destroyed by the noisy with the amplitude level 
of 0.5. However, noisy is not held throughout the song when 
we come to real situation. Therefore we can expect higher 
accuracy rate than this. 
 
C. Song Extraction Accuracy Evaluation 

We already know that this module is used to separate 
song object from the others. To evaluate this module we 
first extract only pure non-song objects such as 
commercials, talks, conversations, dramas, educational 
programs like quizzes, news and so on from real 
broadcasted audio stream. We prepared 300 frames for this 
(i.e. approximately 3.33 hours long audio stream). 
Thereafter we directed these frames to the song extraction 
module. This module can identify each frame as a non-
song object or as a song object. We do the same to actual 
song objects. It is really easy since we can take sets of 
various songs and test the module on this data. We test the 
system using 800 frames. It is equal to 150 songs. Behavior 
of the module is shown in the Figure 21. 

Our system can remove 57% non-song object correctly. 
Approximately system resources are not wasted if the frame 
is a non-song object. Therefore this module can speed up the 
system by 57% as well as reduce the unnecessary 
utilizations of system resources. This is a considerable 
advantage provided to our system by this module. 
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Figure 21.    Results distribution of song extraction module 
 
 

D.  Summary of the System Accuracy 
 

We tested our system against the various kinds of test 
cases. To get an overall idea about the system accuracy, 
we can summarize the obtained results. Table I shows the 
summary of the obtained results. 

 
Table I 

OV E R A L L SU M M A RY  OF   T H E TE S T CA S E S 

 
Test Case Error 

Rate (%) 
Success 
Rate (%) 

General Case 2.439 97.561
Sequence of Songs from the Same Singer 12.903 87.097
Sequence of Songs from Different Singers 9.836 90.164
Continuous Non-song Objects 0 100
Short Position Independent Clips 5 95
Adding Commercials at the Middle of Song 0 100
Songs with Background Watermark 0 100
Noisy Destroyed Songs 5 95
Different Songs with the Same Melody 0 100
Overall Accuracy Level 3.909 96.091

 
 
 

VI.  CONCLUSION 
 

Let’s recall the problem which we tried to take in hand 
through- out this research. Radio broadcast monitoring is a 
still manual process, especially in developing countries. At 
the end  of  this  manual  process,  they  generate  some  sort  
of reports including the details of broadcasted song 
history. Thereafter the owners of the songs will be paid 
accordingly. This is a tedious and difficult task. 

We provide a highly robust audio monitoring approach for 
radio broadcasting as the solution for the proposed research 
problem here. Our proposed approach achieved overall 96% 
accuracy in recognition of songs broadcast over radio 
channels. Thus, system can successfully handle almost all  
real situations which occur in an actual radio broadcasting 
environment. We prove that capability in the section V. Our 
approach does not require any additional hardware. Thus, 
we can conclude that our approach can be used to monitor 
radio broadcasting channels with high accuracy, high 
efficiency and low cost. 

VII.  FUTURE WORKS 

We can suggest that there is a room for greater 
improvement of our system and other systems in general. 
For instance, radio station can play a song with different 
pitch, tempo, with or without echo and so on. In future, our 
research can be extend to identify different versions of same 
song from the copyright point of view. Therefore, we can 
extend our research in order to classify these versions of the 
same song into the same class. 

We used relational database to store hashes and other re- 
lated data. But we can't maintain RDB when database grows. 
So we have to use some novel approach like distributed 
database in order to cope with this problem. Further, we 
can classify songs based on genre into sets of groups. This 
will reduce the search space. So we can join our research 
with some genre classification approach to achieve better 
results. 
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