
170GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Abstract—On one hand, web services have demonstrated
their important roles in the field of computing. On the other,
networked games need server support, which is usually based
on socket programming. For example, in a two-player take-
turn game using TCP protocol, a server communicates and
coordinates the two game GUIs utilized by the two players. This
gives rise to one important research question, “Can the server
take the advantages of web services in order to replace the sockets
while supporting networked games?” This article describes some
technical aspects for accomplishing this goal.

Keywords—Networked game, Game server, Web services,
Socket programming, Game development

1.	 Introduction

Networked games accommodate multiple players and
create a new environment for networking and inter-player
communication. As a result, the players are able to make
friends and enjoy their group activities while enjoying the
games.

In general, networked games fall into either of these
two kinds: (i) Take-turn games that allow only one player at a
time to play the game, and (ii) The asynchronous multiplayer
games. In the first kind, the current states of a networked game
are exchanged through the network communication facility
in a sequential fashion. The second kind allows players to
asynchronously play the game while the game states are
randomly generated and transferred.

The traditional approach for developing networked
games utilizes socket programming [1], [2]. In a two-player
take-turn game using TCP protocol, a Server holding the game
logic must not only communicate with the two clients that
perform the game GUI functions, but also synchronize these
players’ moves to ensure and enforce that only one player is
active, while the other waits. Although every game GUI is
implemented as a Thread such that they run in parallel, the actual
process in the background remains strictly sequential. Based
on the game logic held at the Server, states data is manipulated
by the Server for making decisions (e.g., deciding the winner),
and some of the states are further transferred to the other side.
This implementation is practicable but it inherently couples
the client-server units tightly, allows a limited number of
players and thus renders the software architecture unattractive
from the view points of maintenance and reuse.

Web Services [10], [11] has successfully exhibited the

practical significance of its distributed business model. Since
the vendors have agreed on common web service standards,
these externally available distributed application components
can now be employed to integrate computer applications
that are written in different languages and run on different
platforms. As SaaS (Software as a Service) web services
are developed, hosted, and operated by software vendors;
acceptable quality and middleware services, including certain
degree of security is assured to the users. Under this model,
the users are no longer required to own the software, but
rather agree (with or without paying) for using it. Making
software services available for clients connecting from
anywhere at any time, web services play important roles in
the field of computing, including those of grid and cloud
computing.

A web service is traditionally defined by the W3C as ‘a
software system designed to support interoperable machine-
to-machine interaction over a network’. Web services have
generated immense amount of interest in recent times in terms
of its applicability in social interactions including gaming
scenarios [5], [6]. Networked games do need to be interactive,
but, a more important question is whether it is possible
to make networked games interactive incorporating web
services? Switching from the socket programming paradigm
into the enabling technology of web services promises
enormous business value for networked games [3]. As such,
single user games, such as card games like Blackjack has been
implemented by using web services technology [4]. Here we
study both the web services and the gaming technologies, in
order to ascertain whether web services could be aptly engaged
in developing networked games.

In this work, we simplistically focus on involving two-
player take-turn networked games. That the take-turn games
have only a set of fixed number of states to be transferred at
a time (which is easier to manage than the games that have
random states), renders better tractability and insights in to
our experiments without further complicating the analytics of
this paper.

2.	 An abstract model of games

Games fall under multiple categories and genres.
In order to extract common features of games, we develop
and present an abstract model of games here. Although our
abstract model is simple, it provides excellent guidance in
developing different kinds of games with novel software
architecture.

Networked Games based on Web Services
 Chong-wei Xu and Hongwei Lei

Computer Science and Information Systems
Kennesaw State University

cxu@kennesaw.edu

Daniel Xu

Computer Science
Georgia Institute of Technology

daniel_n_xu@hotmail.com

DOI: 10.5176_2010-2283_1.1.28

171GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Our proposed model of games is based on the classic
MVC model, viz. the View, the Model, and the Controller
[7]. By design, this architecture separates these three units
to eliminate interdependencies, a concern in designing and
implementing software.

We look at a game as a software application, consisting
of the following three units.

A game = gameGUI + gameLogic + player

In our above depiction, the gameGUI is synonymous
to the View, the gameLogic to the Model, and the player to
the external Controller, in terms of the classic MVC model. A
game may additionally have multiple internal controllers, such
as the animation mechanism that moves sprites around, further
causing collisions among sprites and thereby generating new
game states. Also, a certain threshold of some other properties
(e.g. the speed of the sprites can be dependent on the current
score of one or more players in the game) can also play the
role of internal controllers.

Fig. 1. The abstract model of two-player games.

For stand-alone two-player games, which are played by
two local players, the relationships among these units in our
abstract model are shown in Figure 1. Thus, the important set
of considerations for developing a game is to find out (i) what
input states and output states should be passed between the
gameGUI and the gameLogic, and (ii) what inputs should be
caught from the players and what output should be shown on
the gameGUI for the players.

Fig. 2. An abstract model of networked games.

Based on the above model of games, networked games,
which are played by two remote players, can be represented
as two game GUIs with an additional Server between them
as shown in Figure 2. The two GUIs go through a network
communication facility to communicate with the Server while
the Server acts as the center for both game GUIs, and shoulders
the responsibility to apply the game logic for synchronizing
two players.

3.	 A software architecture

The abstract model guides us to investigate novel
software architecture. In order to clearly separate the network
communication facility from the game GUIs, we have
developed a class CommInterface (Communication Interface)
that remains sandwiched between the Server on one side and
the game GUI on the other side, and works as a communication
interface layer as shown in Figure 3.

Clearly, the TCP protocol employs server socket for the
Server and socket for the CommInterface so that the Server and
the class CommInterface remain physically separated. In order
to separate the CommInterface from the game GUI, we have
designed another interface, entitled as GamePanelInterface,
which contains abstract methods for transferring game states
and is implemented by the class GamePanel in the game GUI
so that the communications between the CommInterface and
the Game GUI are based on interface-to-interface structure.
This new architecture remains the class CommInterface “stand-
alone” and be completely re-usable for similar networked
games. The only modifications that a game may need would
involve the GamePanelInterface.

 Fig. 3. A software architecture of networked games.

4.	 A case study: a web services based
networked game TicTacToe

The game TicTacToe is a simple game played by two
players. We select this game as an example for explaining
what we have done because (i) it is a well-known game
that does not need detailed descriptions, (ii) it is a take-turn
game with two players, and (iii) its networked version with
socket programming are available without much difficulty

172GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

[8], [9]. By using it as our example, we can compare the web
services with that of the socket programming based games
in order to further explore the differences between these two
enabling technologies. In addition, insights garnered from this
simple example can be utilized to construct suitable software
architecture for more complicated games.

Obviously, the implementation st arts from a stand-alone
game TicTacToe, specifically for two different game tokens
on a 3x3 game board. Upgrading it to a networked game
requires one to identify what input and output states should
be exchanged through the communication channels.
Clearly, the input states from the game GUI to the Server
are the values of the row and the column that the player
clicks on the game board since the game logic in the Server
needs these data to decide the winner. These data should
be further passed to the other game GUI to display the new
token that was just added on the game board for both
players. In order to maintain the states of the game in the
game GUIs and the Server, three 2D array data structures
corresponding to the game board need to be constructed in
each of the game GUIs as well as the Server. The output states
from the Server to the game GUI should include, (i) ‘who
takes turn’ for synchronizing two players, (ii) ‘who should
have the token’ for distinguishing the two players; and (iii)
‘who is the winner’ for judging and finishing the game besides
the values of the row and the column of the new token sent
by the other side. Clearly, the above (four) data requirement
necessitates four separate methods to be defined in the
GamePanelInterface.

The next step is to design and implement the web
service, which we call TictactoeWebService, to be the Server
for the networked game, which provides a set of operations
to accept the input states and generate the output states. The
web service client, TictactoeWSClient, is a java SE program
that includes the interface ‘commInterface’; and the game
GUI, which contains the GamePanelInterface. The class
CommInterface extends the class Thread that communicates
with the web service by accessing operations defined in the
web service and also communicates with the game GUI
through the GamePanelInterface.

The major actions in running the networked game are
depicted in Figure 4: One of the game clients connects to the
Server first, to which the Server assigns ‘player1’ and issues
a token. When the other game client connects to the Server, it
receives an assignment ‘player2’ and its token. Thereafter, the
Server gives the authority to player1 to start his/her game. After
player1 plays the game, the resulting data are the coordinates of
the new token just placed on the game board. The coordinates
are then sent out from player1 to the Server. When the Server
receives the data, it switches the turn to player2. Player2 now
places his/her new token on the game board, and similarly
as before, the coordinates of the new token are then sent to
the Server and eventually to player1. This process is repeated
until either one of them wins the game or the game ends up
with ‘draw’.

A closer look tells us that the software architecture can
be further simplified. The two decisions ‘who takes a turn’
and ‘who is the winner’ made by the Server can actually

be moved to the game GUIs. The reason is that the Server
determines ‘who takes a turn’ when it receives the coordinates
of the new token just placed on the game board. In reality,
the coordinates of this information are known by both the
game GUIs themselves. When one side places the token on
the game board, it knows it should stop the turn; when the
information is mirrored on the other side, the other side knows
it can take the turn. Thus, the Server can be released from the
responsibility of decision making in the first place. We can
ask the game GUIs to make the decision by themselves. Only
when the game starts, the Server needs to make the initial
assignment ‘who takes a turn’ once. By similar argumentation,
it is apparent that decision ‘who is the winner’ can also be
judged by either side separately if we move the game logic
from the Server to each game GUI respectively.

Fig. 4. The actions in the networked game.

In fact, a stand-alone game originally employs both
game GUI and game logic. We are not necessary to move the
game logic into the Server. That is, we could keep the two
sides in the networked game remains the same as the stand-
alone version, which not only avoids the modification of the
original game code but also reduces the number of states that
should be transferred. Adoption of the above strategy reduces
the model of networked games with a new architecture as in
Figure 5.

Fig. 5. The final model of a networked game with new software architecture.

173GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Based on this new strategy, the GamePanelInterface has
only three abstract methods remaining: setTurn(), setToken(),
and setOther(). The method setTurn() and setToken() are
used only once to pass the take-turn and the token parameters
from the Server to the gameGUI when the game initially
commences. The method setOther() is used to transfer the
coordinates from the commInterface to the gameGUI regularly
during the game. Therefore, both the web service and the
class CommInterface become a pure network communication
facility used solely for data transfer with no responsibility to
make in-game decisions.

The web service plays the role of a Server with a very
simple body of code. It only contains the following six
operations: connect(), getPlayerStatus(), getPlayerArrival(),
getColumn(), getRow(), and setCell(). The class CommInterface
invokes these operations to get information from the Server to
catch the states of the other side.

Note that this software architecture keeps the game
body nearly as original. The only difference lies in the
requirement that the GamePanel needs to implement the
GamePanelInterface. The web service stands simplified
without any game logic. The class CommInterface only
communicates with the web service and interacts with the
GamePanelInterface. All of them do not bear any responsibility
to deal with anything specifically pertaining to the game.
Consequently, our proposed software architecture becomes a
framework that provides web services as the Server and the
classes CommInterface and GamePanelInterface for forming
a communication facility so that any this kind of games can
be easily adapted as a networked game without modifying the
original stand-alone game.

5.	 Technical comparison with socket
based server

As we have already mentioned, web services offer
significant advantages because they are distributed application
components and are externally available. One can use them
to integrate computer applications that are written in different
languages and run on different platforms.

Switching the enabling technology from socket
programming to web services for implementing networked
games brings other attendant challenges. The significant
differences between them stem from the fact that the Server
in socket is an active object while the web service is a passive
one.

TCP socket support input and output channels, which
provide two methods readInt() and writeInt() for data
transferring. The readInt() call can automatically pauses
the Server for waiting the transferred data to come from the
CommInterface and the writeInt() call can send data out
to the clients. In other words, the readInt() and writeInt()
automatically perform synchronization functions. On the
other hand, being passive objects, web services can accept
inputs and do computations, but cannot send data out. A client
cannot ‘sit and wait’ for data, it has to probe the web services
Server continuously for getting required data from the Server.

Thus, the client needs to use the Thread sleep() method to
pause itself and keep checking the web services Server with
a while loop to ensure the data arrival, as demonstrated in the
following code.

private synchronized void waitForReceiving (int player)
throws InterruptedException {

if (player == PLAYER1) {
	 while (port.getPlayerArrival() != PLAYER2) {
		 Thread.sleep(100);
	 }
	 try {
		 receiveInfoFromServer();
	 } catch (Exception ex) {
		 ex.printStackTrace();
	 }
} else if (player == PLAYER2) {
	 while (port.getPlayerArrival() != PLAYER1) {
		 Thread.sleep(100);
	 }
	 try {
		 receiveInfoFromServer();
	 } catch (Exception ex) {
			 ex.printStackTrack();
	 }
}

Additionally, web services have been a mature and
widely used business model, and one can access web services
from anywhere at any time unlike the socket based approach,
which can only live in a certain server. Also, web services are
anyway designed to support multiple players, thus it becomes
easy for both developers and players to work with without
worrying whether the Server is a sequential or concurrent as
in socket programming.

6.	E xtension of the framework to other
games

The benefits of the above framework may be easily
extended to other games. For example, the classic game
Connect4, which is somewhat similar to chess, has a 6x7
board, and accommodates 2 players, one plays red pieces and
the other plays blue pieces, who take turn in the moves. Each
of the players moves an arrow pointing to a column before
dropping his/her piece onto the column. Once a player is able
to place 4 pieces consecutively in one consistent direction (the
x-direction, the y-direction, or diagonally) wins the game. The
stand-alone version of the game Connect4 is implemented
in both Java and JavaFX. The UML diagram of the game
Connect4 in Java is shown in Figure 6. Even it is implemented
in different languages, we have successfully applied the above
software architecture to implement the game as a web services
based networked game, vide Figure 7.

7.	 Conclusion and future work

Computer gaming is of general interest today, commands
wide scale appreciation and boasts of rich content and quality

174GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Fig. 7. The networked game Connect4 implemented through web services.

References

[1]	 Fan, J., Ries, E., and Tenitchi, C., (1996). Black Art of Java Game
Programming, Waite Group Press.

[2]	 Morrison, Michael, (2005). Beginning Mobile phone Game
Programming, Sams.

[3]	 Sharp, Chris, (2003), Business Integration for Games: An Introduction
to Online Games and E-business Infrastructure, DOI =

	 http://www.ibm.com/developerworks/webservices/library/ws-
intgame/.

[4]	 Deitel, P.J. and Deitel, H.M., (2008), Internet & World Wide Web How
to program, 4/e, Prentice-Hall.

[5]	 Rubel, Steve (2008), The Future is Web Services, Not Web Sites, DOI
= http://www.micropersuasion.com/2008/03/the-future-is-w.html

[6]	 Ellis, Steve (2008), The Future is Interactive, Not Online, DOI = http://
thenewmarketing.com/blogs/steve_ellis/archive/2008/03/17/5467.
aspx.

[7]	 Model-view-controller, DOI = http://en.wikipedia.org/wiki/Model%E
2%80%93view%E2%80%93controller.

[8]	 Liang, D. (2008), Introduction to Java Programming, 7/e, Prentice-
Hall.

[9]	 Jia, X. (2002), Object-Oriented Software Development using Java, 2/
e, Addison-Wesley.

[10]	 Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004) Web
Services, Springer.

[11]	 Deitel, Deitel, Gadzik, Lomeli, Santry, Zhang (2003) Java Web
Services, PH-PTR.

presentation. These games merge our understandings and
capabilities in Humanities, Arts, Mathematics, Physics,
Graphics, Animation, AI, multimedia, and programming
technologies, they also constantly challenge our problem
solving capabilities. Due to the pervasive utilization of web
services, developing networked games based on web services
not only promises another platform for gaming in general, but
also brings interesting games and their intelligent adoption into
the coursework for teaching web services. We hope that our
current research provides another impetus to this interesting
development and merger of web services and networked
games in myriad search and understanding of knowledge.

Here we have presented our initial research of two
rudimentary implementations of web services on TicTacToe
and Connect4. Going ahead, we may add more interesting
features with the games, and test their successful adoption
of web services. For example, we may extend these games
to allow multiple players to join the game, (i) allowing only
specific pairs to play against each other or (ii) allowing
entrants to join the game as observers or judges, or (iii) as
specialist observers, who could support and provide real-
time suggestions for a current player (the final decision
could still belongs to the real player). Reusing the Server, as
well as the classes CommInterface and GamePanelInterface
in the framework, we are reasonable certain that we could
develop more networked games such as Othello. At a more
challenging level, we also plan to extend this research to
design and implement action games, especially games with
random actions, such as Snooker.

Fig. 6. The UML diagram of Connect4 in Java.

175GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Hongwei Lei received his Masters in Applied
Computer Science from Department of Computer
Science and Information Systems at Kennesaw
State University. He has 3-years industrial working
experience in software development and a former
graduate research assistant working on several
research projects. His current research interests
include gaming, 3-D graphics, and web technology.

Dr. Chong-wei Xu is currently a Professor of
Computer Science in Department of Computer
Science and Information Systems at Kennesaw State
University. He received his Master in Computer
Science from University of Wisconsin-Madison and
his Ph.D. in Computer Science from Michigan State
University. His current research interests mainly
include Internet and distributed system technologies
and gaming technologies.

Daniel Xu currently is a double-major senior at
Georgia Institute of Technology. After he received
his bachelor degree in Electrical Engineering, he
joined the Computer Science B.S. program. His
research interests include database and gaming
technologies.

