
138GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTFDOI: 10.5176_2010-2283_1.1.23

Abstract—Following our introduction of the concept of
Abstraction Classes, we present herein their realisation within
a cloud environment. This is achieved using a combination
of integrated service-location models, including Knowledge-
Based Systems, and distributed metadata using XML. This is
complemented by service control software invoked at the level of
Abstraction Classes.

Keywords—Cloud Architecture, Virtualisation, Abstraction
Classes, Knowledge-Based Systems, Service Control

1. InTroduCTIon

Recently we introduced the concept of an Abstraction
Class [1] for the purpose of enabling the processing of a
transaction within a cloud environment in a standard manner
using the dynamic nature and virtualised properties of a cloud
to good effect. The manner in which an Abstraction Class is
invoked by an event and the subsequent protocol required
for the processing of that event are presented. This leads to
two areas of applied research, so that the processing patterns
of such classes could be applied to a cloud architecture in
general.

The first area is the construction of event classes
incorporating those events employed in the processing of
Abstraction Classes, so that their properties may induce a
degree of standardisation through modelling. This enables the
design and implementation of event classes to be simplified.
The key point is that events that are produced from the receipt
of external data are internal to the cloud, and herein we describe
how they are derived; these become abstracted entities within a
standard dataflow model. This will reduce the coding required
by Abstraction Classes and will thereby reduce the overall
level of processing required by the virtualised systems that
host such operational classes, e.g. Initiator Process in Figure
1, within a cloud.

The second area of applied research is to distribute
the method of forward lookup of the target goal of an
invocation of a (set of) service(s) through an Abstraction
Class. This is done through the application of research
that was formerly employed in the use of predicate logic
applied through the use of Knowledge-Based Systems in
the determination of goals, where the target data may be

distributed across a networked environment. One of the key
problems that is addressed by our work in the area of Abstraction
Classes concerns the fact that the data that is pertinent to cloud-
based services and transactions is distributed over what may
possibly be a wide area network, and the host cloud may be
subject to dynamic changes in its access structure. Therefore,
it is important that the design of a system – activating an
event-based protocol enabling a cloud-based process – should
be integrated with a system that communicates with the same
state map of the cloud at the point of the invocation of that
process.

This paper extends upon our previous work by describing
how the said design can be modelled and outlines the initial
construction of a demonstration system at a proof-of-concept
level. This proof-of-concept is realised using Inter-Process
Message (IPM) modules within a virtualised environment
employing an HP c7000 chassis and HP blade technology as
the host base.

2. EVEnT ABSTrACTIon

Adaptive computing [2] focuses on the methodology
and implementation of systems that adjust to different
situations. An adaptive system may change its own behaviour,
so as to fulfil the goals, tasks, interests, and other features of
individual users and the environment. Adaptivity is important
for pervasive and ubiquitous computing. The terms pervasive
and ubiquitous computing are used to describe a smart
space, in our case occupied by a cloud which is populated
by hundreds of intelligent devices that are embedded in their
surroundings [3]. In this paper such devices are represented
as Abstraction Classes. These form an effective vehicle upon
which to form the initial basis of cloud management. The said
computing devices blend into the background, unobtrusively
collaborating to provide services that add value to the cloud
for users. Services are thus essential to the success of this
technology and, as a result, both service discovery and
service management will play essential roles in enabling their
continuous deployment within clouds. These facilities should
be able to add value through their potential collaboration
by invoking relevant Abstraction Classes. Additionally, the
increasing complexity of such invocations in such a large-
scale, distributed and dynamic environment should be hidden
from users.

An Approach to Enable Cloud-Computing by the
Abstraction of Event-Processing Classes

Jonathan Eccles and George Loizou

Department of Computer Science and Information Systems, Birkbeck,
University of London, London, WC1E 7HX, UK

jonathan.eccles@hp.com

139GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

In order for the expansion of such systems to be
sustainable in the longer term within and between clouds, it
is required that the mechanisms responsible for the location of
the (sets of) required services should be enabled by integrating
different methods which ultimately centralise on a model-
based architecture rather than rely solely upon automatically
generated search activities [4]. This approach increases the
degree of control available within such a system.

This is a type of program [4] that issues queries in
order to automatically interact with web search engines. As a
consequence, such a program can consume a large portion of
the overall traffic within a system, in this case a cloud. First,
program generated traffic can usually peak to a proportionately
large amount of the total traffic volume in a relatively short
period of time, causing an increase in the search engine
response time. This is compounded by the increase in % CPU
processing, which accompanies the increase in traffic and the
increase in updating to search logs which are often retained
for later analysis.

In order to achieve a degree of control in combination
with a degree of management of the location and trace
processes of required (sets of) services and applications
within a cloud, it is required to minimise the number of
events that traverse a cloud and also to standardise such

events. This is achieved by, in effect, producing a virtual
event to represent a particular class of abstracted information
flow (Figure 1).

In order for this method of transmitting and controlling
event processing to attain the performance level required,
there must be a standard design behind the event protocol
processing model. This is initially at the level of virtualisation
of external events within the initiator class, and subsequently
within the abstracted networks within a cloud. This is defined
in an earlier paper [1] as follows and is illustrated in Figure 3
(cf. Figure 4):

Abstraction Classes linked through

1. Initiator: Initial Event Request to Initiator Process
– Abstract Call via Command Language

2. Initiator Process uses Policy derived/obtained from
Policy Database – Access Path obtained via local
control file

3. In the context of the local Functional Domain
(FD), relevant event Policy attributes are modified
according to the result of fi(fj(func.domain, event
profile), local policy)

Initiator Process

{Event trigger}
Abstraction of the

{Event Trigger Values}

Virtual Trigger

SNMP-based
Management
Information
Base (MIB)

SNMP-
based
Event

Process(es)
Physical
Event(s)

Event
Trigger(s)

Abstracted
Event-
Trigger

Protocol
Resultant
Action(s)

From
Abstracted

Triggers

Action

Activated
Process

Cloud
Structure

Process
Profile

Abstraction
Process

Process
Policy (set)

Fig. 1. The fundamental model of a simplified abstraction class for events external to a cloud leading to the corresponding virtualised event that will be used in
the abstracted information flow within a cloud

140GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

4. Abstraction Class requests MetaData for information
pertaining to required function/service

5. Parallel access process involving updating the
MetaData database due to the dynamic nature of the
cloud structure

6. The local control policy for the network node/
Virtual Machine hosting the Abstraction Class is
accessed

7. Direct Access to the set of Abstraction Classes on
Accessed Node

8. Target Evaluation Process by the invoked Abstraction
Class(es) for the required service(s)

As shown in Figure 2, it is envisaged that fundamental
large-scale entities, such as a cloud, should be described in
terms of fundamental layers of abstraction as applied to Cloud
Design. Currently, servers within a virtualised environment
are described as Virtual Machines (VM’s) whilst those within
a conventional physical network are described as Physical
Servers, both being members of the “Compute_Server” class
as addressed herein. Within a cloud either type of server may
exist and therefore classes of operation that are enacted upon
them must either be able to deal with both types or exist as
separate classes. Additionally, such operational classes must

be able to deal with the fact that such servers possessing the
same state may not mean that such operational classes react in
the same manner. Consequently, we propose an “Operational_
Server” class which has a state-based attribute, and in turn a
parent “Conceptual_Server” class to which many operational
and system processes may be applied. The respective classes
of events are derived summarily from their respective server
classes in this context.

This event-processing model must be complemented by
having the event protocol design integrated with a management
layer that can be part of the overall service location system.
The beginning of this integration layer is shown in Figure 1
in which there is an interaction between the Profile generation
process utilised for the virtualised event produced in the
Initiator process and the Policy accessed by the latter process.
The Profile and Policy data and the information pertaining
to their integration are contained within the MetaData/XML
(see Figure 3) database information. This is located on nodes
based on VM’s containing XML-based systems within the
cloud. The location of the VM nodes is maintained within the
replicated central SQL database within the cloud. At this point
such events have been produced from either Physical Servers
or VM’s and are referred to as the set of “Compute_Events”
(Figure 2). In order that they can be transmitted within a
cloud, these are transformed to a consolidated virtualised or
abstracted event, referred to in Figure 2 as a “Conceptual_
Event”. Specifically,

Conceptual_Server

Server_ID

Server_Name
Server_Class_ID (FK)
Build_ID (FK)
OS_ID (FK)
OS_Domain_ID (FK)

Operational_Server_Instance

Op_Server_ID

Server_ID (FK)
Op_State

Compute_Server_Mapping

Compute_Server_ID

Des_of_Expt_DOE_Parameters
Op_Server_ID (FK)

Physical_Server

Physical_Server_ID

Physical_Server_Name
Server_Class_ID (FK)
Compute_Server_ID (FK)

Virtual_Machine

VM_ID

VM_Name
VM_Class_ID (FK)
Compute_Server_ID (FK)

Conceptual Events

Conceptual_Event_ID

Conceptual_Server_Event_Xref

Server_ID (FK)
Conceptual_Event_ID (FK)

Compute_Events

Compute_Event_ID

Compute_Server_Event_Xref

Compute_Server_ID (FK)
Compute_Event_ID (FK)

Compute_Conceptual_Event_Xref

Compute_Event_ID (FK)
Conceptual_Event_ID (FK)

Fig. 2. An ER subschema of the overall cloud model that describes the conceptual-operational relationship (OS and DOE stand for Operating System and
Design of Experiment, respectively)

141GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

 Conceptual_Events := {Cloud_Events | Conceptual_Events M {Cloud_Events}
	 	 	 	 	 M (Compute_Events M {Cloud_Events}
	 	 	 	 	 M (Compute_Events M {Conceptual_Events})) }

	 	 Max(Sort({Conceptual_Events})) ‡ {Event_Seq[Index]} | Index = 1

Below follows a small sample of the coding pertinent to the class of Conceptual_Event :

 Event_Seq[1] = Compute_Corp_Event_In$
 Event_Seq[2] = Compute_Mgt_Event_In$
 Event_Seq[3] = Compute_System_Event_In$

 Select
 Case MemberOf(Compute_Corp_Event_In$, “Service_A$”) ; Corporate users
 call “$syslib\gen_profile(Policy_A$, Service_A$)”
 call “$syslib\gen_policy(Profile_A$, Service_A$)”
 call “$syslib\gen_concept_event(Profile_A$, Policy_A$, Service_A$, Conceptual_CorpA$)”

 Case MemberOf(Compute_Mgt_Event_In$, “Service_B$”) ; Mgt users
 call “$syslib\gen_profile(Policy_B$, Service_B$)”
 call “$syslib\gen_policy(Profile_B$, Service_B$)”
 call “$syslib\gen_concept_event(Profile_B$, Policy_B$, Service_$, Conceptual_CorpB$)”

 Case MemberOf(Compute_System_Event$_In, “Service_C$”) ; System users
 call “$syslib\gen_profile(Policy_C$, Service_C$)”
 call “$syslib\gen_policy(Profile_C$, Service_C$)”
 call “$syslib\gen_concept_event(Profile_C$, Policy_C$, Service_C$, Conceptual_CorpC$)”
 Case 1 ; catchall
 $msgstr = “No Services for Cloud Domain Group Membership.”
 call “$syslib\msgdisp.scr”
 EndSelect

The above script in Kix2010 [7] is an example of the
class of a Conceptual_Event (e.g. Conceptual_CorpA$) being
derived in response to the received Compute_Event class
Compute_Corp_Event_In$. This is complemented by the
evaluation of the Policy (e.g. Policy_A$) and Profile (e.g.
Profile_A$) in response to the event class being a member
of a specific Compute_Event subclass (e.g. Service_A$).
The metadata is accessed so as to derive where classes of
input Compute_Events occur most often, and therefore the
scripts and KBS clauses [8] are dynamically reconstructed,
so that the hierarchy will intercept the required goal (input
event) in a minimum number of steps. This helps to reduce
both processing and traffic in cloud-based Abstraction
Classes.

Each input event trigger to a cloud has a unique reference
associated with it in keeping with SNMP event traps [5][6].
This reference includes an Enterprise ID as well as an event
code for the trap, specific to the external device which is the
source of the event. More events of this type will be present on
the cloud-based network as more devices or software respond
to a particular state change. These events are referred to, in
Figure 2, as “Compute_Events”. Therefore one of the main
functions of the Initiator Process Node event and target search
protocol, as exhibited in Figure 3, is to present the idea of
a derived “Conceptual_Event” (Figure 2). This is intended

to reduce the overall number of events occurring within the
cloud and therefore the amount of overall traffic. A full testing
program for this is now being specified in a proof-of-concept
environment.

A change of state is produced due to a change of the
condition of an operation. Each external change of state can
be equated with a specific class of “Compute_Event” (Figure
1). Each event class can be equated using a standard time base
with an event instance object. Therefore, if a set of such events
occurs within a certain time threshold, then these events may
form a set of events associated with the same change of
state. Therefore each “Conceptual_Event” indicates a set of
“Compute_Events” that are likely to be associated with the
same system problem.

Each event class can be associated with a unique
numeric identifier. If these identifiers ({prime numbers} in
event protocol) for events with such a common timestamp are
added together then a unique value is derived. The total value
derived should then be cross-referenced with the library of
system events totals. Thus, by looking at the time base, this
total gives the sequence of events that constitute the sequence
of Compute_Event objects in the entire Conceptual Event
instance. This helps the diagnostics with respect to complex
service requests from Abstraction Classes.

142GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

The most immediate area of future work is to focus
in showing the complete distributed method and associated
sets of algorithms outlined herein. These are involved in
the linkage from the event protocol interpretation, the event
package contents and the translation of the request to the
required service call. This request is translated to a KBS goal
and the result stored both as a set of distributed KBS clauses
and as a set of equivalent distributed XML files. The solution
to this stage of the problem is to integrate all stages of the
solution in a seamless manner. The result of this will then be
integrated in cloud management systems, taking into account
the recent DMTF work [9].

5. ConCLuSIon

This paper presents the basis for event-based interaction
with Abstraction Classes with a view to this becoming an initial
stage towards a command and control layer of an operational
system for a cloud. It is shown that such an event-based
protocol has the potential for extension towards integration
with control systems from other functional domains or other
clouds. The natural extension of this is towards management
via techniques and designs utilising Open Systems Frameworks
[9][10].

3. EXTEnSIon oF ThE EVEnT ProToCoL
SCoPE

Figure 4 shows how the event protocol described in this
paper may fit into (the basis for) an Open Systems Framework
[10], by presenting a standard model to enable the control of
the operation of an abstraction class-based process depending
on the state of the system (cloud). This is presented in Figure
4 as the “Process Controller”. This utility is located in a
cloud, and will be accessed through the use of Abstraction
Classes. This “Process Controller” module will integrate with
the event protocol used to enable and control the abstraction
classes in relation to the state of the system (cloud). This may
in turn dynamically control the state of an accessed process,
following the principles of adaptive control referred to earlier.
For example, concerning the state of an aircraft (primary
cloud) with respect to a secondary cloud (on-board client/
client Abstraction Classes):

1. Parked : Initiator / Abs.Classes ON
2. Taxiing : Initiator / Abs.Classes OFF
3. Take-off : Initiator / Abs.Classes OFF
4. Flight : Initiator / Abs.Classes ON
5. Landing : Initiator / Abs.Classes OFF
4. Future Work

Fig. 3. The inclusion of the current event-processing protocol within the framework of the distributed KBS and a distributed metadata architecture, with XML
data transfer [6] between them via sets of distributed IPM’s on VM’s

143GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

and Gateway for XML-based Integrated Network Management. Int.
J.of Network.Mgmt, 13, pp.259-276

[6] C.Tsai, R.Chang, 1998 SNMP through WWW. Int.J.of Network Mgmt,
8, pp.104-119

[7] R.Van Velsen, 2010 Kix2010 v4.50. Microsoft Netherlands, www.
kixtart.org

[8] I.Bratko, 1986 Prolog Programming for Artificial Intelligence. Addison
Wesley

[9] I.Loy, F.Galan, I.Loy, A.Sampaio, V.Gill, L.Rodero-Merino, 2009
Service Specification in Cloud Environments Based on Extensions
to Open Standards. ACM Communication System Software and
Middleware (COMSWARE 09), Dublin, Ireland

[10] I.Traore, D.B.Aredo, H.Ye, 2003 An Integrated Framework for Forma1
Deve1opment of Open Distributed Systems. ACM Symposium on
Applied Computing (SAC2003), pp.1078-1085

rEFErEnCES

[1] J.Eccles, G.Loizou, 2010 A Cloud-Computing Environment Based
on a Model of Integrated Abstraction Classes. Annual International
Conference on Cloud Computing and Virtualization (CCV 2010),
pp.153-162

[2] B.Solomon, D.Ionescu, M.Litoiu, M.Mihaescu, 2007 A Real-Time
Adaptive Control of Autonomic Environments. IBM Centre for
Advanced Studies, Toronto, pp.1-13

[3] R.Harbird, S.Hailes, C.Mascolo, 2004 Adaptive Resource Discovery
for Ubiqiutous Computing. ACM 2nd Workshop on Middleware for
Pervasive and Ad-Hoc Computing, Toronto, Canada, pp.155-160

[4] H.Kang, K.Wang, 2010 Large-Scale Bot Detection for Search Engines.
ACM Proceedings of the 19th International Conference on World
Wide Web (WWW 2010)

[5] J.Yoon, H.Ju, J.Hong, 2003 Development of SNMP-XML Translator

Fig. 4. To show how the event processing protocol which, by virtue of being a standard construct, may lead to extended degrees of functionality

144GSTF INTERNATIONAL JOURNAL ON COMPUTING, VOL. 1, NO. 1, AUGUST 2010

© 2010 GSTF

Jonathan Eccles has more than 20 years of
experience in the integration and design of network
operating systems and programming languages
incorporating a variety of different technologies
within EDS and lately HP. This is complemented by
a wide interest in analysis and design methodologies
in the area of systems engineering. This has been
enhanced through academic research in order
to produce new ideas in the field of systems
engineering. He is currently a Technical Architect /

Design Engineer applying Virtualisation to Enterprise Systems for HP. He is
a member of the Institute of Electrical & Electronic Engineers (IEEE) and
the Association of Computing Machinery (ACM). Additionally he has been

named a Distinguished Systems Engineer (SE) at HP Enterprises.

George Loizou is currently Emeritus Professor
of the Mathematics of Computation. He obtained
a first class honours degree in Mathematics, a
Postgraduate Diploma in Numerical Analysis and
his PhD in Computation Methods. He serves on
the editorial board of AMCT, and is the Editor-in-
Chief of Section A of the International Journal of
Computer Mathematics.

