
145GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTFDOI: 10.5176_2010-2283_1.1.24

Abstract—The Advanced Encryption Standard (AES),

the block cipher ratified as a standard by National Institute

of Standards and Technology of the United States (NIST), was

chosen using a process markedly more open and transparent

than its predecessor, the aging Data Encryption Standard

(DES).

Fifteen algorithm were submitted as to NIST in 1998 ,

NIST choose five finalist.

NIST primary selection criteria are security, performance,

and flexibility. This paper enlightens the last two criteria. In

this paper we have discussed software performance of five AES

finalist.

The paper specifically compares performance of the five

AES finalist on a verity of common software platform: 32-bit

CPU(both large and smaller microprocessors, smart cards,

embedded microprocessors) and high end 64-bits CPUs.

1.	 Introduction

Security is not only the most important, but also the
most difficult characteristic to compare. In the absence of
any theoretical ways of measuring security, we can only
fall back on estimates and guesses. “I can’t break this
algorithm, and all those other smart people can’t either” is
the best we can say. Hence, all discussions about security
rely on this type of non-rigorous argument. When looking
at the published cryptanalysis on the AES finalists, it is
important to keep in mind what the data mean. Historically,
cryptanalytic results against any algorithm have improved
over time. Initial results might cryptanalyze a simplified
variant of the algorithm, or a version of the algorithm with
fewer rounds. Later results improve on those initial results:
more rounds or less simplification. Finally, there may be
a successful attack against the full algorithm. This is why
the published cryptanalysis against the AES finalists, even
though none of the results approach practicability and
none of the attacks are of any use against the full version of
the algorithms, are so important. By comparing how close
the published attacks come to breaking the full algorithms,
we can get some inkling about how the algorithms’ security
compares. This is not a perfect comparison by any means,
but it is the best we have to go on.

Analysis of Advanced Encryption Standards
 Minal Moharir

Lecturer, Dept of ISE,
R.V. College of Engg.,

Banglore-59.
minalmoharir@yahoo.com

 Dr. A V Suresh

 Prof. & Head Dept of IEM,
R.V. College of Engg.,

Banglore-59.
dravsgud@yahoo.co.in

2.	 Safety Factors

The best measure of security that we have come across
is the safety factor. Eli Biham first compared the AES
candidates in this manner when he calculated the “minimal
secure rounds” [Bih99]. Lars Knudsen also used this factor
when he discussed the AES candidates in his first-round
comments [Knu99]. Let n be the number of rounds of the
full cipher, and b be the largest number of rounds that has
been broken. The safety factor . is defined as . s= n/b. A
broken cipher has a safety factor of 1. A safety factor of 2
corresponds to a cipher for which a version with half the
rounds has been broken. In this context we are very liberal
in our definition of what it entails to break a cipher. The
most straightforward type of breaking is to find a key-
recovery attack: an attack that recovers the key faster than
a brute-force search. However, we also include any other
non-random property that can be detected faster than an
exhaustive search of the key space in our definition of
“breaking” a cipher. This can include a statistical test that
distinguishes the cipher from a random permutation, detectable
relationships between encryptions with different keys, or
more generally any detectable property that an ideal cipher
would not have. This definition is fairly arbitrary, but it is
the best we have found given the situation. Excluding certain
types of attacks as “unfair,” or certain detectable properties
as “unimportant,” would be even more arbitrary. Including
unsub- stantiated claims of the form “I think I can break x
rounds,” or “this property might lead to an attack” make the
measurement completely arbitrary. It is also reasonable not to
consider any other type of simplifications, such as modifying
the rounds themselves. It is trivial to attack Rijndael with a
linear S-box, or Twofish without the PHT. Taking any attacks
of that type into consideration would also lead to completely
arbitrary measurements. The biggest inherent problem in our
definition of safety factor is that it favours ciphers on which
little cryptanalysis has been done. Unfortunately, this is
unavoidable if we want to try to maintain at least some kind
of objectivity.

There are two problems in applying this definition to
the AES finalists. The first one is that most attacks are against
the 256-bit-key versions of the algorithm. Thus we might
have a reasonable amount of data on how many rounds we

146GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

can break of each cipher in 2ˆ256 steps, but there is very little
information on how many rounds we can break in either 2^128
or 2^192 steps. We therefore use the largest number of rounds
broken by any attack on any one of the key sizes. This gives
a fairly accurate result for 256-bit key sizes, and introduces a
bias for smaller key sizes. At first glance this seems unfair to
Rijndael, since we compare the number of rounds attackable
under 256-bit keys to the number of rounds in the 128-bit-
key cipher. However, this is exactly what we do for all the
other algorithms. If we had more information on attacks on
128-bit-key versions we could compute safety factors for each
of the key sizes, but we simply don’t have that information.
Rijndael’s reduced number of rounds for smaller keys gives
it a speed advantage, but it also reduces the safety factor for
those key sizes.

The second problem is MARS. Because of its
heterogeneous structure, there are several ways of defining
reduced-round versions. It is unfair to only count the 16 core
rounds, but it is equally unfair to give all 32 rounds the same
weight. We suggest the following: give the core rounds a
weight of 1, and the mixing rounds a weight of a. (where a
is a parameter that we still have to choose). An attack on c
core rounds and m mixing rounds would thus give a safety
factor of (16 + 16a)/(c + m.), and all attacks are measured
using this metric. Finally, we choose a in such a way as to
maximize the resulting safety factor. Thus, the weight a is
chosen to favor the algorithm as much as possible. This is
not ideal, but it is the only reasonable way we have found of
getting a number that is somewhat comparable to what we get
for the other ciphers.

Table 1.
Safety factors for AES finalists and some increased-round variants.

Rijndael has an attack on 9 rounds [FKS+00a], and
for the three key sizes has a safety factor of 1.11/1.33/1.56
(for the three key sizes, respectively). Serpent has a 9-round
attack [KKS00b], for a safety factor of 3.56. Twofish has
a 6-round attack [Fer99], for a safety factor of 2.67. The
results are tabulated in Table 1 and are not very surprising.
RC6 and Rijndael have the smallest safety factors. MARS
does better, and Twofish better still. As expected, Serpent has

the highest safety factor. Keep in mind that a safety factor
of 1 corresponds to a broken cipher. Thus, even moderate
advances in cryptanalysis could endanger RC6 and Rijndael.
In his first-round comments Lars Knudsen recommended that
AES should have a safety factor of at least 2 [Knu99]. We
strongly support that notion. The worst thing that could
happen to AES is a successful attack a decade from now,
even an “academic attack.” Not only would this create havoc
in many systems, it could also endanger confidential data
that was encrypted before the break. Given the very sketchy
information we have to go on, we simply cannot afford to
gamble on a relatively small safety factor. In our opinion,
Twofish and Serpent have good safety factors. MARS is
close, but RC6 and Rijndael clearly need more rounds. The
table shows that 34-round RC6 and 18 round Rijndael would
have a safety factor of 2. To raise the safety factor of Rijndael
to the same level as that of Twofish would require 24 rounds
of Rijndael. Of course, an increase in the number of rounds
results in a corresponding reduction in performance. This
will have to be taken into account in any comparison with
increased-round versions.

2.1	 MARS

	 It is the most difficult task for us to implement
MARS on smart cards or other limited resources.
MARS has a complex high level structure such
as eight rounds of unkeyed forward mixing, eight
rounds of keyed forward transformation, eight
rounds of keyed backward transformation, and
eight rounds of unkeyed backward mixing. Each
of the eight rounds consists of so called type-3
Feistel network. In a type-3 Feistel network,
input data is segregated into four words. One
of them is taken as a pseudo-random function’s
input and the output is used to modify three
other data words. Since MARS has a block
length of 128 bits, each word has 32 bit length.
There are three disadvantages of MARS when
implemented on a smart card. The first is that it
needs 2KB table for S-boxes, but it is not serious.
The second is the weakness check of extended
key on the key schedule. The last is the rotations
with variable shift amount. W e discuss the last
two disadvantages here.

	 It is necessary for MARS to implement compli-
cated “weak” measures on the key schedule[3].
The weak keys for MARS are different from
those of DES. In the case of DES, you may
disregard the problem of weak key because it
only increases some potential threats caused by
the weak key properties. However, in the case
of MARS, since the weak key check procedure
is a part of the algorithm specification, you have
to check the weak on the key schedule certainly.
Otherwise, you may see a terrible result, such as

Algorithm Safety factor	 Safety factor

MARS 	 1.90

RC6 	 1.11/1.33/1.56

Rijndael 	 3.56

Serpent	 3.56

Twofish 	 2.67

34-round RC6 	 2.00

18-round Rijndael 	 2.00

24-round Rijndael 	 2.67

147GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

differences in cipher text, although it encrypts the
same plain text with common key. As mentioned
above, the function of checking the weak on
the key schedule is primarily needed. Although
implementing weak key check is necessary, it
is also true that this introduces another problem
for smart card implementation. If we check the
weak and regenerate extension keys, there is a
risk of applying timing attack. The regeneration
of extension keys causes difference in processing
time and leaks some information on the key.
Further study of coding is necessary to avoid this
problem.

Table 3. MARS

2.2	R C6

	 RC6 has various parameters and is defined as
RC6-w/r/b where w means the word length, r
means the number of rounds, and b means the
length of key with bytes. We wrote the code
with the recommended parameters for AES as
RC6-32/20/32. RC6 has a simple structure, but
the round function includes various operations
such as, addition, subtraction, multiplication,
and rotations depending on a variable data. Most
parts of RC6 are constructed by arithmetical
operation. Therefore, we operate almost all
operations on the coprocessor. Furthermore, since
the coprocessor can operate up to 1,024 bits for
operand, we can execute the pair of rotations with
constant shift amount in parallel. An n-bit rotation
to two data is written as follows: We duplicate
each of data and put them on corresponding
CRAM area, then multiply them with 2n. As a
result, we can improve the performance and
reduce the size of code. The coprocessor can
execute RC6 data encryption efficiently. RC6
has a simple key schedule but needs much
iterations and it is not suitable with on-thefly.
The key schedule takes four times as long
execution time as encryption. There is an idea
to improve the key schedule processing time.
A precomputed table improves the speed, but
also increases the size of code. It omits the
computation of 43 initial values (S[i]) with
32-bit word. The modified code copies S[i]s
from precomputed ROM table to RAM area

instead of computing S[i]s with constant values.
It shall reduce about 4,000 clocks. It needs
some extra code or table for precomputed
table, thus the size of code increases about 150
bytes.

	 On the smart cards, RC6 has a moderate
encryption speed among the finalists, but its key
schedule is slower than Rijindael or Twofish.
Note that it has been reported that on the 32-
bit processor, RC6’s performance is faster
thanRijndael and Twofish[5].

Table 4. RC6

2.3	R ijndael

	 256-bit key is the fastest for on-the-fly key
generation, since we can translate the internal
key every two rounds.128-bit key is a little
slower than 256-bit key, since we need to make
extension keys every round. In the case of 192-bit
key, since the key length is not the multiple of the
block length, it is not so easy to implement on-
the-fly key generation. The xtime is an important
subroutine for time constancy.It needs modulus
operation with the primitive polynomial. Here is
an example of straightforward implementation of
the xtime(a) algorithm where the original value is
stored in A register.

	 RLA

	 JR NC, SKIP

	 AND PRI ; PRI means the primitive polynomial.

	 SKIP:

	 ... ; end.

	 This is a very dangerous code. Since ‘AND
PRI’ operation is operated only when the carry
is ‘1’, an attacker can know whether the value
excesses 28 or not in this code. We must avoid
such an implementation. Therefore, we use some
techniques to avoid differences of processing
time and thus prevent cryptanalysis using timing
attack. Here is an example of xtime(a) operation
with constant time, where a is stored in A
register.

	 RAM (bytes)		 ROM	 Time

	 Total 	 Int	 Ext	 (bytes)	 (clock)

Encrypt	 124	 124	 0	 489	 34,736

Schedule	 90	 90	 0	 571	 138,851

Total	 156	 156	 0	 1,060	 173.387

	 RAM (bytes)		 ROM	 Time

	 Total 	 Int	 Ext	 (bytes)	 (clock)

Encrypt	 60	 36	 24	 3,977	 45,588

Schedule	 512 	 512	 0	 1,491	 21,742

Total	 512 	 512	 24	 5,468	 67,330

148GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

	 RLA

	 LD B, A

	 SBC A, A

	 AND PRI

	 XOR B

	 RLA is a instruction of 1-bit leftward rotation
for A register. If RLA is carried out, MSB of A
register is set to the carry flag. ‘SBC A, A’ is an
instruction which subtract a value in A register
and a carry from A register. It means that if the
carry flag is ‘1’ then A register has a value 0xff,
otherwise A register has a value 0x00.Next we
operate AND instruction with PRI for A register.
Then we get PRI or a value 0x00 in A register,
and we can operate whether ‘XOR PRI’ or ‘NOP’
with the same instructions and processing time.
The transformation MixColumn is implemented
in an efficient way shown in section 5.1 in [4].
We implement the AddRoundKey and data
transfers with the coprocessor.

Table 5. Rijndael

 2.4	 Serpent

	 There are two kinds of implementation of
Serpent: ordinary implementation and bitsliced
implementation. Here is the result of an ordinary
implementation of Serpent. It is not a bitsliced
implementation. It needs a 2,048-byte ROM
table on the ordinary implementation. Serpent
has various rotational operations. As described in
MARS implementation, modular multiplication
with coprocessor can be used if they improve
the performance. Most of the rotations are,
however, more efficient with the Z80 operations
than with the coprocessor.1-bit leftward or
rightward rotations can be implemented with the
Z80 operations, and shifts with multiplies of 8-
bit are reorder of bytes. We use the coprocessor
operations only for 11-bit rotations, XOR, and
memory transfer. Due to the architecture of
our coprocessor, it is not suitable to efficiently
implement three-operand operation used in
Serpent. In [2], Serpent can be implemented
using under 80 bytes of RAM with onthe- fly.

	 RAM (bytes)		 ROM	 Time

	 Total 	 Int	 Ext	 (bytes)	 (clock)

Encrypt	 34	 32	 2	 700	 25,494

Schedule	 32 	 32	 0	 280	 10,318

Total	 66	 64	 2	 980	 35,812

Our implementation needs twice more RAM,
because we write it with coprocessor’s operation
XOR between halves of CRAM with different
offsets. It has more rounds than other finalists
do, so its performance is not so good as Rijndael
or Twofish. The bitsliced implementation will
reduce the size of code and required RAM with a
little degradation in speed.

2.5	 Twofish

	 In the case that the length of key is less than 256-
bit, we need to pad out the original key until it
becomes 256-bit.W e implement Twofish with
128-bit key to take the processing time for padding
into account. It includes code for padding, and
it is a little slower than 256-bit key. There are
two models for implementing Twofish, such as
Feistel model and non Feistel model[10].W e
implement it with non Feistel model. We assume
that it is faster than Feistel. We use coprocessor’s
operations for additions with subkeys, XOR, and
memory transfers on CRAM area, but rotations
are implemented with Z80’s rotations. The
performance of Twofish depends on the size of
precomputed tables’ [10]. We consider that the
case of using some tables amounted to 1,536
bytes. This code is compact for processing the
key schedule with precomputed tables. It seems
be compatible with 2200 bytes for code and table
size model in [11].The size of precomputed tables
is belongs to encryption code in table 7. Twofish
is as fast as DES on throughput. It does not have
any exceptional advantages, but we have nothing
to complain about the performance.

Table 6. Serpent

 Table 7. Twofish

	 RAM (bytes)		 ROM	 Time

	 Total 	 Int	 Ext	 (bytes)	 (clock)

Encrypt	 34 	 32	 22	 493 	 31,877

Schedule	 56	 32	 24	 315	 28,51 2

Total	 90	 64	 26	 808	 60,389

	 RAM (bytes)		 ROM	 Time

	 Total 	 Int	 Ext	 (bytes)	 (clock)

Encrypt	 68	 68	 0	 3,524 	 71,924

Schedule	 96 	 96	 0	 413 	 147,972

Total	 164 	 164	 0	 3,937 	 219,896

149GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

[7]	 H. Handschuh, and P. Paillier, \Smart Card Crypto-Coprocessors for
Public-Key Cryptography”, CryptoBytes, Vol. 4, No. 1, RSALab
oratories, 1998.

[8]	 G. Keating, \Performance Analysis of AES candidates on the 6805
CPU core”, The second AES conference, 1999, available on http://
www.ozemail.com.au/~geoffk/aes-6805/.

[9]	 M. Matsui, \New Block Encryption Algorithm MISTY”, Fast Software
Encryption, 4th InternationalWorkshop Proceeding, LNCS 1267,
Springer-Verlag, 1997, pp.54-68.

[10]	 National Bureau of Standards, \Data Encryption Standard”,
U.S.Department of Commerce, FIPS 46-3, October 1999.

[11]	 J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E.
Roback, \Status Report on the First Round of the Development of the
Advanced Encryption Standard”, http://csrc.nist. gov/encryption/aes/
round1/r1report.pdf

Minal Moharir is working as a Lecturer in R V
College of Engineering, Bangalore, India. She
received her M.Tech in Computer Network &
Engineering from VTU, Belgaum, India. She is
currently pursuing her Ph.D at Avinashi Lingam
University, Coimbatore, India. She has 8 years
of experience in teaching. She has presented
many papers in various national & International
conferences and reputed Journals.

Dr A V Suresh is working as the Head of the
Department in R V College of Engineering,
Bangalore, India. He has completed his Ph.D
from Mysore University in 2003. He has 21 years
of experience in teaching and 8 years of research
experience. His areas of interest is Machine Tool
Engineering , Quality assurance, and Operation
Research. He has presented many papers in various
national & International conferences and reputed
Journals.

3.	 Conclusion

We conclude the performance and the required resources
on our implementations in tables. We consider that Rijndael
is excellent on all aspects C6 is as good as Rijndael on the
code point of view, but the key schedule consumes more time.
Twofish needs much ROM memory than RC6 and Rijndael
because of the table. It is faster than Triple DES and equal to
DES on the throughput.It will have good performance on any
smart cards. MARS has disadvantages of its code size caused
by four of eight round iterations and a 2,048-byte table. The
speed is equal to Twofish’s one. We consider MARS has some
difficulties to check ‘weak’ on the key schedule and regenerate.
Serpent has disadvantages of its performance caused by the
iterations of rounds and the difficulty of key schedule. The
bitsliced implementation will improve the requirement of
ROM or RAM, but slower than others. We tried to write all
program codes to consume as little RAM area as possible.

References

[1]	 R. Anderson, E. Biham, and L. Knudsen, \Serpent: A Proposal for the
Advanced Encryption Standard”, AES submission, 1998.

[2]	 R. Anderson, E. Biham, and L. Knudsen, \Serpent and Smartcards”,
CARDIS ’98, 1999, available on http://www.cl.cam.ac.uk/~rja14/
serpent.html.

3]	 C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi,
C. Jutla, S. M. Matyas Jr., L. O’Connor, M. Peyravian, \MARS -a
candidate cipher for AES”, AES submission, 1998.

[4]	 J.Daemen, V.Rijmen, \AES Proposal: Rijndael”, AES submission,
1998.

[5]	 B. Gladman, “AES Algorithm Efficiency”, http://www.btinternet.
com/~brian.gladman/cryptography technology/Aes/

[6]	 G. Hachez, F. Koeune, and J. Quisquater, \cAESar results:
Implementation of Four AES Finalists on Two Smart Cards”, The
second AES conference, 1999, available on http://www.dice.ucl.ac.be/
crypto/CAESAR/caesar.html.

